
Citation: Cho, S.-W.; Cho, S.E.; Brand,

A.S. A Meta-Analysis of the Effect of

Moisture Content of Recycled

Concrete Aggregate on the

Compressive Strength of Concrete.

Appl. Sci. 2024, 14, 3512. https://

doi.org/10.3390/app14083512

Academic Editors: Mouhamadou

Amar and Nor Edine Abriak

Received: 8 March 2024

Revised: 11 April 2024

Accepted: 15 April 2024

Published: 22 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Meta-Analysis of the Effect of Moisture Content of Recycled
Concrete Aggregate on the Compressive Strength of Concrete
Sung-Won Cho 1,*, Sung Eun Cho 1 and Alexander S. Brand 1,2,*

1 The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and
State University, Blacksburg, VA 24061, USA; csungeun22@vt.edu

2 Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA

* Correspondence: authors: csungwon@vt.edu (S.-W.C.); asbrand@vt.edu (A.S.B.)

Abstract: To reduce the environmental impact of concrete, recycled aggregates are of significant
interest. Recycled concrete aggregate (RCA) presents a significant resource opportunity, although
its performance as an aggregate in concrete is variable. This study presents a meta-analysis of the
published literature to refine the understanding of how the moisture content of RCA, as well as
other parameters, affects the compressive strength of concrete. Seven machine learning models
were used to predict the compressive strength of concrete with RCA, including linear regression,
support vector regression (SVR), and k-nearest neighbors (KNN) as single models, and decision tree,
random forest, XGBoost, and LightGBM as ensemble models. The results of this study demonstrate
that ensemble models, particularly the LightGBM model, exhibited superior prediction accuracy
compared to single models. The LightGBM model yielded the highest prediction accuracy with
R2 = 0.94, RMSE = 4.16 MPa, MAE = 3.03 MPa, and Delta RMSE = 1.4 MPa, making it the selected
final model. The study, employing feature importance with LightGBM as the final model, identified
age, water/cement ratio, and fine RCA aggregate content as key factors influencing compressive
strength in concrete with RCA. In an interaction plot analysis using the final model, lowering the
water–cement ratio consistently improved compressive strength, especially between 0.3 and 0.4,
while increasing the fine RCA ratio decreased compressive strength, particularly in the range of 0.4
to 0.6. Additionally, it was found that maintaining moisture conditions of RCA typically between
0.0 and 0.8 was crucial for maximizing strength, whereas extreme moisture conditions, like fully
saturated surface dry (SSD) state, negatively impacted strength.

Keywords: machine learning; recycled concrete aggregate; moisture content

1. Introduction

Concrete recycling can be implemented as a strategy to reduce carbon emissions and
promote sustainable development [1–3]. Concrete with recycled aggregates is recognized as
one of the most prominent eco-friendly concretes [4–6]. Another concern for using recycled
aggregates is that the supply of quality natural aggregates is diminishing in certain regions
of the world (e.g., [7]). Of particular concern is increasing amounts of construction and
demolition waste [1,8,9], from which recycled concrete aggregates (RCA) are derived.

Consequently, concrete recycling and sustainable development are considered highly
important in the construction industry [1,10,11]. Recycled concrete can be utilized by
crushing discarded concrete debris and using it as RCA to partially or fully replace natural
aggregates in new concrete [1]. Recycled aggregates can be classified depending on the
particle size or the type of waste material [12]. Among them, coarse recycled aggregates
produced from crushed concrete are the most used in concrete production, and they are
referred to as recycled concrete aggregate or RCA [12–18].

The surface of RCA can consist of natural aggregate and adhered mortar, which results
in RCA having different physicochemical properties compared to natural aggregates [19–24].
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The adhered mortar is porous, resulting in higher water absorption capacity in RCA com-
pared to natural aggregates [19,25]. Additionally, the roughness of the adhered mortar
increases the surface area of recycled aggregate particles, requiring more water for achieving
consistent workability compared to concrete made with the same natural aggregates [19].
As a result, the mechanical properties of concrete with RCA can be inferior to those of
concrete using natural aggregate particles [19–24]. Therefore, a number of researchers have
explored methodologies to limit the detrimental effect of RCA, such as through benefi-
ciation methodologies (e.g., [26,27]), mix design approaches (e.g., [28,29]), or alternative
mixing approaches (e.g., [13,30–32]).

A significant number of researchers have noted that the moisture content of the
RCA at the time of concrete batching can have a significant impact on the properties
and performance of the concrete (e.g., [32,33]) in addition to affecting the microstructure
development [33–35]. Poon et al. [36] discussed concrete compressive strengths with three
different RCA moisture conditions—air dry (AD), oven dry (OD), and saturated surface
dry (SSD)—and argued that SSD aggregate would release water, resulting in a weakened
interfacial transition zone (ITZ) and a higher water-to-cement ratio [12]. These AD, OD,
and SSD moisture states represent different moisture levels in RCA and play a crucial
role in concrete performance. AD refers to aggregates dried naturally under atmospheric
conditions, while OD indicates aggregates dried in an oven to remove all moisture. SSD
signifies aggregates with their surfaces saturated with moisture but not immersed in
water. Brand et al. [32,33] found that partially saturated RCA has the potential to have
an equivalent concrete strength compared to natural aggregate concrete, and Etxeberria
et al. [23] recommended to use partial SSD rather than SSD to secure the compressive
strength of concrete with RCA. Mefteh et al. [37] argued that recycled aggregates within
an SSD condition have the most negative impact on concrete strength, while AD recycled
aggregates optimize concrete strength [37].

The objective of this study is to explore the relationship between the compressive
strength of concrete and the moisture content of recycled concrete aggregates (RCA) through
the application of machine learning, since there are conflicting conclusions in the literature.
Various factors, including the volume fraction of aggregates, aggregate type, aggregate gra-
dation, coarse-to-fine aggregate ratio, aggregate shape and texture, water-to-cement ratio,
cement content, type and content of any supplementary cementitious materials, and type
and dosage of chemical admixtures [38–42], influence the compressive strength of concrete.
Due to the complex and nonlinear interrelationship between these factors and compressive
strength, general linear equations are often ineffective [43–45]. In recent years, machine
learning algorithms have been increasingly used to predict the performance of concrete
with both natural aggregates [46,47] and with recycled aggregates [4]. Studies have focused
on predicting various properties of concrete with recycled aggregates, such as strength [43],
elastic modulus [19], chloride resistance [1], and durability [48], using machine learning
models. However, there remains insufficient established predictive information regarding
the relationship between the compressive strength of concrete and the moisture content of
RCA. Therefore, this study aims to address this gap by conducting a literature review to
investigate the relationship between compressive strength and moisture content in RCA. To
achieve this, a database was constructed consisting of 752 entries, considering parameters
such as the moisture content, water-to-cement ratio, replacement ratio of recycled aggre-
gates, composition ratio of natural aggregates, curing age, etc. Seven machine learning
methods, including linear regression, support vector regression (SVR), k-nearest neighbors
(KNN), decision tree, random forest, LightGBM, and XGBoost, were employed to develop
a predictive model for the compressive strength of RCA. The models were compared using
evaluation metrics, and the final model was selected. Furthermore, feature importance
and interaction plots were utilized to analyze the relationship between moisture content
and compressive strength. This study contributes to the field by addressing the lack of
consideration of RCA moisture content in predicting concrete performance metrics, making
it a novel endeavor in the realm of machine learning studies in concrete technology.
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2. Experimental Methodology
2.1. Data Collection

In this study, a database was collected to predict the compressive strength of concrete
with RCA when considering the moisture condition of the RCA. The database was obtained
from published literature (Table 1). The database consists of 752 entries, focusing on
studies that explicitly reported the moisture condition of RCA. The output variable is
compressive strength (MPa), and there are a total of 13 input variables considered. The
input variables represent the mixture materials used in RCA and are expressed as ratios
after unifying them in kg/m3. The coarse RCA ratio represents the ratio of coarse RCA
to the total coarse aggregate, and the fine RCA ratio represents the ratio of fine RCA to
the total fine aggregate. These ratios are included to understand the influence of RCA
proportions on compressive strength. The input variables related to the materials used
in RCA are normalized by dividing them by the total material. The reason for dividing
each material by the total material is to standardize all input variables on the same scale,
allowing the model to consider the influence of each variable equally. This ensures that
the model operates consistently even when the quantities or proportions of each material
vary, making the results easier to interpret. Also, it can ease replication during future
experiments, as following proportions makes it easier to replicate under standardized
conditions. These input variables include cement, fly ash, water, superplasticizer, natural
coarse aggregate, natural fine aggregate, fine RCA, and coarse RCA. The moisture condition
is included as an input variable to investigate its influence on compressive strength. The
range for the moisture condition was 0 to 1, where 0 was OD, 1 was SSD, and 0.5 was AD.
Additionally, the other input variables are age and water-to-cement ratio.

Table 1. Database source.

No. Reference Number of Data No. Reference Number of Data

1 [32] 12 12 [49] 36

2 [50] 10 13 [51] 15

3 [52] 8 14 [53] 10

4 [29] 27 15 [54] 6

5 [55] 50 16 [22] 3

6 [56] 24 17 [57] 14

7 [36] 36 18 [58] 4

8 [59] 54 19 [60] 18

9 [34] 5 20 [61] 20

10 [62] 42 21 [63] 300

11 [64] 12 22 [65] 46

Total Data: 752

2.2. Data Analysis

The database containing the input and output data was uploaded to the software as an
Excel file, and the database was analyzed using Python code. Table 2 presents the statistical
analysis of the database, including the mean, standard deviation, minimum, first quartile to
third quartile, and maximum values. From Table 2, it is observed that there are variations
among the input variables. Examining the mean values, the curing age is 23.06 days, and
the average values for Coarse Aggregate/Total Material and Fine Aggregate/Total Material
are 0.21 and 0.26, respectively. The average value for Superplasticizer/Total Material is
0.01, while for Fly Ash/Total Material it is 0.001, indicating significant variations. These
variations can affect the performance of the model, hence preprocessing of the database is
necessary [66].
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Table 2. Database analysis.

Parameters Unit Mean Standard Deviation Min 25 Percentile 50 Percentile 75 Percentile Max

Coarse RCA Ratio - 0.46 0.41 0 0 0.49 1 1

Fine RCA Ratio - 0.12 0.30 0 0 0 0 1

Cement/Total
Material - 0.18 0.03 0.1 0.16 0.18 0.19 0.28

Fly Ash/Total
Material - 0.001 0.006 0 0 0 0 0.04

Water/Total
Material - 0.09 0.02 0.04 0.08 0.09 0.1 0.18

Superplasticizer/
Total Material - 0.01 0.04 0 0 0 0 0.17

Coarse
Aggregate/Total

Material
- 0.21 0.17 0 0 0.22 0.37 0.5

Fine
Aggregate/Total

Material
- 0.26 0.09 0 0.26 0.28 0.3 0.43

Fine RCA/Total
Material - 0.05 0.13 0 0 0 0 0.73

Coarse RCA/Total
Material - 0.2 0.17 0 0 0.19 0.39 0.47

Moisture
Condition - 0.88 0.3 0 1 1 1 1

Age Day 23.06 25.89 1 7 14 28 90

Water/Cement - 0.46 0.12 0.27 0.42 0.5 0.55 1.11

Compressive
Strength MPa 36.82 16.20 4.8 24.63 35.4 47.33 85.2

2.3. Data Preprocessing

Scaling is a commonly used data preprocessing technique in machine learning. It is
applied to address the issue of significant differences in units or ranges among variables.
When variables have different units or ranges, it can make the interpretation of the model
difficult. If one variable has a much larger range compared to others, it may have a large
impact on the model’s predictions. To mitigate this problem, it is necessary to adjust the
variables to a consistent scale [67,68].

In this study, before applying the scale, the dataset was divided into training and test
sets. The dataset consisting of 752 samples was split into a training set, which accounts
for 70% of the data, and a test set, which accounts for the remaining 30%, following the
methodology employed in previous studies [19,69,70]. After splitting the data, standard
scaling was applied to the input variables. This approach standardizes the variables by
adjusting their means to 0 and standard deviations to 1, aligning them with a standard
normal distribution [67].

2.4. Cross-Validation and Hyperparameter

Cross-validation (CV) is a technique used in machine learning to evaluate the perfor-
mance of a model and estimate its generalization ability. It involves dividing the available
data into multiple subsets or k-folds [71]. K is a user-specified value, commonly set to 5
or 10 but can be chosen as any other value as well [72,73]. In each iteration, the model is
trained on a training set and then evaluated on the validation set. This process is repeated
several times, with different subsets of the data serving as the validation set each time. The
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performance metrics obtained from each iteration are then averaged to provide an overall
estimate of the model’s performance. CV helps address the issue of overfitting.

Hyperparameters are parameters that are set by the user before training the model.
To optimize model performance, hyperparameter tuning is performed by systematically
searching for the best combination of hyperparameter values [73]. This is often done in
conjunction with CV, where different hyperparameter values are evaluated on different
subsets of the data. This helps generalize well across different data subsets, resulting in a
more robust and reliable model [74]. In this study, grid search was used to find the optimal
CV value and hyperparameter values.

3. Results
3.1. Optimizing the Model

The study employed the grid search method to simultaneously find the optimal CV
values and hyperparameter combinations for each model [75,76]. The range of CV fold
values was set between a minimum of 2 and a maximum of 10, and various predefined
hyperparameter values for each model were explored to find the best combination. The
best CV fold values and hyperparameters for each model were selected based on evaluation
metrics such as coefficient of determination (R2), root-mean-square deviation (RMSE), mean
absolute error (MAE), and Delta RMSE. Furthermore, to ensure the reproducibility and
consistency of the results, the random state parameter was set to ‘5’.

3.1.1. Linear Regression

Linear regression does not require additional hyperparameter tuning because it does
not have many hyperparameters to tune. In linear regression, the focus of model training
is to adjust the weights and biases of the input variables to find the best-fitting linear
relationship. As a result, for the test dataset, the R2 is 0.66, RMSE is 9.72 MPa, and MAE is
7.67 MPa. The values for RMSE and MAE are relatively higher than the other six models.
The Delta RMSE is 0.31 MPa.

3.1.2. Support Vector Regression (SVR)

The process of optimizing the SVR model involves adjusting the hyperparameters,
cost, epsilon, gamma, and kernel values. The cost parameter determines the degree of
error tolerance, while epsilon represents the acceptable range of error between predicted
and actual values. In this case, the range for the cost parameter was set as 1, 10, and 100,
and epsilon was set to 0.01 and 0.1. These values were commonly used and selected as
initial choices for the parameters [77,78]. Additionally, gamma plays a role in adjusting
the curvature of the decision boundary, and gamma values were set to 0.01 and 0.1. The
kernel was considered with options including linear, polynomial, and Gaussian radial basis
function (RBF) kernels.

During the evaluation process with varying CV values from 2 to 10, consistent results
were observed for the test sets in terms of evaluation metrics, as is visually represented in
Figure 1. Figure 1 shows the evaluation metrics for each CV value. The R2 value for the test
set was found to be 0.79, with an RMSE of 7.67 MPa and an MAE of 5.25 MPa. Furthermore,
the Delta RMSE was 1.6 MPa. Based on these results, the optimal SVR model was obtained
with a CV value of 2 and the following hyperparameter combination: cost value of 100,
epsilon value of 0.1, gamma value of 0.1, and the Gaussian kernel. The decision to choose
a smaller CV value, such as 2, was that a smaller CV value leads to a simpler model and
reduced model complexity, which helps avoid overfitting [79]. Table 3 shows the optimal
hyperparameter values and CV fold for each model.
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Table 3. Optimal hyperparameter values and CV fold.

Model Best Hyperparameter CV

SVR

Cost: 100
Epsilon: 0.1
Gamma: 0.1

Kernel: Gaussian

2

KNN

Number of neighbors: 5
Weights: distance
Algorithm: auto

Power parameter: Euclidean distance

2
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Table 3. Cont.

Model Best Hyperparameter CV

Decision tree

Maximum depth: 7
Minimum number of sample split: 5

Maximum number of features: square root
Criterion: mean squared error

3

Random forest

Number of estimators: 200
Maximum depth: None

Minimum number of samples split: 2
Number of minimum samples leaf: 1

3

XGBoost

Number of estimators: 200
Learning rate: 0.1

Maximum depth: 5
Number of subsamples: 0.5

10

LightGBM

Number of estimators: 200
Learning rate: 0.1

Maximum depth: 7
Number of subsamples: 0.5

3

3.1.3. K-Nearest Neighbors (KNN)

To optimize the k-nearest neighbors (KNN) model, the values of the number of
neighbors, weights, algorithm, and power parameter are adjusted. Number of neighbors
is a parameter that specifies the number of nearest neighbors and is usually chosen as an
odd value for applying majority voting rule. In this study, the number of neighbors is set to
three and five. Weights are a parameter that determines the weight of neighbors, and two
options, uniform and distance, are chosen. Uniform assigns equal weight to all neighbors,
while distance assigns weights inversely proportional to the distance. Algorithm is used for
neighbor search, and auto is used in this study as it automatically selects the most suitable
algorithm. Power parameters are methods of distance measurement, where in this study,
Manhattan distance and Euclidean distance are used.

The results show that for CV values ranging from 2 to 10, for the test set, the R2, MAE,
and RMSE values are consistent for CV values 2 to 7 and 10, which yielded the highest
R2 and the lowest RMSE, Delta RMSE, and MAE. Therefore, the optimal KNN model is
selected with a CV value of 2, 5 neighbors, weights as distance, algorithm is set to auto, and
Euclidean distance for power parameter, as summarized in Table 3. CV value as 2 shows an
R2 of 0.74, an RMSE of 8.48 MPa, an MAE of 5.91 MPa with the Delta RMSE as 6.91 MPa.

3.1.4. Decision Tree

The hyperparameters of the decision tree model include maximum depth, minimum
number of samples split, maximum number of features, and criterion [25]. Maximum
depth represents the maximum depth of the decision tree, and in this study, it was set to
5, 6, and 7. By controlling how deep the tree branches can extend, it helps mitigate the
risk of overfitting. The minimum number of samples split refers to the minimum number
of samples required to split a node. Nodes with fewer samples than this value will not
be split. The default value in this research was set to 3, 4, and 5. The maximum number
of features limits the number of features available for splitting and can help control the
complexity and overfitting of the model. In this study, a square root of the total number of
features and logarithm base 2 of the total number of features was chosen. Criterion is the
function used to evaluate the quality of a node’s split and mean squared error, Friedman
mean squared error, and Poisson loss were applied in this research.

The lowest RMSE and MAE values were achieved when CV values were 3 and 8. For
CV = 3, the test set had an R2 of 0.82, an RMSE of 7.03 MPa, an MAE of 5.46 MPa, and Delta
RMSE was 0.98 MPa. For CV = 8, the test set had an R2 of 0.82, an RMSE of 7.06 MPa, and
an MAE of 5.49 MPa with delta RMAE as 1.01 MPa. Since the performance metrics for CV
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values for 3 and 8 came out very similar, CV value 3 was chosen as the optimal model for
the decision tree. The optimal hyperparameters for CV = 3 are as follows: the maximum
depth is 7, the minimum number of samples split was set as 5, the maximum number of
features as a square root of the total number of features, and the criterion is mean squared
error, as summarized in Table 3.

The advantage of the tree model is the ability to visualize the model [80]. Figure 2
represents the optimal decision tree model for CV as 3. Interpreting the figure, the first
splitting criterion is ‘AGE’. It uses the ‘AGE’ feature to perform the first split. If the ‘AGE’
value is less than or equal to 21.0, it branches to the left; otherwise, it branches to the right.
‘Squared error’ indicates the mean squared error in the split, representing the average
squared difference between the predicted and actual values in the split. In the first split, the
mean squared error is 254.458. ‘Samples’ represents the number of data points included in
the split, which is 541 in this case. The value of 541 is obtained by multiplying the training
set ratio (0.7) by the total number of data points (752). Finally, ‘value’ denotes the average
value of the target variable predicted within the split, which is 36.753 for the first split,
representing the average of the target variable values for the data points belonging to the
first split.
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Figure 2. Optimal model of decision tree.

3.1.5. Random Forest

The hyperparameters of the random forest model that were specified in the study
are the number of estimators, maximum depth, minimum number of samples split, and
minimum number of samples leaf. The number of estimators represents the number of trees
to be generated in the random forest. Increasing the number of trees can potentially improve
prediction performance, but it can also slow down the model’s training and prediction
speed [81]. The maximum depth limits the maximum depth of each tree in the random
forest [81]. Setting a maximum depth helps control the risk of overfitting, as deeper trees
can capture more specific patterns in the training data but may struggle to generalize well
to new data. The minimum number of samples split is the minimum number of samples
required to split an internal node, while the minimum number samples leaf is the minimum
number of samples required to be at a leaf node [81]. These parameters also contribute
to controlling the model’s complexity and generalization ability. The hyperparameter
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ranges specified in the study are as follows. The number of estimators is set to 100 and 200;
maximum depth as 0, 5, and 10; minimum number of samples split as 2, 5, and 10; and
minimum number samples leaf set to 1, 2, and 4.

The analysis of each CV value for the optimal hyperparameter values in terms of R2,
RMSE, MAE, and the Delta RMSE revealed similar results between CV values of 3 and
10. However, there was a noticeable difference when the CV was set to 2. For CV as 2,
the test set had an R2 of 0.88, an RMSE of 5.69 MPa, and an MAE of 4.16 MPa, with a
Delta RMSE as 2.35 MPa. On the other hand, for CV values between 3 and 10, similar
performance metrics were obtained. Especially for CV values as 3, the R2 was 0.89, RMSE
was 5.59 MPa, and MAE was 3.98 MPa, and Delta RMSE was 2.97 MPa. Comparing the
two CV values, 2 and 3, it can be observed that the model performs better when the CV is
set to 3. Although the Delta RMSE value was higher for CV = 3 compared to CV = 2, the
higher R2 and lower RMSE and MAE values indicate better overall performance when the
CV is set to 3. Therefore, the optimal model for the random forest is obtained when the CV
is set to 3, with 200 estimators, no maximum depth, a minimum samples split of 2, and 1
minimum samples leaf, as summarized in Table 3.

3.1.6. XGBoost

The selected hyperparameters for XGBoost in this study are number of estimators as
100 and 200; learning rate as 0.01 and 0.1; maximum depth as 3, 5, and 7; and number of
subsamples as 0.5, 0.7, and 0.9 [82,83]. The number of estimators specifies the number of
decision trees to be generated. Learning rate determines the contribution of each tree to
the final prediction; smaller values result in less contribution from each tree, while larger
values increase their contribution. Maximum depth limits the maximum depth of each tree,
as deeper trees can lead to overfitting. Subsample specifies the proportion of samples used
to train each tree.

When the CV value is 10, the highest R2 and lowest RMSE and MAE were observed.
For CV as 10, the test set achieved an R2 of 0.93, RMSE of 4.52 MPa, and MAE of 3.15 MPa.
The Delta RMSE was the highest at 2.24 MPa, suggesting that the model may be slightly
overfitting to the training data. Despite this, the model still demonstrates superior per-
formance in terms of R2, RMSE, and MAE. The CV as 10 yielded the best results. Thus,
based on the higher R2, lower RMSE, and MAE, the model with the CV as 10 was chosen
as the optimal model, even though the delta RMSE is higher compared to other CV values.
Therefore, the optimal model is achieved with a CV of 10, and the corresponding optimal
hyperparameters are 200 number estimators, a learning rate of 0.1, a maximum depth of 5,
and subsamples of 0.5, as summarized in Table 3.

3.1.7. Light GBM

The hyperparameters for LightGBM were set with the same conditions as XGBoost [84].
Among the different CV values, the CV as 2 resulted in the lowest Delta RMSE of 0.74
MPa. However, when considering other evaluation metrics, CV values ranging from 3
to 10 showed better performance. Specifically, CV values between 3 and 10 achieved the
highest R2 value of 0.94, along with the lowest RMSE of 4.16 MPa and MAE of 3.03 MPa.
Furthermore, the Delta RMSE was the second lowest at 1.4 MPa. Taking all these factors into
account, the optimal LightGBM model was selected with a CV value of 3. Consequently,
the optimal hyperparameters for the LightGBM model are 200 estimators, a learning rate of
0.1, a maximum depth of 7, and a subsample of 0.5, as summarized in Table 3.

3.2. Final Model Selection

Figure 3 compares the performance of the seven models and visualizes the reliability
of their predictions. By examining the scatter plots of the optimal models on the test
set, both the model’s performance and the reliability of its predictions can be evaluated.
The distribution of the actual values and predicted values is displayed visually, and the
regression line and error range of ±10% show how well the predicted values fall within
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the acceptable range. The data points of XGBoost and LightGBM models are concentrated
within the error range of 10%, indicating a better fit compared to the linear regression,
SVR, KNN, decision tree, and random forest models. This suggests that the predictions of
the XGBoost and LightGBM models can be considered more reliable compared to other
models. Previous studies have also demonstrated similar findings. For instance, Cakiroglu
et al. [85] used machine learning to study fiber-reinforced concrete and found that both
model data samples remained within the ±10% deviation lines, while a study by Abdulalim
Alabdullah et al. [71] on high-strength concrete prediction using LightGBM and XGBoost
found a strong correlation between experimental and predicted results for both models.
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Figure 4 compares the actual values and predicted values from the test dataset of
seven optimal models. The horizontal axis represents the index of the test data, and the
vertical axis represents the compressive strength. The data points connected by the red line
represent the predicted values, while the data points connected by the blue line represent
the actual values. A larger distance between the two data points on the y-axis indicates a
lower accuracy of the model’s predictions. From the analysis, it can be observed that both
the XGBoost and LightGBM models fit the original data very well. Both models show high
prediction accuracy between the data indices 50 and 100. Following that, the random forest
and decision tree models also exhibit good alignment with similar results. The model with
the highest error rate is the linear regression model, with errors evenly distributed across
the entire data index. Based on these results, XGBoost and LightGBM models demonstrate
high reliability, while the linear regression model shows the least reliable predictions.

In Table 4, the values comparing the performance of the seven optimal models are
presented, and Figure 5 illustrates the performance of the models based on Table 4. Through
the comparison, the final model was selected based on performance metrics. Firstly,
considering the R2 values, the linear regression model had the lowest R2 of 0.66 on the
test set. In contrast, XGBoost and LightGBM models demonstrated strong predictive
performance, achieving test set R2 values of 0.93 and 0.94, respectively. This aligns with
the findings of [85], who reported R2 values of 0.93 for XGBoost and 0.94 for LightGBM.
Secondly, looking at the RMSE and MAE values on the test set, the linear regression model
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had the highest values, while LightGBM had the lowest values of 4.16 MPa and 3.03 MPa,
respectively, among the seven models. The RMSE and MAE values for the XGBoost
and LightGBM models were also similarly low. Lastly, considering the Delta RMSE, the
XGBoost model had a relatively low RMSE difference of 2.24 MPa, while the LightGBM
model showed an even lower difference of 1.4 MPa. This indicates better generalization
performance on the model. LightGBM exhibits high R2 values on the test set along with
low RMSE, MAE, and Delta RMSE values. Based on the provided information, LightGBM
exhibits better performance than XGBoost in terms of training time, with LightGBM taking
2.92 s compared to XGBoost 37.26 s. The results from Wang [86] support the superior
prediction accuracy of the LightGBM model compared to other models. Similarly, Amin [74]
observed that LightGBM exhibited the highest reliability among the XGBoost and random
forest models, as indicated by R2, RMSE, and MAE values of 0.865, 3.56 MPa, and 1.3 MPa,
respectively. Considering these findings and the evaluation of performance metrics, the
LightGBM model was chosen as the optimized and final model for this study.
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Table 4. Comparing the performance indicators of optimal models.

Database Indicators

Models

Linear
Regression SVR KNN Decision

Tree
Random

Forest XGBoost LightGBM

Training set

R2 0.65 0.86 0.99 0.86 0.97 0.98 0.97

RMSE (MPa) 9.41 6.07 1.57 6.05 2.62 2.28 2.76

MAE (MPa) 7.41 3.75 0.38 4.52 1.8 1.54 1.98

Test set

R2 0.66 0.79 0.74 0.82 0.89 0.93 0.94

RMSE (MPa) 9.72 7.67 8.48 7.03 5.59 4.52 4.16

MAE (MPa) 7.67 5.25 5.91 5.46 3.98 3.15 3.03

Delta RMSE (MPa) 0.31 1.6 6.91 0.98 2.97 2.24 1.4

Training time (seconds) 0.03 5.01 0.07 0.37 43.37 37.26 2.92
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4. Discussion
4.1. Feature Importance Analysis

Figure 6 shows the feature importance and represents the relative importance of
each feature in the final model. Feature importance is a metric used in machine learning
models to evaluate the importance of each feature in predicting the outcome. It helps to
understand which features have the most significant influence on the model’s predictions.
In general, a higher feature importance value indicates a greater impact of that feature
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on the model’s predictions [87]. The statement regarding the importance of the “Fine
Aggregate/Total Material” feature and its influence on compressive strength is consistent
with previous studies (e.g., [88]). Similarly, the “Water/Cement” feature is identified as
the second most important, aligning with the general understanding that reducing the
water–cement ratio can improve the compressive strength of concrete [1,43,75,89]. The
third-largest impact is attributed to the “Age” feature, suggesting that curing time or the age
of the concrete influences compressive strength, which of course is well known. However,
the “Fly Ash/Total Material” feature is reported to have a value of ‘0‘, indicating no impact
on compressive strength, which is attributed to limited data availability given that only
12 data in the 752 total dataset included fly ash.
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As the main motivator for this study, it can be seen that the moisture condition does
not rank very high on the feature importance plot. Moisture condition of the RCA is the
8th ranked feature, indicating that other features, including water-to-cement ratio, total
cement content, and coarse RCA content, have a greater impact on the compressive strength
of concrete.

4.2. Interaction Plot Analysis

To gain a detailed understanding of the relationships between variables, an interaction
plot was utilized to explore the interaction effects among variables. The interaction plot aids
in visually comprehending the interplay between variables and comparing their effects at
different levels. In this study, based on feature importance, water/cement ratio was chosen
as the variable with a significant influence on compressive strength, and an interaction plot
was generated. Figure 7 presents the interaction relationship between water/cement ratio,
fine aggregate/total material, and compressive strength. The analysis reveals that from
a water/cement ratio of 0.6 onwards, there is a sharp decrease in compressive strength;
however, when water/cement is fixed at 0.3 and 0.4, the average compressive strength is
55.87 MPa and 50.73 MPa, respectively.
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Figure 7 represents an interaction plot among coarse aggregate/total material, wa-
ter/cement ratio, and compressive strength (MPa). It shows that when the water/cement
ratio increases from 0.4 to 0.6, the compressive strength decreases rapidly by at least 17 MPa.
Additionally, within the coarse aggregate/total material range of 0 to 0.5, at a water/cement
ratio value of 0.3, the average compressive strength is 56.47 MPa, and at a water/cement
ratio value of 0.4, the average compressive strength is 48.66 MPa. In conclusion, the research
shows that reducing the water–cement ratio in cement mortar leads to higher compressive
strength, particularly within the range of 0.3 to 0.4 water–cement ratio. These results are
in line with findings from other studies [90]. Similarly, Zhou et al. [91] observed that the
dynamic compressive strength of cement mortar increases as water content decreases.

Figure 7 shows the interaction between fine RCA ratio, moisture condition, and com-
pressive strength (MPa). Increasing the fine RCA ratio leads to a decrease in compressive
strength, especially in the range of 0.4 to 0.6. This aligns with Kou and Poon [92], who
also found reduced strength with higher fine RCA content. They suggested using 25%
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to 50% fine RCA for maximum compressive and tensile strength. Checking the moisture
condition ranging from 0 to 1.0, it was observed that as the moisture condition increased,
the compressive strength also increased. A moisture condition at 0.8 exhibited the highest
compressive strength within the entire fine RCA ratio range. However, when the moisture
condition reaches the fully saturated surface dry (SSD) state, the compressive strength
decreases slightly. This indicates that extreme moisture conditions can have a negative
impact on the compressive strength of the material. In summary, the research suggests
that an ideal fine RCA ratio could be around 0.4 to achieve higher compressive strength in
concrete mixtures containing fine recycled aggregates. It is also recommended to maintain
a moisture condition in the range of 0.0 to 0.8 to optimize compressive strength properties.

Based on the observations from Figure 7, it is evident that the interaction between
coarse RCA ratio, moisture condition, and compressive strength follows certain trends. The
highest compressive strength is achieved when the moisture condition is 0.8, and as the
moisture condition increases, the compressive strength tends to increase, except when the
moisture condition reaches 1.0, where there is a slight decrease in compressive strength.
This was observed by Mefteh et al. [37] as well. The use of SSD recycled aggregates
had the most significant adverse effect on concrete strength. Also, in the study by Poon
et al. [36], the compressive strength decreased when recycled fine and coarse aggregates
were in the SSD moisture condition. This decrease in strength can be attributed to the
“bleeding” phenomenon, where water from the concrete mixture migrates to the surface of
the aggregate particles, and then evaporates from the surface of the concrete mixture. As a
result, the water–cement ratio increases during construction, leading to a reduction in the
compressive strength of the concrete. Therefore, caution should be exercised when using
recycled aggregates in the SSD state to avoid compromising the strength of the concrete.

In summary, the study reveals that for the coarse RCA ratio, values within the range
of 0.0 to 0.2 lead to an increase in compressive strength, with the highest strength ob-
served at a coarse RCA ratio of 0.2, irrespective of the moisture condition. However, for
coarse aggregate/total material values exceeding 0.4 to 1.0, compressive strength decreases,
especially when the coarse RCA ratio falls within the range of 0.4 to 0.6. Additionally,
Etxeberria et al. [23] found that incorporating 25% recycled coarse aggregates can achieve
mechanical properties equivalent to conventional concrete using the same cement quantity
and water-to-cement ratio. Andal et al. [93] also recommended that incorporating 30%
recycled coarse aggregates of preserved quality results in concrete of comparable quality to
that made with natural aggregates. Based on these findings, the ideal moisture condition
would be to avoid reaching SSD for coarse RCA, and the optimum coarse RCA ratio for
achieving the highest compressive strength in the concrete mixture is around 0.2.

5. Conclusions and Future Recommendations

This study investigated the relationship between the compressive strength of concrete
and the moisture content of RCA using machine learning techniques. Furthermore, various
machine learning models were employed to comprehensively understand the impact of
RCA moisture content on predicting concrete performance metrics. A literature review
was conducted to explore the relationship between RCA moisture content and concrete
compressive strength, based on which a database consisting of 752 items was constructed.
Subsequently, a predictive model for RCA compressive strength was developed using seven
machine learning models, and evaluation metrics were used to assess its performance.

Through the comprehensive construction of the database and the application of seven
machine learning models, including XGBoost and LightGBM, the study developed a
predictive model for RCA compressive strength. Evaluation results demonstrated that the
LightGBM model outperformed other models in terms of R2 values, RMSE, MAE, and
generalization performance, thereby proving to be the optimal choice for this study.

Feature importance and interaction plot analyses were conducted to investigate how
moisture content affects compressive strength. The analysis revealed that “Age”, “Wa-
ter/Cement “ and “Fine RCA Ratio” were the most influential features, in line with prior
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research. Surprisingly, the moisture condition of the RCA ranked relatively low in impor-
tance, indicating that factors like water-to-cement ratio and aggregate content had a greater
influence. Interaction plot analysis highlighted the significance of water-to-cement ratio,
aggregate ratios, and moisture conditions on compressive strength. Notably, reducing
the water-to-cement ratio consistently led to higher compressive strength. Maintaining
optimal aggregate ratios, both fine and coarse, proved crucial for enhancing compressive
strength. Additionally, controlling moisture within specific ranges, particularly avoiding
extremes like fully saturated surface dry (SSD) states, was crucial for maximizing compres-
sive strength. These findings support established research, emphasizing the importance of
these factors in concrete mixture design for achieving desired mechanical properties.

Overall, this study fills the gap in predicting concrete performance metrics considering
RCA moisture content and provides valuable insights for optimizing concrete mixtures
containing recycled aggregates. These findings underscore the importance of comprehen-
sive parameter consideration and the use of machine learning techniques in enhancing
predictive models for concrete technology.

From a recommendation perspective, further research is needed to understand the
impact of various recycled materials on concrete performance and to develop optimal mix-
tures. Among these, slag, generated during the steel manufacturing process, stands out as
a valuable recycled material for concrete production. Properly processed, slag can enhance
concrete quality and provide environmental benefits. Leveraging innovative technologies
like machine learning to optimize the utilization of recycled materials holds significant
promise in promoting sustainable construction and material production. These efforts are
expected to contribute to achieving sustainable architecture and material production by
enhancing environmental protection and resource efficiency.
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