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Abstract: Compressible squeeze film damping is a phenomenon of great importance for 

micromachines. For example, for the optimal design of an electrostatically actuated  

micro-cantilever mass sensor that operates in air, it is essential to have a model for the 

system behavior that can be evaluated efficiently. An analytical model that is based upon a 

solution of the linearized Reynolds equation has been given by R.B. Darling. In this paper 

we explain how some infinite sums that appear in Darling’s model can be evaluated 

analytically. As an example of applications of these closed form representations, we 

compute an approximation for the critical frequency where the spring component of the 

reaction force on the microplate, due to the motion through the air, is equal to a certain 

given multiple of the damping component. We also show how some double series 

that appear in the model can be reduced to a single infinite series that can be 

approximated efficiently. 
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1. Introduction 

An analytical model for squeeze film damping is presented by Darling et al. in [2] for different 

venting conditions. Based upon the solution of the linearized Reynolds equations, series 

representations of the resulting reaction forces are presented for different air venting boundary 
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conditions; in particular, for ideally vented rectangular vibrating plates. In [1], based upon the model 

of Darling et al. [2], an optimal sensor design problem is studied.  

For optimal sensor design problems, the aim is to find system parameters for which a certain real 

valued function that measures the sensor’s performance is maximized. In order to determine such 

parameters that solve the optimal design problems, it is useful to have a compact analytical model for 

the system behavior.  

In [1], two kinds of boundary conditions appear for rectangular plates: Plates with two opposite 

edges closed and two opposite edges venting and plates with two adjacent edges venting and two 

adjacent edges closed. For the former, we give a closed form solution of the corresponding spring and 

damping constants that are given as infinite series in [1] and [2]. This model has also been used in [3] 

to model squeeze film effects. For the latter case, we present an approximation of the resulting reaction 

forces solution that can be evaluated efficiently. We also give a bound for the approximation error. 

Let us start with a short presentation of the spring and damping constants for a rectangular plate 

with two opposite edges venting. Let b denote the plate dimension in the direction of venting and let A 

denote the plate area. PA is the ambient pressure and g0 is the nominal gap. Let μ denote the viscosity 

of the trapped gas. Define kn = nπ/b and the constant  

α2 = 12μ/(g0² Pa)  

For the vibration frequency ω, according to Darling’s model we have the spring constant 

k = (8ω²APA/(π²g0))[1/[ω² + (k1/α)4] + 1/[32(ω² + (k3/α)4)] + 1/[52(ω² + (k5/α)4)] + ...]  

= (8ω²APA/(π²g0))(α
4b4/π4)[1/[α4b4ω²/π4 + 1] + 1/[32(α4b4ω²/π4 + 34)] + 1/[52(α4b⁴ω²/π⁴+54)] + ...]  

and the damping constant  

β = (8APA/(π²α2g0))[k1
2/[ω² + (k1/α)4] + k3

2/[32(ω² + (k3/α)4)] + k5
2/[52(ω² + (k5/α)4)] + ...]  

= (8APA/(π²α2g0))(α
4b²/π²) [1/[α4b4ω²/π4 + 14] + 1/[(α4b4ω²/π4 + 34)] + 1/(α⁴b⁴ω²/π⁴+54) + ...] 

In the sequel, we will give compact representations for k and β that do not require the evaluation of 

infinite series. In order to do this, we introduce some auxiliary functions in the next section. 

2. Closed form Representations for Some Infinite Series 

In this section we define some auxiliary functions that appear in Darling’s model as infinite series. 

In Section 4, we will show how stiffness and damping can be expressed using these series. For these 

series we present closed form representations that can be evaluated efficiently and thus are useful for 

the solution of the optimal design problem. For a real number x let 

F(x) = 1/(1 + x4) + 1/(34 + x4) + 1/(54 + x4) + 1/(74 + x4) + ... (1) 

then for all x unequal to zero we have the representation (with w(x)= π x/21/2)  

F(x) = 21/2π[sinh(w(x)) − sin(w(x))]/[8x3[cosh(w(x)) + cos(w(x))]] (2) 

and F(0)= π4/96, which is also the maximal value attained by F. 
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As a second real function, define 

B(x) = 1/[1 + x⁴] + 1/[32(3⁴ + x⁴)] + 1/[52 (5⁴ + x⁴)] + 1/[72(7⁴ + x4)] + ... (3) 

then we have for all x unequal to zero 

B(x)= π²/(8x⁴) − 21/2π[sinh(w(x)) + sin(w(x))]/[8x⁵[cosh(w(x)) + cos(w(x))]] (4)

and B(0) = π⁴/960, which is also the maximal value attained by B. Note that Equation (4) implies that 

x⁴B(x) converges to the limit π²/8 as x tends to infinity. 

For a complex number z with −z2 not equal to the square of any odd integer, let 

H(z) = 1/[1 + z²] + 1/[3²(3² + z²)] + 1/[5²(5² + z²)] + 1/[7²(7² + z²)] + ... (5) 

then for all z unequal to zero we have the representation 

H(z) = π²/(8z²) – π tanh(πz/2)/(4z³) (6)

and H(0) = F(0) = π⁴/96.  

To prove Equation (6), the series Equation (5) can be interpreted as the Laplace-transform of the 

corresponding Fourier series. The sum of the Fourier series can be determined explicitly (see for 

example in reference [4], p. 900, For 0 < x < π we have sinx + sin(3x)/33 + sin(5x)/53 + ... = πx(π − x)/8). 

Then H(z) can be obtained as the Laplace transform of the 2π-periodic function given by the sum of 

the Fourier series. Note that if z² = jω is purely imaginary, we have  

H(z) = F(|ω|1/2) − jωB(|ω|1/2) 

that is F(|ω|1/2) is the real part of H(z) and the imaginary part of H(z) is given by −ωB(|ω|1/2). This 

allows deriving Equations (4) and (2) from (6). 

3. Efficient Approximation of a Double Series 

For certain boundary conditions, in Darling’s model infinite double series appear. We give 

approximations for these double series that can be evaluated efficiently. We also provide bounds for 

the approximation error. Let the parameter λ greater than or equal to 1 be given.  
For a complex number z, let D denote the double series 

D(z) = Σnmd(n,m) = d(1,1) + d(1,2) + d(2,1) + d(3,1) + d(2,2) + d(1,3) + ... (7) 

with  

d(n,m) = 1/[(2n − 1)²(2m − 1)²(λ²(2n − 1)² + (2m − 1)² + z²)] (8) 

Using the definition of H, we obtain the equation 

D(z) = H((λ² + z² )1/2) + 1/3²H((λ²3² + z²)1/2) + 1/5²H((λ²5² + z² )1/2) + ... (9) 

Define the auxiliary function G(z) = tanh(0.5πz)/z. Then G(−z) = G(z), that is, G is even. Using the 

representation (6) for H, we obtain 

D(z) = π²/(8λ²)H(z/λ) − π/4[G((λ² + z²)1/2)/(λ² + z²) + G((λ²3² + z²)1/2)/(3²(λ²3² + z²))  

+ G((λ²5² + z²)1/2)/(5²(λ²5² + z²)) + …] 
(10) 
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Thus we have reduced the double series to a standard infinite series. As an approximation for D, we 

propose to use the function A defined as 

A(z) = π²/(8λ²)H(z/λ) − π/4[G((λ² + z²)1/2)/(λ² + z²) + G((λ²3² + z²)1/2)/(3²(λ²3² + z²))  

+ G((λ²5² + z²)1/2)/(5²(λ²5² + z²))+ … + G((λ²(2k − 1)² + z²)1/2)/((2k − 1)²(λ²(2k − 1)² + z²))] 
(11) 

with a natural number k. Then we have D(z) = A(z) - R(z,k) with the remainder term R(z,k). 

If z2 is purely imaginary, we have |λ²(2n + 1)² + z²| ≥ λ²(2n + 1)² > 1. 

Moreover, |1 + exp(−π(λ²(2n + 1)² + z²)1/2| > 0.5. Since tanh(0.5πz)= −1 + 2/(1 + exp(−πz)) this 

implies 

|G((λ²(2n + 1)² + z²)1/2)| = |[−1 + 2/(1 + exp(−π(λ²(2n + 1)² +z² )1/2))]/(λ²(2n + 1)² + z²)1/2| < 5/(λ(2n+1))  

and hence 

|R(z,k)| < 5π/(4λ3)[1/(2k + 1)5 + 1/(2k + 3)5 + 1/(2k + 5)5 + 1/(2k + 7)5 + …] 

For k = 7, we obtain |R(z,7)| < 2 × 10−5/λ3 . Thus for k = 7 and purely imaginary z2, A approximates 

D with a uniform bound that is less than 2 × 10−5.  

4. Computation of the Spring and Damping Constants: Two Opposite Edges Venting 

The spring and damping constants for a plate with two opposite edges venting can be expressed in 

terms of the functions F and B that have been introduced in Section 2 in Equations (2) and (4). 

According to Darling’s model, we have (see Li and Miller [1]) the spring constant 

k = (8ω²APA/(π²g0))(α⁴b⁴/π4)B(αbω1/2/π) (12) 

with the notation introduced in Section 1. The dimension in Equation (12) is N/m. The damping 

constant β is given by 

β = (8APA/(π²α²g0 ))(α⁴b²/π²)F(αbω1/2/π) (13) 

The dimension in Equation (13) is N s/m. Using Equations (4) and (2), these functions can easily be 

implemented for numerical evaluation. 

For a sensor design, Li and Miller [1] consider a square plate of side length p with a square hole of 

side length s in the middle. This plate is divided into eight elements. Four plates with opposite edges 

venting appear as side elements. The other four elements are square corner plates with adjacent edges 

venting. The elements with opposite venting are described by Equations (12) and (13), where the value 

of b is given by (p−s)/2. The optimal design problem consists in determining an optimal value for s. 

For the corner elements with adjacent edges venting the side length is (p−s)/2. The corresponding 

spring and damping constants are given by double series that are more difficult to evaluate 

analytically.  

We will give a suitable approximation in Section 5. For the elements with opposite venting 

described by Equations (12) and (13) according to the Equation (46) in reference [3], the reaction force 

on the plate due to motion through the air is 

Force = C0jωH((αbω1/2/π)(1 + j)/21/2) (14) 

where C0 is a suitably chosen real constant, j2 = −1 and H can be computed using Equation (6). 
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4.1. An Application: Approximation of the Critical Frequency where k = γ β 

Our representations allow the approximate computation of the frequency for which k = γ β, where γ 

is a given constant with the appropriate dimensions. At this frequency, the ratio k/ β of viscous force 

and spring force is equal to the given value γ. According to Equations (12) and (13), this problem is 

equivalent to the solution of the equation 

 

x⁴B(x) = CF(x) (15) 

with x = αbω1/2 /π and the dimensionless constant C = γα²b²/π². Equation (15) is equivalent to 

cosh(w(x)) + cos(w(x)) = (21/2/π)[(1/x + C/x³) sinh(w(x)) + (1/x − C/x³) sin(w(x))] (16) 

If we let w = w(x) and x = (21/2/π)w, we obtain the equation 

cosh(w) + cos(w) − sinh(w)/w − sin(w)/w = (π²C/2) [sinh(w) − sin(w)]/w³ (17) 

If we replace the functions by the corresponding power series, this yields the equation 

w⁴/15 + w⁸/22680 + …. =(π²C/2) [1/3 + w⁴/2520 + w⁸/19958400 +...] (18) 

By considering only the constant term and the terms with w4 we obtain the approximation  

w = [π²C/(0.4 − π²C/840)]1/4 (19) 

For Equation (15) this yields the approximate solution 

x = (21/2/π)[π²C/(0.4 − π²C/840)]1/4 (20) 

If we replace the denominator (0.4 − π²C/840) by 0.4, this yields the critical frequency  

ω = [2π/(α²b²)][C/0.4]1/2 (21) 

Example With C = 2 × 10−7, Equation (17) has the solution w = 0.0471321702447414... The 

approximation w0 = [π²C/0.4]1/4 yields the value w0 = π1/2/(21/4101/2)= 0.0471321702139757... 

Moreover, we have w1 = [π²C/(0.4 − π²C/840)]1/4 = 0.04713217028319835.... 

5. Computation of the Reaction Force: Adjacent Edges Venting 

According to Darling’s model, the normalized reaction force on a rectangular plate with two 

adjacent edges venting can be expressed as a double series. Define  

kmn = ((2m − 1)2π2/(4a2) + (2n − 1)2π2/(4b2))1/2 

then from Equation (19) in [2] we obtain 

F(t)/(abPa) = −64jωexp(jωt)(H'η/π4)[u(1,1) + u(1,2) + u(2,1) + u(3,1) + u(2,2) + u(1,3) + u(1,4) + 

u(2,3) + u(3,2) + u(4,1)+ …] 
 

where u(m,n) = {1/[(2m − 1)2(2n − 1)2]}{1/[jω + (kmn/α)2]}. Here H' is a constant giving the 

normalized amplitude of the plate vibration. For an isothermal process η = 1, while for an adiabatic 

process η is the quotient of the specific heats. From Equation (7) we get  

F(t)/(abPa) = −64jωexp(j t)(H'η/π4)(4a2α²/π2)D(2aα(jω)1/2/π) with λ = a/b 



Appl. Sci. 2012, 2                    

 

484

for the argument z = 2aα(jω)1/2/π of D the number z2 is purely imaginary. Therefore for a numerical 

approximation of F(t)/(abPa), the function  

Forceapprox(t) = −64jωexp(jωt)(H'η/π4)(4a2α²/π2)A(2aα(jω)1/2/π) (22) 

(with λ = a/b assuming that λ ≥ 1) can be used. For k = 7, the approximation error is uniformly 

bounded by 2 × 10−5. Since for the evaluation of H that appears in the definition of A, the 

representation given in Equation (6) can be used, a direct numerical evaluation of the function 

Forceapprox(t) is possible.  

6. Conclusions  

The air between two parallel microplates can compress to store energy or vent to dampen energy. 

This compressible squeeze film damping is a phenomenon of great importance for micromachines. In 

reference [2], Darling et al have presented an analytical model for this phenomenon that is based upon 

expansions in series of eigenfunctions. To apply this model for optimization purposes, it is useful to 

have closed form representations of the corresponding functions. In this paper we give such a 

representation for the case that two opposite edges of the plate are closed. The case where two adjacent 

edges of the plate are closed, leads to functions given by double series. For this double series we 

provide an approximation that can be computed easily. Moreover, we give a bound for the 

corresponding approximation error. 
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