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Abstract: We provide a critical review of the fundamental concepts of Kerr lens
mode-locking (KLM), along with a detailed description of the experimental considerations
involved in the realization of a mode-locked oscillator. In addition, we review recent
developments that overcome inherent limitations and disadvantages in standard KLM lasers.
Our review is aimed mainly at readers who wish to realize/maintain such an oscillator or for
those who wish to better understand this major experimental tool.
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1. Introduction

Ultrashort pulses are key to numerous fields of science and technology. The unique temporal and
spectral properties of the pulses make them an extremely valuable tool in many fields, such as the
investigation of ultrafast chemical reactions [1] and multi-photon microscopy [2]. Frequency combs
are an important application of ultrashort pulses that received great attention since the Nobel Prize in
Physics was awarded to J. L. Hall and T. W. Hänsch [3–5]. A comprehensive review regarding the
applications of ultrashort laser systems can be found in [6,7]. In the past five decades since the first
demonstration of mode-locking in a He-Ne laser [8], the field of ultrafast optics “exploded”, and the
literature is enormous. The aim of this paper cannot be, therefore, to provide a complete survey of the
bibliography in the field, but rather, to focus on the experimental and practical aspects of realizing a
mode-locked solid-state oscillator. Specifically, we provide a detailed description of the theoretical and
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experimental physics of a Kerr lens mode-locked (KLM) Ti:sapphire oscillator, oriented mainly for those
interested in setting up such an oscillator or in understanding its inner workings.

The reason for choosing the Ti:sapphire oscillator as the default example in this review is trivial.
The first realization of the KLM Ti:sapphire laser [9], followed by the theoretical explanation of the
underlying physics [10–13], are considered a transition point in ultrashort pulse generation. Although
many gain media can produce ultrashort pulses, the Ti:sapphire crystal is by far the ultimate “working
horse” of mode-locking, providing the shortest pulses with the highest peak powers. The excellent
mechanical properties and cavity compactness of the Ti:sapphire oscillator renders it perfect for
commercial production. The Ti:sapphire crystal emission spectrum in the near infra-red (NIR) regime,
which spans nearly an octave in frequency, can produce ultrashort pulses down to the sub-two cycle
regime [14–17]. Consequently, the Ti:sapphire laser has become an extremely valuable research tool
in many laboratories that focus on ultrafast phenomena and precision measurement. For these reasons,
the description of the physical and experimental considerations involved in the realization of such an
oscillator are beneficial to a wide audience of experimentalist (and theorists).

In this review, we collect, under a single notation, the most important topics (in our view) for an
essential, but detailed, description of the KLM Ti:sapphire laser. Further details will be correspondingly
referenced. In addition, special focus is given to novel cavity designs that overcome some of the inherent
limitations and disadvantages of the standard design of KLM Ti:sapphire lasers, such as shaping the
oscillation spectrum, lowering the mode-locking threshold and eliminating sources of astigmatism. We
suggest to the reader to employ educated reading when addressing this review. While we attempted
to cover all relevant topics for experimental realization of a mode-locked Ti:sapphire oscillator, many
readers are probably well familiar with some of the basic concepts, such as the principles of pulsed
operation or dispersion control. We therefore advise the reader to first leaf through the review and then
selectively read chapters of higher interest.

2. Outline

Section 3 provides a concise review of the basic principles of pulsed operation and mode-locking
techniques. In this section, the mechanism of pulse formation is described in a qualitative and intuitive
manner. In addition, a general description is given to other mode-locking techniques, which preceded
Kerr lens mode-locking. Section 4 describes the fundamental concepts of Kerr lens mode-locking.
Nonlinear effects in the spatial and temporal domains are described quantitatively. Analysis and
calculation of the cavity mode in continuous-wave (CW) and mode-locked (ML) operations are reviewed
in Sections 5 and 6, respectively, where we describe the standard configuration of a KLM Ti:sapphire
cavity and its operating regimes. Specifically, we review the calculation of linear astigmatism and
methods for compensating for it and provide an analysis of the intra-cavity fundamental Gaussian mode
for both CW and ML operation. Section 7 discusses the different types of mode-locking techniques
in a Ti:sapphire oscillator: hard and soft aperture techniques are described in detail, including both
quantitative and visually intuitive descriptions. Specific attention is given to the “virtual hard aperture”
method, which is less discussed in the literature, where diffraction losses in an unstable resonator produce
an effective hard aperture for the laser. Section 8 addresses the problem of nonlinear astigmatism in the
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cavity and how it affects the spatial mode and nonlinear response in ML operation, and the standard
compensation for nonlinear astigmatism (and its disadvantages) are discussed. Dispersion management
is addressed in Section 9: analytic expressions for calculating the group delay dispersion are provided
and common dispersion compensation devices are briefly reviewed, such as prism-pairs and chirped
mirrors. Section 10 provides a qualitative review of the common experimental behavior of a standard
designed KLM Ti:sapphire cavity: the typical behavior of the mode-locking power, threshold and
efficiency are described for typical and commonly used mode-locking techniques. Section 11 reviews
advanced cavity designs, specifically developed to improve laser performance and to overcome several
inherent limitations of standard designed cavities, such as nonlinear astigmatism, Kerr lensing efficiency
and intra-cavity control of the oscillation spectrum. Appendix provides further discussion regarding the
compensation for linear astigmatism in its most general form.

3. Basic Principles of Pulsed Operation in a Laser

In the following, we provide a survey of the basic principles of pulsed laser operation. We focus only
on the few concepts that are relevant to the understanding of the Kerr lens mode-locking mechanism.
For a comprehensive study of laser operation, readers are referred to the classic literature [18].

3.1. Formation of Ultrashort Pulses

An optical cavity can support a set of longitudinal modes that satisfy its boundary conditions:
L = mλ/2, where L is the cavity length, λ is the mode wavelength and m is an integer number. The
modes that can actively oscillate in the cavity are only modes whose frequency lies within the emission
spectrum of the active medium. When a laser operates in CW, multiple longitudinal modes can oscillate
in the cavity simultaneously, whose relative phases are random. Therefore, the modes are randomly
interfering with one another, and the laser output in time is a noisy continuous intensity, which is
periodic in the cavity round trip time. A laser is said to be mode-locked if many longitudinal modes are
oscillating together with a well defined phase relation between them, as opposed to CW operation, where
the phases are random. This phase relation causes the modes to constructively interfere only within a
short period of time, while destructively interfering at all other times, forming a pulse with a high peak
intensity. In other words, the mode-locking mechanism contracts the electro-magnetic energy, which
would otherwise spread over a long period, into an extremely short pulse, which oscillates back and forth
in the cavity. Eventually, ML reaches a steady state (due to limiting mechanisms, such as dispersion,
gain bandwidth, etc.), producing a stable pulse that circulates in the resonator. Pulse formation can be
qualitatively modeled based on the Kuizenga–Siegman theory [19], describing the interplay between
two mechanisms: first, pulse shortening due to some nonlinear effect, which monotonically decreases in
magnitude as the pulse becomes shorter and shorter; and second, the finite gain bandwidth of the active
medium, which acts as a pulse lengthening mechanism in time, which is monotonically enhanced as
the pulse becomes shorter and shorter. When these two mechanisms are in balance, the pulse reaches a
steady state.
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3.2. Active/Passive Mode-Locking

As a preface to the Kerr lens mode-locking mechanism, we provide a general and intuitive description
of the mode-locking techniques that preceded Kerr lens mode-locking. We refer the reader interested
in a detailed study to the corresponding literature [19–22], but a quick review is important to set the
background for the Kerr lens mode-locking technique. In general, mode-locking establishes preference
for pulsed operation, either in loss or in gain. Mode-locking techniques are either active, where an
external modulation inside the cavity enforces pulsed operation, or passive, where the preference for
pulsed operation is introduced by an additional intra-cavity nonlinear response.

Active mode-locking can be achieved by intra-cavity amplitude modulation (AM) or frequency
modulation (FM) at an exact multiple of the cavity repetition rate, frep [19,20,23,24]. The first method
uses the modulator as a fast shutter in the cavity, where pulsed operation is achieved by synchronizing
the modulation rate with the round trip time of the pulse, so a pulse will always pass through the
modulator when the “shutter is open”, cutting away the pulse edges and pushing it towards shorter
periods. The second method introduces a phase/frequency shift to light arriving outside of the temporal
window of mode-locking, thus constantly pushing its spectrum, outside of the gain bandwidth. Pulses
can therefore evolve only during the short time window of “no phase”, similar to the window of “no loss”
with AM modulation.

Passive mode-locking is usually achieved by introducing an effective saturable absorber into
the cavity, which reduces the loss for high intensity light due to the saturation of the absorbing
medium [21,25,26]. Therefore, CW will suffer constant absorption losses, whereas a pulse with a high
peak power will quickly saturate the absorber by the leading part of the pulse, considerably reducing
the loss for the main part of the pulse. The saturable absorber then acts as a shutter that the pulse itself
activates with a much faster modulation rate than electronically-based shutters. For short pulses, one
prefers a fast response of the saturable absorber to intensity variations (short recovery time) [22].

4. The Optical Kerr Effect

The optical Kerr effect is the nonlinear mechanism at the core of ultrashort pulse formation in many
solid-state lasers. We provide a quantitative description of the nonlinear response and discuss how it
affects the laser light in both the spatial and time/frequency domains. Since both the spatial and temporal
effects are nonlinear (i.e., intensity-dependent), they are coupled together through the master equation of
pulse propagation. A more detailed and mathematical review of the master equation and pulse dynamics,
laser noise, the theory of active/passive mode-locking, along with slow/fast saturable absorbers and
Kerr media can be found in [27–31].

The optical Kerr effect is a third-order nonlinear process, where the refractive index of the material is
intensity-dependent [32], given by:

n(I) = n0 + n2I (1)

where n0 and n2 [33] are the linear and nonlinear refractive indices, respectively, and I is the light
intensity. As explained below, the Kerr effect can effectively introduce an artificial saturable absorber to
the cavity, placing it under the category of passive mode-locking [34]. Since the Kerr effect in transparent
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media is practically instantaneous, this effective saturable absorber is exceedingly fast, allowing the
generation of pulses as short as a few femtoseconds, far beyond what can be achieved with “real”
saturable absorbers (in the picosecond scale). In practice, the pulse duration of Kerr lens mode-locked
lasers will be limited by the dispersion management in the cavity, the gain bandwidth of the active
medium and the optical period of the carrier wave. Since n2 for the sapphire crystal is relatively low
(≈3× 10−16 cm2/W) [35], only high peak power pulses will be sensitive to this effect.

The preference for pulses via the optical Kerr effect is rooted in its influence on the pulse profile in
both space and time. In the transverse spatial domain, due to the Gaussian-shaped laser beam, the center
of the beam experiences a larger refractive index compared to the wings, producing an effective focusing
lens for the laser. The effective nonlinear lens can be calculated by considering the phase accumulated
after propagating through a Kerr medium with thickness z and a nonlinear coefficient, n2, given by:
φ = k0n(I)z (to be considered as thin, the material thickness, z, should be considerably smaller than
the Rayleigh range of the mode). By comparing the result to the well-known phase of a simple lens, the
dioptric power of the nonlinear Kerr lens can be easily identified as:

1

fNL

=
4n2z

π

P

w4
(2)

where P is the pulse peak power and w is the mode radius. Note that Equation (2) holds only for a
circular beam where wx = wy = w. For a non-circular beam with wx 6= wy, the dioptric power will
be different for each plane, and both planes will be coupled by the nonlinear interaction. A generalized
expression for the dioptric power of each plane can be found in [36].

In combination with an intra-cavity aperture, this intensity-dependent nonlinear lens can be used as an
intensity-dependent loss element that generates self amplitude modulation (SAM), which favors pulsed
operation over CW operation. In general, strong SAM is desired in order to achieve robust mode-locking
over a wide pump power range. Two major concepts are used when introducing an aperture into a cavity:
hard and soft aperture; where hard aperture exploits a real, physical aperture in the cavity, while soft
aperture exploits the pump beam size inside the laser crystal as the effective aperture. Both methods are
explained in detail in Section 7.

In the temporal domain, the intensity-dependent refractive index modulates the instantaneous phase
of the pulse according to the instantaneous intensity by: φ(t) = ω0t+φNL = ω0t+k0n(I)L; where L is
the thickness of the Kerr medium. This process is known as self phase modulation (SPM), which results
in modulation of the instantaneous frequency around the central frequency, ω0, given by: ω(t) = φ̇ =

ω0 + ∆ω(t). The deviation, ∆ω(t), from the central frequency is given by:

∆ω(t) = εt exp

(
− t

2

σ2
t

)
(3)

where ε = (2ω0Ln2I0)/(cσ
2
t ) is the modulation coefficient and a Gaussian pulse was assumed with

duration σt (from here on, the linear refractive index, n0, will be denoted as n, unless specifically
mentioned otherwise). From Equation (3), one can see that the instantaneous frequency is red-shifted
(to lower frequencies) in the leading edge of the pulse and blue-shifted (to higher frequencies) in the
trailing edge. This process of self phase modulation (SPM) [37] continuously broadens the spectrum
of the pulse. Thus, SAM and SPM are the mechanisms for pulse shortening and spectral broadening,
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respectively. Eventually, both mechanisms will be limited by dispersion compensation and the finite gain
bandwidth, which leads to the formation of stable, soliton-like pulses.

5. Cavity Analysis in CW Operation

In this section, we provide a detailed analysis of the optical cavity in CW: cavity stability zones,
stable Gaussian modes and linear astigmatism compensation, which are critical topics for the realization
of the optical cavity. A detailed description regarding the Ti:sapphire crystal properties can be
found in [38,39], including: molecular/electronic structure, absorption/emission spectra, crystal growth
techniques, doping level, figure of merit, etc.

5.1. Basic Configuration of a Ti:sapphire Oscillator

Figure 1 illustrates the basic configuration of a linear X-shaped, or Z-shaped cavity, which
are commonly used for Ti:sapphire lasers. The feedback end mirrors, EM1 and EM2, are the
output-coupler (OC) and the high-reflector (HR), respectively. Two curved mirrors, M1 and M2, with
foci f1 and f2 are used to focus the laser mode into the crystal. The distance between the curved mirrors
controls the spatial mode and stability range of the cavity. The cavity has two arms: from M1 to EM1

with a length, L1, and from M2 to EM2 with a length, L2. The most useful technique to analyze light
beams in an optical cavity is using ABCD matrices. The ABCD matrices (formulated within the paraxial
approximation) are used to represent an optical system as a 2 × 2 matrix, so one can calculate how the
optical system affects the path and properties of a beam of light passing through it. The beam at the
system input is represented by a vector, Vin, containing the distance, xin, above the optical axis and the
beam angle, θin, with respect to the optical axis. The beam at the output of the system can be calculated
by Vout = MVin, where M is the optical system ABCD matrix:[

xout

θout

]
=

[
A B

C D

][
xin

θin

]
(4)

A detailed description of this method along with explicit expressions for the ABCD matrices of the
optical elements in a cavity can be found in [40]. For the cavity illustrated in Figure 1, we can define
the distance between the curved mirrors as: f1 + f2 + δ (δ measures the shift from a perfect telescope)
and use the ABCD matrix method to find the range of values for δ where the cavity is spatially stable.
The condition for resonator stability is |A+D| < 2, whereA andD are the elements of an ABCD matrix
that represents a single round trip in the cavity with respect to an arbitrary reference plane. Another
optional cavity configuration is a ring configuration [41] with the benefit of a shorter cavity length and a
higher repetition rate. The same ABCD matrix technique and stability condition hold for a ring cavity.
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Figure 1. Standard (a) X-shaped and (b) Z-shaped configurations of a linear Ti:sapphire
cavity with a Brewster-cut crystal. Both configurations work equally well. The folding
angles, θ1 and θ2, allow for the compensation of the astigmatism from the Brewster crystal,
as discussed in Section 5.4.
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5.2. Stability Ranges and Limits

When solving the stability requirements of the cavity illustrated in Figure 1, one finds that the laser
is stable for two bands of δ values bounded between four stability limits, δ0 < δ < δ1 and δ2 < δ < δ3,
given by:

δ0 = 0, δ1 = f 2
2 /(L2 − f2), δ2 = f 2

1 /(L1 − f1), δ3 = δ1 + δ2 (5)

Note that for simplification, Equation (5) was calculated without the Ti:sapphire crystal between M1

and M2. The addition of Ti:sapphire crystal (or any material with thickness L and refractive index n)
will shift all the stability limits, δi, by a constant factor of L(1 − 1/n). However, Equation (5) can
still be used without any change by redefining the distance between M1 and M2 in Figure 1 to be:
f1 + f2 + L(1− 1/n) + δ.

Near the stability limits given in Equation (5), the stable cavity mode can be intuitively visualized
using geometrical optics, as illustrated in Figure 2. The four stability limits can be named according to
the mode size behavior on the cavity end mirrors, as follows: (1) plane-plane limit (Figure 2a); the curved
mirrors (illustrated as lenses) are separated by f1 + f2, forming a perfect telescope, which produces a
collimated beam in both arms; (2) plane-point limit (Figure 2b); the curved mirrors are separated by
f1 + f2 + δ1, such that the focal point between the curved mirrors is imaged on EM2; (3) point-plane
limit (Figure 2c); the curved mirrors are separated by f1 + f2 + δ2, and the focal point between the
curved mirrors is imaged on EM1; (4) point-point limit (Figure 2d); the curved mirrors are separated by
f1 + f2 + δ3, and the focus point between the curved mirrors is imaged on both the end mirrors. Kerr
lens mode-locking usually occurs near one of the stability limits, as explained in Section 7.
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Figure 2. Geometrical representation of the cavity mode at the stability limits:
(a) plane-plane limit; (b) plane-point limit; (c) point-plane limit; (d) point-point limit.
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5.3. Gaussian Modes

Using ABCD matrices, one can calculate the fundamental Gaussian TEM00 mode of the cavity for
CW operation inside the stability ranges of the resonator. The Gaussian mode is represented by the
complex beam parameter q = z+ izR, where zR is the Rayleigh range of the beam given by zR = πw2

0/λ

and w0 is the mode radius at the beam focus z = 0. To calculate the CW complex beam parameter, qcw,
at any reference plane in the cavity, one can represent the complete round trip in the cavity as an ABCD
matrix with respect to a chosen reference plane. The complex beam parameter at the reference plane can
be calculated by solving: (

1

qcw

)2

+
A−D
B

(
1

qcw

)
+

1− AD
B2

= 0 (6)

where 1/qcw represents the beam spot size, w, and the beam radius of curvature, R, at the reference
plane by:

1

qcw
=

1

R
− i λ

πw2
(7)

Solving Equation (6) provides expressions for w and R as a function of the ABCD matrix elements,
given by:

R =
2B

D − A

w2 =
|B|λ
π

√
1

1− (A+D)2/4

(8)

A natural location to calculate the complex beam parameter is at the flat end mirrors, where the mode
must arrive with a flat phase front. At the end mirrors, qcw = izR is purely imaginary, and the mode waist
radius, w(CW )

0 , can be plotted as a function of the separation, δ, between the curved mirrors, as presented
in Figure 3.
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Figure 3. Continuous-wave (CW) mode size on the end mirrors, EM1 and EM2, for the
cavity illustrated in Figure 1 with f1 = f2 = 7.5 cm and arm lengths of L1 = 30 cm (short
arm) and L2 = 40 cm (long arm). At δ1, the beam is collimated in the short arm and focused
on EM2 in the long arm. This behavior is reversed at δ2.
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5.4. Linear Astigmatism

Linear astigmatism is an important consideration in folded cavities with Brewster-cut
windows/crystals. Defining the tangential plane as the plane of refraction/reflection (parallel to the main
plane of the cavity) and the sagittal plane perpendicular to it, we find that in the tangential plane, the
mode size expands (divergence is reduced) as the beam refracts into the Brewster-cut crystal, while
in the sagittal plane, the mode size remains the same. This introduces astigmatism, since the beam
experiences a different geometric path in each plane, given by: Ls = L/n for the sagittal plane and
Lt = L/n3 for the tangential plane (L is the thickness of the crystal, and n is the refractive index).
This aberration differently shifts the stability limits of the two planes from the non-astigmatic stability
limits in Equation (5), resulting in different stability ranges for each plane. Therefore, astigmatism
compensation is necessary to ensure stable oscillation in both planes and to obtain a circular Gaussian
mode at the end mirror.

The material astigmatism from Brewster-cut windows/crystals can be compensated for using the
curved mirrors that fold the beam in the main plane of the cavity. Since the focus of an off axis curved
mirror (or lens) is different in the two planes, the folding angles of the curved mirrors introduce an
additional astigmatism that (luckily) is of opposite sign to that of a Brewster-cut window, allowing
for compensation. The curved mirror focal length for reflection at an angle, θ, is fs(f, θ) = f/ cos θ

for the sagittal plane and ft(f, θ) = f cos θ for the tangential plane [42], where f is the paraxial
focus. Therefore, the mirrors astigmatism ∆f(f, θ) = fs(f, θ)− ft(f, θ) can compensate for the crystal
astigmatism ∆L = Ls − Lt, by solving:

∆f(f1, θ1) + ∆f(f2, θ2) = ∆L (9)

For θ1 = θ2 = θ and equal paraxial foci f1 = f2 = f , the solution of Equation (9) is [43]:

θ = arccos(
√

1 +N2 −N) (10)
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where N = (L/4fn)(1− 1/n2).
Note that the solution given in Equation (10) compensates for astigmatism only in the plane-plane

configuration, at δ = 0. In general, astigmatism can only be compensated for a specific distance, δ, in
the cavity. In the Ti:sapphire oscillator, because of the very small pump (and laser) mode size inside the
crystal, one usually operates near one of the stability limits, and astigmatism should compensate for that
limit. Appendix discusses compensation for the other stability limits.

6. Cavity Analysis in Mode-Locked Operation

In contrast to CW mode analysis, which is straight-forward and fully analytic, the solution of the
spatial mode in ML operation is inherently difficult: due to the nonlinearity of the optical Kerr effect,
the cavity mode depends on the intensity, which, in turn, depends on the mode, leading to coupling
between the two. Therefore, methods to calculate the spatial mode in ML operation are approximated,
iterative and mostly non-analytic for the general cavity configuration. In the following, we review several
common methods for cavity analysis in ML operation.

6.1. A Gaussian Beam in a Kerr Medium

The additional Kerr lens in the pulsed laser mode (Equation (2)) must be taken into account in order
to calculate the Gaussian mode for ML operation. The presence of a lens-like effect inside the crystal,
similar to thermal lensing [44], dramatically changes the stability behavior of the cavity. As for the Kerr
effect in the laser crystal, several methods have been proposed to solve qML for ML operation [10,45,46].
These methods construct a nonlinear ABCD matrix to treat the propagation of Gaussian beams in the
Kerr medium, where the nonlinear matrix depends on the mode intensity inside the crystal. Then, one
can solve qML (for a given peak power of the pulse, P ) in an iterative manner: starting with the solution
of qcw (at P = 0) as an initial guess, one calculates the nonlinear ABCD matrix based on the mode size
in the crystal given by qcw; this matrix defines, then, a new resonator with the additional Kerr lens, which
yields a new solution of the laser mode, which allows recalculation of the nonlinear matrix, and so forth.
The iterations continue, until a steady state is reached for the assumed intra-cavity peak power.

A useful direct approach to solve qML along this line is to divide the Ti:sapphire crystal into many
thin slices, considerably shorter than the Rayleigh range of the laser mode, zR. The crystal is then
represented as a stack of many thin-lens matrices, where each matrix, Mslice, consists of a nonlinear lens
and propagation through a single slice with thickness l:

Mslice =

[
1 0

− 1
fNL(w)

1

][
1 l

0 1

]
=

[
1 l

− 1
fNL(w)

1

]
(11)

where fNL(w) is the nonlinear focus given by Equation (2) for a Kerr medium with thickness l (calculated
for the mode size at that slice. One can then calculate qML in an iterative manner, as described above.
Note that the element, D, in the matrix, Mslice, equals D = 1 + O(l2). In the limit, where l � zR, one
can use D = 1.
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Another useful numerical, but not iterative, method was given in [47], where it was shown that
dividing the crystal into many infinitely thin lens-like slices with thickness dz can be represented as
a differential equation for the inverse complex beam parameter, q−1:

d

dz

(
1

q

)
+

(
1

q

)2

+KIm2

(
1

q

)
= 0 (12)

Here, the nonlinear Kerr lensing process depends on a normalized parameter: K = P/Pc, where P is
the pulse peak power and Pc is the critical power for catastrophic self-focusing, given by:

Pc =
λ2

4n2π
(13)

Note that the nonlinear process now depends on the normalized parameter K. Consequently, other
theoretical and experimental values for Pc can be defined [48]. For K = 0, Equation (12) reduces
back to propagation of a Gaussian beam in a linear material with refractive index n. By scaling the
imaginary part of q−1 by

√
1−K, the propagation of the new complex beam parameter q̃−1 = Re[q−1]+

iIm[q−1]
√

1−K through a Kerr medium can be reduced back into a free-space propagation (i.e., K =
0). Thus, the effect of the nonlinearity is fully contained in the transformation of q−1, and a problem
involving Kerr nonlinearity can be analyzed using linear ABCD matrices, like free space propagation.
At the end of the Kerr medium, q̃−1 must be re-transformed by re-scaling the imaginary part of q̃−1

by 1/
√

1−K. Since there is no ABCD matrix that represents this transformation, one can no longer
represent the entire cavity by a single ABCD matrix. qML of the stable mode must, thus, be obtained
by a numerical solution of the stability condition |A + D| < 2 for the general cavity configuration
illustrated in Figure 1. Analytical solutions, however, can still be achieved for a ring cavity [49] or for a
symmetrical linear cavity [50] (equal cavity arms). The result of the calculation is a different mode size
for w(ML)

0 as a function of δ compared to w(CW )
0 (see Figure 4).

Figure 4. Mode-locked (ML) and CW mode size on the end mirror, EM1 (short arm), near
the CW stability limit, δ1, for the cavity illustrated in Figure 1. (a) The crystal is at the CW
focus with pulse parameter K ≈ 0.1; the ML stability limit is pushed towards higher values
of δ by the Kerr lens. In (b), the crystal is away from focus with pulse parameter K ≈ 0.2;
the ML stability limit is pulled down by the Kerr lens to lower values of δ. The dotted-dashed
lines (black) represent positions where hard and soft aperture mode-locking techniques can
be experimentally employed (these techniques are discussed in detail in Section 7). The
long-dashed lines (blue) represent the second stability limit in CW operation.
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It is important to note that all calculations are performed within the aberration-free approximation for
the Kerr lens, in which the transverse variation of the refractive index is approximated to be parabolic,
so that the beam maintains its Gaussian shape during propagation, and the ABCD method to analyze the
cavity can be applied. A detailed discussion regarding the limits of the aberration-free approximation
can be found in [51]. Note, in addition, that in Figure 4, astigmatism was neglected for simplicity.
The effects of nonlinear astigmatism on the ML mode are discussed in Section 8.

The solution for the ML mode size presented in Figure 4 highly depends on the Kerr medium (crystal)
position. Changing the position of the crystal along the beam affects the mode intensity in the crystal
and, hence, the nonlinear response, leading to a different (sometimes dramatically) solution of w(ML)

0 .
In Figure 4a, the crystal was positioned at the CW focus point between the curved mirrors, whereas
in Figure 4b, the crystal is located away from the focus, showing the completely opposite behavior.
While in Figure 4a, the Kerr lens pushes the stability limit for ML operation towards higher values of δ,
in Figure 4b, the stability limit is pulled towards lower values. The position of the crystal accordingly
determines which method will be employed in order to mode-lock the cavity (hard or soft aperture),
as will be discussed in Section 7.

It is important to note that the above method ([47] and Equation (12)) assume a circular mode
inside the crystal and do not include the effects of the more realistic elliptical (astigmatic) mode in
the Brewster -cut crystal. One may try to calculate qML for each plane separately by assuming a circular
mode with the corresponding mode size (ws/wt for the sagittal/tangential plane, respectively), but this
is oversimplified in most cases. While such a simple separation of the planes may produce a qualitative
understanding of the mode, it cannot provide a quantitative solution, since the planes in reality are
coupled by the Kerr lensing effect (the mode size in one plane affects the peak intensity, which then
affects the mode of the other plane). A detailed description of the coupled propagation equations of a
Gaussian beam through a Kerr medium is provided in [36]. We further discuss the effects of nonlinear
astigmatism in Sections 8 and 11.2.

7. Mode-Locking Techniques

The addition of the Kerr lens changes the laser mode for pulses, but does not necessarily impose
a preference for pulsed operation. This preference is achieved when a proper aperture in the cavity
selectively prefers the pulsed mode over the CW mode. Here, two methods are common to induce losses
on the CW mode compared to the pulsed mode: hard aperture and soft aperture. In the following, we
provide an intuitive and quantitative description of these methods.

7.1. Hard/Soft Aperture Mode-Locking

In order to prefer ML operation, one can exploit the variation of w(ML)
0 compared to w(CW )

0 (Figure 4)
in combination with an aperture to introduce an intensity-dependent loss mechanism into the cavity.
Usually, the working point for mode-locking is near a stability limit, where the laser mode is tightly
focused into the crystal, maximizing the intensity-dependent Kerr effect. At a given δ close to a stability
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limit (Equation (5)), the crystal position can be translated along the beam propagation axis to affect the
Kerr strength, defined by:

γ =
Pc

wcw

(
dw

dP

)
P=0

(14)

where P is the pulse peak power and w is the mode radius at one of the end mirrors. The Kerr strength of
Equation (14) represents the change of the mode size due to a small increase in P (normalized to the CW
mode size), which is a measure for the effect of the Kerr lens on the cavity. Investigating the variation
of γ as a function of the crystal position, one finds two possible mechanisms to inflict loss on the CW
mode [12]: hard aperture, which is applicable when the ML mode is smaller than the CW mode, as in
Figure 4a; and soft aperture, which is applicable in the opposite scenario when the ML mode is larger
than the CW mode, as in Figure 4b.

7.1.1. Hard Aperture

Figure 5a plots γ (calculated at the end mirror, EM1) as a function of the crystal position near the
end of the first stability zone, δ . δ1. When the crystal is located near the focus, γ is negative, and
hence, the Kerr lensing reduces the mode size for ML compared to CW operation. This enables the
introduction of a physical (“hard”) aperture near the end mirror, EM1, to employ loss on the CW mode,
while the smaller ML mode passes through the aperture without attenuation. Hard aperture is illustrated
in Figure 4a, where the power-dependent stability limit, δ1, for ML operation is pushed towards higher
values of δ. Hence, the working point for mode-locking is at δ . δ1, where the CW mode is larger than
the ML mode.

Figure 5. (a) Kerr strength γ at EM1 as a function of the crystal position, Z, near the
stability limit, δ1. At Z = 0, the crystal center is located at a distance f1 from M1. Positive
values of Z correspond to the translation of the crystal away from mirror M1. (b) Kerr
strength γ as a function of the crystal position, Z, at EM2 near the stability limit, δ2.
At Z = 0, the crystal center is located at a distance, f2, from M2. Positive values of Z
correspond to the translation of the crystal away from M2.
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7.1.2. Soft Aperture

As the crystal is translated away from the focus towards M2, γ becomes positive, thereby providing
a mode size for ML operation, which is larger than the CW mode. In this situation, the stability limit
for ML operation is pulled down to lower values of δ by the added Kerr lens. Therefore, a physical
aperture cannot be used at EM1. However, the larger mode size for ML at EM1 corresponds to a
smaller mode size at the crystal compared to the CW mode. This enables the pump beam inside the
crystal to be used as a “soft” aperture, by setting a small pump mode to overlap with the smaller ML
mode at the focus. Consequently, the pump mode acts as a “soft aperture”, in which the CW mode
suffers from poor pump-mode overlap compared to the ML mode. As can be seen from Figure 5a, the
soft aperture technique for mode-locking near δ1 is less efficient, because the translation of the crystal
away from the focus increases the mode size in the crystal, lowering the value of |γ| and also increasing
the laser threshold. The efficiency of soft aperture compared to hard aperture mode-locking is better
when mode-locking near the second stability zone, δ & δ2, as shown in Figure 5b, where γ is plotted as
a function of the crystal position on the end mirror of the long arm (EM2). It is therefore beneficial to
mode-lock with hard aperture near δ1 and with soft aperture near δ2.

7.2. Virtual Hard Aperture Mode-Locking

Maybe the most convenient technique for hard aperture mode-locking near the first stability limit, δ1,
without using a physical aperture, is to choose the mode-locking point at δ & δ1, a little bit beyond the
stability limit, as was experimentally demonstrated in [52]. As can be seen in Figure 4a, crossing the
stability limit, δ1, affects only CW operation, while the cavity can still be stable for ML operation. At
δ & δ1, though the cavity is unstable for CW, it will operate very well, only with an elevated threshold,
due to increased diffraction losses. Diffraction losses are increased as δ is increased beyond δ1. The
concept of re-stabilization is illustrated in Figure 6a. The Kerr lens images the focus of the ML mode
forward, effectively shortening the distance between M1 and M2 compared to CW, thereby pushing the
stability limit for mode-locking towards higher values of δ. The unstable CW passively suffers from
diffraction losses, which is effectively equivalent to employing an aperture. Mode-locking can still be
initiated by knocking on one of the end mirrors, just as with standard hard/soft aperture. On a practical
note, thermal lensing in the Ti:sapphire crystal must be considered, as it may also shift the stability
limits of the cavity. In the experiments shown in [52], the absence of thermal lensing was experimentally
verified. Virtual hard aperture mode-locking can be achieved also near δ2 (though far less effectively than
soft aperture) by choosing the mode-locking point at δ . δ2. As illustrated in Figure 6b, CW operation
is destabilized, while for ML operation, the cavity can still be stable. The Kerr lens then virtually images
the focus of the ML mode backwards, thereby effectively lengthening the distance between M1 and M2

for the ML mode compared to CW. Thus, one can choose a mode-locking point at δ . δ2, which is
stable for ML operation, but not stable for CW operation. This, however, is much less efficient than
mode-locking at δ & δ1, since it requires a weaker Kerr lensing effect in order to create a virtual image
of the focus point rather than a real image.
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Figure 6. Illustration of the Kerr lensing effect as a mode-locking stabilizing mechanism in
virtual hard aperture technique: (a) increasing δ beyond the stability limit, δ1, destabilizes
CW operation, while ML operation remains stable as the effective distance between f1 and
f2 becomes shorter, by the nonlinear forward imaging of the focus point; (b) decreasing δ
below the stability limit, δ2, destabilizes CW operation, while ML operation remains stable
as the effective distance between f1 and f2 becomes larger by nonlinear virtual imaging of
the focus point.
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Last, we note that hard/soft aperture mode-locking can be achieved in the same manner as explained
above near the stability limits, δ3 and δ0. At δ3, hard aperture has the stronger nonlinear response,
similar to δ1. However, due to experimental considerations, one usually prefers to have a collimated
beam at one of the cavity arms, which is not the case at δ3 (see Figure 2). At δ0, soft aperture has the
stronger nonlinear response, similar to δ2, yet cavity operation near the plane-plane limit, δ0, is usually
less convenient compared to the point-plane limit, δ2, since it is more sensitive to the misalignment of
the end mirrors.

8. Nonlinear Kerr Lens Astigmatism

Kerr lensing in the Brewster-cut Ti:sapphire crystal introduces an additional source of nonlinear
astigmatism into the cavity. As the beam refracts into the crystal, the mode size in the tangential
plane, wt, expands, while the sagittal mode size, ws, remains the same, hence reducing the intensity
and the nonlinear response in the tangential plane. The difference in the nonlinear response between
the two planes will produce an intensity-dependent astigmatism, even if the linear astigmatism is fully
corrected. In terms of the power-dependent stability limit, δ1, of mode-locked operation illustrated in
Figure 7a, both the sagittal and tangential stability limits will be pushed towards higher values of δ,
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but the sagittal limit will be pushed farther away, compared to the tangential limit. Note that only
hard aperture mode-locking pushes the stability limits towards higher values of δ, in contrast to soft
aperture mode-locking, where the stability limits are pushed towards lower values of δ. However, in
both hard and soft aperture techniques, the relative variation of the power-dependent stability limit will
be higher in the sagittal plane compared to the tangential plane. In terms of the Kerr lens strength, γ,
plotted in Figure 7b, both the tangential and sagittal planes will have a similar qualitative behavior, but
the absolute values of γ will be reduced in the tangential plane compared to the sagittal. Therefore, a
fully-corrected CW mode will not remain corrected after mode-locking. The standard solution to the
problem is to pre-compensate for the nonlinear astigmatism [49] by introducing extra linear astigmatism
for the CW mode in the opposite direction, as seen in Figure 8, such that the plane with the stronger |γ|
will “catch up” with the weaker one. By changing the values of the angles, θ1 and θ2, away from perfect
linear astigmatic correction, one can pre-compensate for nonlinear astigmatism at δ1. Consequently,
a deliberately non-circular CW mode will become circular after mode-locking. Note, however, that
this compensation holds only for a specific value of K = P/Pc, i.e., specific intra-cavity peak power.
Increasing (lowering) K with the same folding angles (i.e., the same linear astigmatism) will result in
over (under) compensating for the nonlinear astigmatism. Any change in parameters that keeps the CW
astigmatism compensated for, but that affects the intra-cavity intensity, be it the peak power or mode size
in the crystal, will require a change in the folding angles to match the precise CW astigmatism needed
to converge into a non-astigmatic ML beam. This includes a change in: pump power, pump focusing,
output coupler, short arm length and, also, Z or δ. This requires specific compensation for every time
one changes cavity parameters, making nonlinear astigmatism a nuisance in standard cavity designs.
Recently, a novel cavity design has been demonstrated that nulls nonlinear astigmatism completely [53],
as will be elaborated in Section 11.2.

Figure 7. (a) ML and CW mode size for both sagittal and tangential planes on the end
mirror, EM1 (short arm), near the CW stability limit, δ1, for hard aperture mode-locking;
(b) Kerr strength γ at EM1 as a function of the crystal position, Z, near the stability
limit, δ1.
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Figure 8. CW and ML astigmatism (defined as ws/wt) on the end mirror, EM1, as
a function of the crystal position for hard aperture mode-locking at δ . δ1. A linear
astigmatism of ≈1.24 is pre-introduced into the CW mode, allowing for the stronger Kerr
effect in the sagittal plane to “catch up” with the weaker tangential plane, resulting in the
astigmatically-compensated ML mode at Z ≈ 0.08 for a specific value of K = 0.1.
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9. Dispersion Compensation

In order for an optical cavity to sustain a pulse, the temporal shape and duration of the pulse must
remain stable as it circulates through the cavity. Since the Ti:sapphire crystal and other optical elements
in the cavity are dispersive, the pulse is deformed as it passes through them, due to the wavelength
dependence of the refractive index. Thus, dispersion compensation is imperative in order to sustain short
pulses. In the following, we provide a concise survey of the basic principles of dispersion management
and the most commonly used dispersion compensation devices of prism pairs and chirped mirrors. For a
more detailed study of the topic, readers are referred to the literature [54–56].

9.1. Group Delay Dispersion

When a pulse propagates through a dispersive material, its spectral phase, φ(ω), is affected. By
expanding φ(ω) in a Taylor series around the pulse central frequency, ω0, one can identify three
major effects, corresponding to the first three terms in the series: (1) overall phase accumulation; the
propagation phase added to all frequencies; (2) group delay (GD); the entire pulse is delayed compared
to a pulse propagating in free space; and (3) group delay dispersion (GDD); a frequency-dependent
group delay of the different spectral components of the pulse. Since GDD (not GD) causes a temporal
broadening of the pulse in every round trip through the cavity [57], it must be compensated for to sustain
the pulse in the cavity over time. In terms of the wavelength, λ, the GDD of a medium is given by:

GDD =
d2φ

dω2
=

λ3

2πc2
d2

dλ2
OP(λ) (15)

where OP(λ) = n(λ)L(λ) is the optical path in the cavity of wavelength λ. Note that pulse broadening
can also be measured in terms of the group velocity dispersion (GVD) which is the GDD per millimeter
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of the corresponding material. To calculate the GDD, due to a window with thickness L inside the cavity,
we can assume L to be constant for all wavelengths (this is not exact for Brewster windows, but a very
good approximation). For the Ti:sapphire crystal in the NIR range of the spectrum, Equation (15) results
in a positive GDD for material components. For simplicity, higher order terms in the phase expansion,
which correspond to third-, fourth- and fifth-order dispersion effects, are neglected so far; yet, the higher
order terms (along with the overall gain bandwidth) are eventually the limiting factor for the shortening
mechanism of the pulse duration. Expressions for higher order dispersion terms can be found in [58].

9.2. Chirped Mirrors

In order to maintain near zero net GDD in the cavity, components of tuned negative GDD
must be incorporated in the cavity. Chirped mirrors are a common component for dispersion
compensation [59,60], which are coated with a stack of dielectric layers, designed such that different
wavelengths penetrate a different depth in the stack, as illustrated in Figure 9a. Mirrors are specified in
the amount of negative GDD per bounce they provide. In many cases, a single mirror has a strong GDD
oscillation across the spectrum, and pairs of mirrors are commonly designed with opposite oscillations,
such that the combined GDD of the pair is spectrally smooth. The technology of dielectric coatings for
the manipulation of ultrashort pulses has matured in recent years, and now, even double-chirped mirrors
are available for Ti:sapphire cavities that provide specifically-tuned negative GDD to also compensate
for higher order dispersion over an extremely wide spectral range, allowing one to achieve pulses with
an extreme bandwidth (octave-spanning spectrum) [61–63]. Since compensation with chirped mirrors
is discrete in nature (a finite dispersion per bounce on the mirror), one can use a wedge window pair
to fine-tune the dispersion, as illustrated in Figure 9b. By controlling the insertion of one window, the
variable thickness adds positive GDD in a controlled manner, allowing for continuous compensation.

Figure 9. Dispersion compensation devices: (a) chirped mirrors; (b) a pair of wedged
windows; (c) a pair of prisms.
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9.3. Prism Pair

In contrast to material dispersion (where only the refractive index, n, is wavelength-dependent),
one can also introduce geometric dispersion in which the geometrical path, L(λ) (Equation (15)), is
also wavelength-dependent. Geometric dispersion can be introduced using a prism pair, illustrated in
Figure 9c, in either one of the cavity arms. The general concept of a prism pair is to manipulate the
optical path of different frequencies in such a way that all the frequencies will experience the same
cavity round-trip time. The relative time delay between the frequencies caused by the prism pair
compensates for the time delay caused by other dispersive material in the cavity (e.g., the Ti:sapphire
crystal). The result is that a prism pair can generate both negative and positive GDD in a controlled,
tuned manner [64,65]. The GDD that the pulse experiences as it passes through the prism pair can be
calculated using Equation (15), and the optical path, OP(λ), in the entire prism pair system (air and
material) is calculated using geometrical optics [66–68], resulting in:

GDD = − 2λ

πc2

(
λ
dn

dλ

)2

Rp +

(
λ3

πc2n2

d2n

dλ2

)
H (16)

where Rp is the separation between the prisms tips, H is the second prism penetration and n is the
refractive index of the prisms. Therefore, the net GDD that the pulse experiences as it passes through
a prism pair can be continuously controlled by changing Rp or H . Note that increasing the separation
between the prisms always introduces negative GDD, while increasing the prism penetration can produce
both positive and negative GDD. For the Ti:sapphire crystal in the NIR spectrum, increasing the prism
penetration corresponds to positive GDD. Optimization guidelines for a prism pair setup can be found
in [69], using a dispersion map in which the second and third order dispersions are plotted as orthogonal
coordinates. The resulting dispersion vector can be compensated for by optimizing the prism pair
parameters (separation, penetration and prism material) to reduce the dispersion vector to zero. Similarly,
a grating pair can be used for larger values of controlled negative dispersion [70] at the expense of
increasing losses. The combination of a prism and a grating in a single device (termed: “grism”) was
demonstrated for higher order dispersion management [71]. One can also use a single prism and a
wedged mirror to compensate for dispersion [72].

In this regard, one should be aware of the additional linear astigmatism introduced by prisms (or
wedge windows): because a prism pair is effectively a Brewster window separated in two parts,
it produces astigmatism (see Section 5.4), which is generally much smaller than that of the crystal. This
added astigmatism was not included while solving Equations (9) and (17) and will require fine-tuning
of the folding angles of the curved mirrors to re-compensate for the overall astigmatism in the cavity.
Note, however, that astigmatism from a prism pair exists only if the beam passing through the pair is not
collimated (i.e., the pair is placed in the long arm while mode-locking near δ1 or in the short arm while
mode-locking near δ2). This is because, for a collimated beam, the pair astigmatism, ∆L, is completely
negligible compared to the long Rayleigh range of the beam.

10. Typical Characteristics of Pulsed Operation

The spectroscopic and laser characteristics in CW operation were well studied in the past and can
be found in [73]. Pulsed operation of the Ti:sapphire laser was also extensively studied, leading to
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remarkable results in terms of pulse duration [14], repetition rate [74], average power [75], mode-locking
threshold [76] and pulse energy [77]. Here, we provide some of the basic characteristics and typical
qualitative behavior of a Ti:sapphire oscillator in ML operation, especially focused on the onset of ML
and the experimental procedure to obtain ML. Using virtual hard aperture mode-locking (Section 7.2),
pulsed operation can be achieved in a band of δ values slightly beyond the stability limit, δ1, showing
a qualitative behavior, as plotted in Figure 10a. Pulsed operation can be achieved only after the pump
power is raised beyond the CW threshold up to a certain ML threshold value, where the appearance of
pulses is abrupt in terms of pump power. The threshold-like behavior of mode-locking was elegantly
explained, both theoretically and experimentally, as a first order phase transition by the theory of
statistical light mode dynamics [78,79].

Figure 10. (a) Qualitative behavior of pulsed operation for a given mode-locking point
at δ & δ1. (b) ML threshold and ML-to-CW ratio of output powers as a function of
Z = δ − δ1, while mode-locking with the virtual hard aperture technique at δ > δ1.
Measurements were taken from a typical configuration of a Ti:sapphire cavity, including
a 3 mm-long Brewster-cut crystal, curved mirrors of f1 = f2 = 5 cm, L1 = 20 cm and
L2 = 75 cm, an output coupler of 95% reflectivity and the pump focused to a diameter of
≈22 µm in the Ti:sapphire crystal. (c) Typical measured spectrum (not optimized) of an
ultrashort pulse with a bandwidth of >200 nm at full width at half maximum (FWHM).
(d) Measured spectrum in the double pulse regime where the spectral interference pattern
can be observed.
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At the ML threshold, the output power of the pulse will be higher than the CW output power, since the
pulse enjoys lower diffraction losses than the CW. Figure 10b plots the ratio between ML output power
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and the CW output power as δ is increased beyond the stability limit (δ & δ1). The ratio γe = PML/PCW

is an experimental measure of the Kerr lensing strength, similar to γ of Equation 14. In addition, the
mode-locking threshold as a function of δ is also plotted in Figure 10b. One finds that both the ML
threshold and the ML power increase monotonically with increasing δ, due to the need to overcome
increasing diffraction losses, but the Kerr lensing strength has a maximum efficiency point, where ML
is optimal.

Figure 10c plots a typical measured broadband spectrum of an ultrashort pulse at the point of
maximum Kerr lensing efficiency. The typical bandwidth of > 200nm at FWHM can be achieved
even without the use of double-chirped mirrors or additional bandwidth maximization techniques (these
techniques will be discussed in Section 11.1). Several techniques for temporal characterization of the
pulse were developed in the past, such as interferometric autocorrelation (IAC), frequency-resolved
optical gating (FROG) and spectral phase interferometry for direct electric-field reconstruction
(SPIDER) [80–83]. For a given mode-locking point at δ & δ1, further increasing of the pump above
the ML threshold, as illustrated in Figure 10a, will increase the CW output power, while the ML output
power will remain approximately the same. A qualitative and intuitive explanation for this phenomenon
is that the soliton-like pulse peak power is “quantized”, i.e., a unique peak power stabilizes the cavity
for ML operation, to which the laser clutches. As the pump power is further increased, a small increase
in ML power can be observed, but the CW power catches up quickly. When the CW output power
becomes larger than the pulse output power, the excess energy excites a CW mode, which oscillates in
the cavity along with the pulse, generating an output spectrum of a broad bandwidth with a narrow CW
spike attached to it. The peak power “quantization” effect is manifested again when the pump is further
increased, until the threshold for a double pulse is crossed. In this regime, there is sufficient energy to
sustain two pulses in the cavity, and the pulse prefers to split. The onset of a double pulse is usually
(but not always) observed as a fringe pattern on the pulse spectrum, as plotted in Figure 10d, due to
spectral interference between the two pulses [84]. Analysis of multi-pulse operation and single-pulse
stabilization can be found in [85].

11. Beyond the Standard Cavity Design

So far, we described the operation concepts of the standard cavity design. The need to optimize the
laser performance or to overcome inherent disadvantages and limitations motivated many extraordinary
cavity designs. Since a comprehensive survey of all nonstandard cavity designs is beyond the scope
of this work, in the following, we review our personal selection of published attempts to address these
issues, some of our own making.

11.1. Optimization of Laser Parameters: Compactness, Optical Elements, Stability and Pulse Duration

Various parameters of operation can be optimized using advanced cavity designs. Investigation of
two- and three-mirror cavity configurations [86] demonstrated highly compact cavities, in which the
Kerr efficiency (Equation (14)) was found to be maximal in a three-mirror configuration. Optimization
guidelines for the crystal length were given in [87] considering the estimated Rayleigh range of the laser
mode in the crystal. Another novel cavity design was demonstrated in [88] by replacing the flat end
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mirror in the long arm with a curved one. The result is a fundamentally different diagram of the stability
zones (compared to the conventional diagram shown in Figure 3) with a considerable improvement in
the laser intensity stability. Pulse duration can also be minimized by maximizing the spectral broadening
of the pulse (by SPM; see Section 4) inside the Ti:sapphire crystal. It was found that to maximize
SPM, it is important to consider the physical arrangement of the elements in the cavity in order to
achieve a symmetric dispersion distribution. When both cavity arms are compensated for dispersion
independently [89], the nonlinear response can be twice as strong as the standard dispersion
compensation, since it maximizes the nonlinear response in both forward and backward propagation
through the crystal. Thus, for maximal spectral broadening, it is beneficial to consider either a four-prism
sequence in a ring cavity configuration or to include a prism pair/chirped mirrors in the short arm, also.
Spectral broadening can also be achieved using an additional Kerr medium [90], thus enhancing the
intra-cavity nonlinearity. This results in a mode-locked operation that can be sustained with lower pulse
energy. This effect is of great importance for frequency comb-based measurements, where a higher
repetition rate is preferred, which inherently requires a lower pulse energy. Usually, the additional Kerr
medium is a Brewster-cut window placed in an additional focus in the cavity. However, due to the beam
expansion in the tangential dimension upon refraction into the Brewster window, this configuration does
not fully exploit the Kerr nonlinearity of the material. Recently, we presented a novel cavity design [52],
illustrated in Figure 11b, with an additional planar-cut (non-Brewster) and anti-reflection (AR) coated
Kerr medium in normal incidence, which allows full exploitation of the nonlinear response, due to the
tighter, astigmatic-free focusing compared to a Brewster-cut window. In addition, another interesting
phenomenon was observed: with sufficient enhancement of the nonlinearity, the ML threshold can be
lowered all the way down to the CW threshold, as illustrated in Figure 11d. When the two thresholds are
equal, ML can be obtained directly from zero CW oscillation.

11.2. Elimination of Nonlinear Astigmatism

The problem of nonlinear Kerr lens astigmatism, discussed in Section 8, can be completely eliminated
using the novel cavity folding demonstrated in [53]. This configuration allows for the introduction of a
planar-cut (non-Brewster) and AR-coated crystal, where the beam enters the crystal at normal incidence
and the spatial mode in both planes remains identical. Consequently, the crystal is astigmatic-free and
does not introduce linear or nonlinear astigmatism, thus eliminating Kerr lens astigmatism from the
source. The curved mirrors then compensate for the astigmatism of one for the other by using a novel
cavity folding, as illustrated in Figure 11a. Mirror M2 folds the beam in the main plane of the cavity,
whereasM1 folds the beam upwards. Thus, the sagittal and tangential components ofM1 exchange roles
with those of M2, leading to exact cancellation of the linear astigmatism of one mirror by the other.

11.3. Two-Color Pulses by Intra-Cavity Gain Shaping

Many applications require shaping and controlling the spectrum of a KLM Ti:sapphire lasers.
Specifically, a multi-lobed (in particular, dual-lobed) spectrum is useful for Raman spectroscopy [91],
Raman microscopy [92,93] and direct frequency comb spectroscopy [94]. Spectral shaping inside the
optical cavity, which steers the laser oscillation towards the desired spectrum, is by far more profitable
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than spectral shaping outside the optical cavity, since the latter is inherently lossy in nature, due to the
unavoidable filtering of undesired frequencies.

Previous attempts to obtain pulses with dual-lobed (two-color) spectra can be divided into two
categories. The first is intra-cavity loss shaping, which can be achieved, for example, by a double
slit after the prism pair [95], by a three prism configuration using a separate “second” prism for each
lobe [96] or by dual output coupling using custom-designed wavelength-dependent reflectivity curves
of two output couplers [97]. Unfortunately, loss shaping is very sensitive to mode competition in
the laser gain medium, which inflicts a stringent requirement that the lobes be perfectly symmetrical
around the gain peak (equal gain) in order to coexist. The second category overcomes mode competition
either by actively synchronizing two independent sources [98,99] or by passive synchronization using
a shared Kerr medium in both cavities [100–102]. These methods suffer from the considerable added
complexity of several independent oscillators, which require careful stabilization of timing jitter between
the participating pulse trains.

We recently demonstrated the use of gain shaping, instead of loss shaping, in a single
oscillator [103]. As illustrated in Figure 11c, this can be achieved by placing another gain medium
at a position in the cavity where the spectrum is spatially dispersed. In this additional gain medium,
the gain profile can be tailored at will by controlling the spatial shape of the pump in this medium.
Since the spectrum is spatially dispersed, mode competition is canceled in this additional gain medium
(different frequencies do not share the same gain volume, rendering the gain effectively inhomogeneous).
While placing a single gain medium in a spatially-dispersed position was considered in the past both
theoretically [104,105] and experimentally [106], however, such a laser is inherently pump-inefficient,
since it requires pumping of a much wider volume in the gain medium well above medium. It is
therefore most beneficial to combine a large homogeneous (efficient) gain with a small amount of
inhomogeneous (inefficient) gain, where the small shaped inhomogeneous gain acts as a lever to steer the
competition in the large homogeneous gain medium. Consequently, robust and complete control of the
oscillation spectrum inside the optical cavity was achieved in a power preserving manner, as illustrated
in Figure 11e.

12. Summary

The role that a Kerr lens mode-locked solid-state laser (and, especially, the Ti:sapphire laser) plays in
the field of ultrafast physics cannot be underestimated. Since the Ti:sapphire laser is a common resident
in most laboratories investigating ultrafast phenomena, we hope to have provided a detailed review that
coherently summarizes, under a single notation, the important physical and experimental considerations
involved in the design and realization of such an oscillator. The references given throughout this review
provide information for additional and important topics, not included in this review, such as cavity
alignment, self-starting and initiation of mode-locking, the optimal size of the hard aperture, oscillator
noise, etc. In conclusion, we aimed to illuminate the most important experimental considerations
involved in the design of a Kerr lens mode-locked laser oscillator.
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Figure 11. (a) Cavity configuration for canceling the nonlinear astigmatism. The long
arm remains parallel to the main plane of the cavity, while the short arm is raised above
the main plane, allowing for each of the curved mirrors to compensate for the astigmatism
of the other and to introduce a planar-cut astigmatic-free Ti:sapphire crystal. (b) Cavity
configuration for enhancement of the intra-cavity Kerr nonlinearity. An additional planar-cut
Kerr window is inserted near the image point of the Ti:sapphire crystal, created by a
lens-based 1 × 1 telescope of focal length f . (c) The result for the configuration in (b):
ML (red) and CW (blue) pump thresholds as a function of Z = δ − δ1. The intra-cavity
nonlinearity was enhanced by adding a 3 mm-long window of borosilicate crown glass
(BK7). At low values of Z, the ML threshold is higher than the CW threshold. By increasing
Z, the ML threshold curve eventually crosses the CW threshold at Zc ≈ 1.2 mm, where the
intra-cavity CW power needed to initiate pulsed operation drops to zero. (d) The cavity
configuration for intra-cavity control of spectral amplitude. A second Ti:sapphire gain
medium is placed at the Fourier plane of a 1 × 1 telescope (mirrors M3 and M4) placed
between the prisms, resulting in an additional gain, which is effectively inhomogeneous,
due to the spatial dispersion inside the medium, thereby eliminating mode competition in
the gain medium. (e) The results for the configuration in (d): control of spectral power,
width and center position of the two lobes; a two-lobed spectrum with equal intensities
between the lobes (green curve) can be deformed in real time by increasing the width of
each lobe (blue curve) or the spectral power ratio between the lobes (red curve). The center
wavelength of each lobe can also be controlled by shifting the pump spot in the second crystal
(demonstrated in both the blue and red curves).
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Appendix

A. Generalized Linear Astigmatism Compensation

Equation (9) compensates for linear astigmatism only for the first stability limit, δ0. This is because
the above expression for mirror astigmatism, ∆f(f, θ), assumes a collimated beam in both arms of
the cavity, which is only true at δ0, as seen in Figure 3. For any other stability limit, one must use a
generalized expression for the curved mirror astigmatism that takes into account non-collimated beams,
focused on the relevant end mirror. By considering the curved mirror as an imaging lens, one can
calculate the distance of the point of the image relative to the curved mirror:

vs,t(f, θ,D) =
Dfs,t
D − fs,t

(17)

where D represents the distance of the “object”. For a collimated beam, D = ∞ and vs,t = fs,t.
For a non-collimated beam, the “object” is effectively located at the end mirrors (see Figure 2); hence,
D equals the length of the corresponding cavity arm. Using Equation (17), one can compensate for linear
astigmatism for each stability limit, δi, separately, by solving:

∆v(f1, θ1, D1i) + ∆v(f2, θ2, D2i) = ∆L (18)

The corresponding values of D1i and D2i are given in Table A1. As an example, we can examine
typical cavity parameters: curved mirrors radius of curvature R = 10 cm, short arm length L1 = 30 cm,
long arm length L2 = 60 cm and crystal length 3 mm. Compensating linear astigmatism for the first
stability limit, δ0, results in θ1 = θ2 = 6.150. In order to compensate for the second stability limit, δ1,
the angle, θ2, must be reduced to 5.530.

Table A1. Astigmatism compensation values of the long and short cavity arms for each
stability limit, δi.

δi D1i D2i

δ0 ∞ ∞
δ1 ∞ L2

δ2 L1 ∞
δ3 L1 L2
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Astigmatism compensation can be further generalized to compensate for δ values within the stability
zones of the cavity (not necessarily at the stability limits) by using a complex representation of the
imaging expression given in Equation (17), which simulates a Gaussian mode (in contrast to the stability
limits where the mode can be represented using geometrical optics, as illustrated in Figure 2). However,
it is easier to set the values of the folding angles, θ1 and θ2, to compensate for the nearest stability limit
and then to fine-tune one of the folding angles until a circular mode is achieved.
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