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Abstract

:

The task of fashion parsing aims to assign pixel-level labels to clothing targets; thereby, parsing models are required to have good contextual recognition ability. However, the shapes of clothing components are complex, and the types are difficult to distinguish. Recent solutions focus on improving datasets and supplying abundant priori information, but the utilization of features by more efficient methods is rarely explored. In this paper, we propose a multi-scale fashion parsing model called the Priori Dictionary Network (PDN), which includes a priori attention module and a multi-scale backbone. The priori attention module extracts high dimensional features from our designed clothing average template as a priori information dictionary (priori dictionary, PD), and the PD is utilized to activate the feature maps of a CNN from a multi-scale attention mechanism. The backbone is derived from classical models, and five side paths are designed to leverage the richer features of local and global contextual representations. To measure the performance of our method, we evaluated the model on four public datasets, the CFPD, UTFR-SBD3, ModaNet and LIP, and the experimental results show that our model stands out from other State of the Art in all four datasets. This method can assist with the labeling problem of clothing datasets.
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1. Introduction


As a fine-grained image semantic segmentation problem, fashion parsing aims to predict the label (e.g., T-shirt, bag, face, etc.) for each pixel in a fashion image. It has garnered unprecedented attention due to the fast growth of fashion-related applications, such as virtual try-ons and clothes recommendations [1,2]. In particular, models for high-level tasks typically use parsing results as input conditions, which benefit the precision of feature extraction [3,4]. However, labeling each pixel is a challenging task because some clothes with similar appearances have different categories in fashion parsing datasets, as shown in Figure 1. Therefore, the segmentation models cannot reliably forecast classifications due to the presence of confusing semantic information. In addition, the visual variations of targets, such as resolution, deformities, occlusions and background, impose great challenges for segmentation [5,6]. Early work on the fashion parsing problem usually adopted the modified image segmentation models, e.g., Grab Cut and the Markov Random Field (MRF). These models always greatly benefit from incorporating shape and texture features, but they can only process limited types of clothing [7,8].



Recently, convolutional neural networks (CNNs) have made remarkable progress in image segmentation tasks, primarily due to their strong capabilities of feature capturing [9,10,11,12]. The prevalent CNN models for fashion parsing were based on some classical end-to-end networks, e.g., fully convolutional networks (FCNs) and U-Net [13,14], and they focused on improving the dataset quality to acquire more accurate results. However, dataset imbalance and low annotation quality are very common in human parsing problems in some widely used datasets, such as ModaNet [15] and LIP [16]. Therefore, these methods are difficult to adopt in practical applications.



Considering the limitation of the feature representation ability of classical CNN models, Vozarikova et al. [17] designed extra branches to learn richer features from images and replaced the backbone of U-Net with ResNet-34. Zhu et al. [18] proposed a progressive cognitive structure to segment human parts, in which the latter layers inherit information from the former layers to improve the recognition ability of small targets. To help the CNN models explicitly learn important information (e.g., edges, poses), some approaches attempted to extract priori knowledge from images and introduce them into models [19,20]. Ihsan et al. [21] injected superpixel features, which were extracted from the Simple Linear Iterative Clustering (SLIC) algorithm, into the decoder path of a modified FCN. However, their method needs post-processing steps to extract the templates of clothing, which means it is not an end-to-end model. Different from manually extracting features, Ruan et al. [22] designed a side branch for an edge detection task, which aims to improve the continuity of the segmentation results using the features of edges. Liang et al. [16] proposed to build two networks, where the networks were utilized to learn the mask templates and texture features, respectively. Park et al. [23] designed a tree structure to help the CNN model infer human parts in the hierarchical representation. For using human poses to provide object-level shape information, Gong et al. [24] used poses to directly supervise the parsing results and collected more than 50,000 images to build an evaluation dataset. Xia et al. [25] proposed a human parsing approach that uses human pose location as cues to provide pose-guided segment proposals for semantic parts. Zhang et al. [26] designed a five-stage model to extract hierarchical features from edges and poses and leverage them to generate parsing results. However, the extracted edges and poses always contain errors, which will be accumulated in the final results.



More recently, researchers found that highlighting relevant features using the self-attention mechanism is another method to improve fashion parsing models [27,28]. He et al. [29] incorporated three attention modules into a CNN, and they found that strengthening the connections between pixels using self-attention modules can increase clothing parsing accuracy. Therefore, one natural question for using a CNN model to solve the problem of fashion parsing is, can we extract priori knowledge and introduce it into a CNN model using an attention mechanism?



To address these issues, we propose a novel framework aimed at leveraging priori attention with fewer errors to guide the generation of fashion parsing results. Considering that the explicitly extracted priori knowledge (edges and poses) always involves errors, we implicitly extracted latent features for each category using an encoding model. Then, the non-linear combinations of features were utilized to construct a series of category-based templates. We stored these latent space templates in the priori dictionary (PD). To employ the PD in guiding the backbone of a fashion parsing network, a modified attention module is proposed. The entire model is named the Priori Dictionary Network (PDN). The PDN takes advantage of feature templates and an attention mechanism to generate segmentation results, and its contributions are threefold: (1) we put forward a priori dictionary module to help the CNN model capture important features using templates, in which the module combines the advantage of priori information and an attention mechanism; (2) we proposed a joint loss function, L2 loss and cross-entropy loss to supervise the model training, which made the accuracy and IoU increase by 0.45% and 6.01%, respectively; and (3) we developed a multiple path architecture to fuse clothing features on a multi-scale, and the comparison results show that the proposed model outperforms State-of-the-Art methods in public fashion parsing datasets.




2. Methods


In this section, we will describe our method of how to acquire high-quality segmentation results from fashion parsing datasets.



2.1. Priori Dictionary Construction


Let us consider that   F   x     is a CNN model, and it can be represented as follows:


  F   x   = ξ   ψ   x      



(1)




where   ψ   denotes the convolutional layers and pooling layers of the CNN model, and ξ denotes the fully connected layers. We assume that   G ( x )   is a segmentation of the CNN model, and the backbone of the model   G ( x )   has the same structure as   ψ  . Hence, the model   G ( x )   can easily be represented as:


  G   x   = ρ     ψ   ′     x        



(2)




where the   ρ   indicates the rest of the part of   G ( x )  . If there is a dataset Ω that involves classification labels and pixel-wise annotations (e.g., the CFPD and ModaNet), we train   F   x     and   G   x     on the dataset Ω, and two groups of features can be extracted by   ψ   and    ψ ′   , respectively. We let ∆ denote the differences between the two groups of features:


  Δ =   ψ   ′     x   − ψ   x    



(3)







Then, the partial derivative of    ψ ′    ( x )   can be rewritten as follows:


    ∂   ψ   ′     ∂ x   =   ∂ Δ   ∂ x   +   ∂ ψ   ∂ x    



(4)







Equation (4) represents that the CNN model can more easily approximate the desired function (the segmentation problem) using priori knowledge. Indeed, humans always prefer to utilize priori knowledge to tackle complicated tasks. For example, the semantic information of clothes (e.g., texture and clothing shapes) is important evidence for the manual labeling pixels of fashion parsing maps, and it is highly related to the clothing category. Therefore, the clothing category can also help the CNN to understand objects properly and be regarded as a priori condition for parsing map prediction.



2.1.1. Priori Feature Learning


Latent variables are useful for capturing complex or conceptual properties of inputs [30]. To guide the feature extraction of our fashion parsing model, we utilized a high-accuracy classification model to build a series of feature templates, and the templates were adopted to enhance the crucial features in latent space. Assume that the dataset   Ω   is a fashion dataset, and it involves   N   classes of items, such as skirts, glasses and sweaters. Let     Ω   n     denote the nth subsets of   Ω  , and it is composed of the same kind of items. Thus, we can train a CNN model   G   on the dataset   Ω   to predict the category of item in the image. After the model convergence, it is easy to extract latent representations     L   n i     according to the categories using correct predictions, where     L   n i     indicates the features of the   i   t h   image in     Ω   n    .



Most of the CNN models employ an encoder structure to extract features, and their backbones always group several convolutional layers and one pooling layer as a stage, such as VGG-16, ResNet-50 and ResNet-101. For example, the VGG-16 model groups 13 convolutional layers to 5 stages, and the latent representations     L   n i     of VGG-16 are composed of 13 feature maps     L   n i   ∈     l   n i     1     ,   l   n i     2     , …   l   n i     13        . Then, we preserved the last output features of each stage, which means     L   n i     reserved the feature maps of the 2nd, 4th, 7th, 10th and 13th convolutional layers.



To obtain the general representations of items, we computed the feature templates for each class as follows:


    T   n   =     ∑  i = 1   k        L   n i   ; G     x   n , i           k    



(5)




where     T   n     denotes the feature templates of     Ω   n    , and   k   represents the object number of categories. The function       ∑  i = 1   k        L   n i   ; G     x   n , i           k     of Equation (5) was employed to average the feature maps of different objects. As shown in Figure 2, we fused the channels of acquired templates and visualized them. The visualization results indicate that the feature templates involve high-response regions corresponding to their categories, and the pixel-wise labeling model can benefit from the templates (see more details in Section 2.2.1). To store the templates   T ∈ {   T   1   ,   T   2   , … ,   T   n   }  , we built a priori dictionary (PD), as illustrated in Algorithm 1.





	Algorithm 1 Generation of priori dictionary for VGG-16



	[image: Applsci 14 03509 i001]






As shown in Figure 3, our priori dictionary essentially is a 4D matrix, and it consists of   N   groups of templates. It is worth noting that for different model structures, the latent representations used to construct the PD are sourced from different convolutional layers. In this research, the reserved latent representations of ResNet-101 were generated by the 1st, 10th, 22nd, 91st and 100th convolutional layers.




2.1.2. Dataset Reconstruction


As shown in the illustration in Section 2.1.1, the CNN model is trained on classification datasets to build the PD, and the features are stored based on the corresponding categories. However, the images of fashion parsing datasets are collected from the real world, and there are several kinds of targets in one image. In addition, the images are annotated with pixel-wise labeling to evaluate clothing parsing, e.g., the CFPD [31] and Fashionista [32]. Therefore, the original datasets cannot be utilized in the classification task. Here, we formulate the dataset of fashion parsing as:


  Ω   x , y   =   Ω   1     x , y   ⋃   Ω   2     x , y   ⋃ … ⋃   Ω   n     x , y    



(6)




where   Ω   x , y     represents all the pixels in images, and     Ω   n     x , y     denotes the set of pixels of the   n t h   image. Aiming to build a dataset for the classification task, we built a new single-object dataset according to the class annotations. Compared with real-world images, single-object images remove the backgrounds and reserve the clothing pixels. Notably, one real-world image was deconstructed into several single-object images so that the single-object image only included one kind of clothing, as shown in Figure 2. The reconstructed dataset can be formulated as follows:


  Ω     c   1   ,   c   2   , … ,   c   n     =   Ω   c 1   ⋃   Ω   c 2   ⋃ … ⋃   Ω   c n    



(7)




where   Ω     c   1   ,   c   2   , … ,   c   n       is the reconstructed dataset, and     Ω   c n     indicates the set of the nth class of items. Therefore, object-level categories can be utilized to build a PD.





2.2. Multi-Scale Feature Fusion Model


2.2.1. Priori Attention Module


Attention mechanisms improve the model performance on semantic analysis and image processing by capturing long-range feature interactions and enhancing the representation of features for a CNN [33,34,35]. To utilize the classification and shape information of a PD, we designed an attention-based module to introduce the templates into a fashion parsing model, namely, the priori attention module.



As shown in Figure 4, we applied convolutional kernels to fuse the priori dictionary and acquire a series of weighted templates. Specifically, the   j t h   stage of the priori dictionary     D   ( j )     comprises c (number of categories) groups of feature templates with   d   channels, where   d   is equal to the channel number of features from the backbone. We used c convolutional kernels to fuse     D   ( j )    , and the dimension of weighted templates is equal to   c × h × w  , where   h   and   w   represent the height and width of the feature maps. Since the convolutional kernels were employed to fuse     D   ( j )     independently, each channel of the weighted templates still corresponded to one category. Then, the 3D weighted templates were reshaped to a 2D matrix as a query vector.



For the feature maps of the backbone, two convolutional kernels were adopted to fuse them, and the dimensions of the fused matrixes are equal to   c × h × w  . Then, we reshaped two matrixes to a pair of 2D matrixes, which are named as the value vector and the query vector. Different from the self-attention mechanism, the key vectors and query vectors were generated by different sources. To utilize the priori attention to guide the feature extraction of the CNN, we performed a softmax function to activate the multiplication results of the query vector and key vector as follows:


  A t t e n t i o n   Q , K   = s o f t m a x   Q   K   T      



(8)




where   Q   and   K   are the query and key vectors. It is worth noting that we obtained a matrix composed of attention values using multiplication, and the features that could be matched with the templates could receive higher response values. Then, we used pixel-wise multiplication and addition to enhance the important features of the value vectors and reshaped them to a   c  -channel feature map. At the end of the priori attention module, a convolutional layer was employed to restore the dimension of the feature map.




2.2.2. Network and Side Paths for Multi-Scale Feature Fusion


The receptive field limits the range of features that convolutional kernels can typically extract, posing challenges for leveraging both global features and local detail features. Therefore, through the design of side paths, we utilized the semantic information of global features to determine the position and shape of the target and detailed features to ensure the continuity and integrity of the same target.



As shown in Figure 5, we added a priori attention module behind each convolutional block. Then, we duplicated the outputs of the priori attention modules and fed them into the side paths. In each side path, we used a   1 × 1 × 64   convolutional kernel to obtain a feature map with 64 channels and deconvolutional layers to restore their heights and widths. At the end of the network, we concatenated all the feature maps from the side paths and designed a fuse block comprising three convolutional layers. Notably, the last convolutional layer outputs the predicted results with the c-channel, where each channel represents the probability map for one category. Since the Conv Blocks of our model were inherited structures from widely used models (VGG-16 and ResNet-101), we easily inferred the parameters of the priori attention modules and side paths based on the used dataset.




2.2.3. Joint Loss Function


A fashion parsing model is designed to acquire a segmentation map that involves pixel-level labels. Therefore, the fashion parsing problem can be regarded as two subproblems: pixel classification forecasting and semantic segmentation. To solve both of the subproblems, we propose a cross entropy and L2 joint loss function as follows:


  L o s s =   L   c r o s s   +   L   2   =   1   c     ∑  i , j      ∑  k = 1   c      y   i , j , k     log  ⁡      P   i , j , k       +     ∑  1   W × H        P   i , j , k   −   y   i , j , k         W × H        



(9)




where   H  ,   W   and   c   are the height of images, width of images and category count of datasets, respectively. The outputs of our model were reshaped into a matrix whose dimensions are equal to   h × w × c  , where each channel is a binary map and only includes one kind of target prediction. The     L   2     term was designed for optimizing all the prediction results in all channels, and the cross-entropy loss was proposed to optimize the shapes of targets in each channel.






3. Experiments


We conducted experiments on four publicly available datasets: the CFPD [31], UTFPR-SBD3 [5], ModaNet [15] and LIP [16]. We implemented the proposed model using the public deep learning library Pytorch on a single RTX-3090 GPU. We extracted single-target images from the four datasets mentioned above and constructed priori dictionaries for each of them. The details and results are illustrated in the following sections.



3.1. CFPD and UTFPR-SBD3 Datasets


The Colorful Fashion Parsing dataset (CFPD), which contains 23 types of categories, is widely used for image parsing evaluation. In this dataset, there are 2682 images whose heights and weights are equal to   600   and 400, respectively. However, the annotations of the CFPD are heavily influenced by noise, and their incorrect labels affect the accuracy of CNN models. Thus, Inacio et al. collected images from the CFPD dataset and Refined Fashionista dataset and manually annotated the pixel-level categories to obtain high-quality ground truth, namely, the Soft Biometrics dataset (UTFPR-SBD3). The UTFPR-SBD3 dataset includes 17 types of categories and 4500 images, whose resolutions are also equal to   600 × 400  .



3.1.1. Implementation Details


PD construction of the CFPD dataset. To test our model on the CFPD dataset, we adopted VGG-16 as the backbone of the PDN model. After the reconstruction of the single-object dataset of the CFPD, we trained the VGG-16 model to build the PD. VGG-16 was initialized with the parameters pretrained on ImageNet, and the Adam Optimizer was adopted. We set the learning rate to 10−5, and it was divided by 10 after every five epochs. The training was terminated after 20 epochs on the CFPD when the loss and accuracy of the validation set could not change. We tested VGG-16 on the testing set of the reconstructed dataset, and the accuracy of classification reached 98.2%. Then, we randomly selected 30 single-object images for each category from the training set and computed the feature templates of the PD.



PD construction of the UTFPR-SBD3 dataset. The VGG-16 network adopted similar hyper-parameters as the training on the CFPD dataset. We found that the model convergences after 25 epochs of training, and the accuracy reaches 99.1%. Similar to the CFPD dataset, each template of the PD was also obtained using 30 single-object images.



Full model training. According to Reference [5], UTFR-SBD3 and the CFPD involve part of the same image for evaluation. Therefore, we adopted a similar network structure and training parameter for them. Specifically, we initialized the backbone (VGG-16) with the parameters pretrained on ImageNet, and the convolutional layers of the side paths and fuse block were initialized using the Xavier method [36]. The Adam Optimizer was also adopted, and the models converged at 20 epochs in both datasets. In addition, the batch size was set to 16, and the learning rate was fixed at 10−5.




3.1.2. Results


For a fair comparison, we used the same measures (Acc and mIoU) reported by [5] to evaluate the parsing quality of the CFPD dataset. The experimental results are reported in Table 1. It can be seen that the accuracy and IoU of our model achieve 99.26% and 78.09%, respectively. Among a series of SOTA methods, EPYNET achieves the best performance, and our method further improves the accuracy by 5.8% and mIoU by 31.2% compared to EPYNET.



Compared with the CFPD dataset, UTFR-SBD3 is a more balanced dataset, and it has higher-quality annotations. We evaluated our model on the test set of UTFR-SBD3, and the PDN achieves 99.39% accuracy and 81.00% mIoU, respectively, which are 18.1% and 15.4% higher than the EPYNET. The results show that the higher quality of annotations can help our model show a better performance. Figure 6 shows the confusion matrixes of the PDN and EPYNET on UTFR-SBD3, and we found that our model not only achieves a better overall performance but also more accurate predictions for all categories.



In Figure 7, a comparative visualization of the PDN algorithm on the UTFR-SBD3 dataset is presented. The first column displays input images, the second column shows the corresponding ground truth, the third column exhibits the segmentation results obtained using the EPYNET method, and the fourth column showcases the segmentation results obtained using the PDN method.



It can be observed that the PDN is more effective in recognizing correct categories and shapes. In the first set of images, the PDN successfully identifies the category of the skirt, whereas EPYNET misclassifies it. In the second and third sets of images, EPYNET segments the lower garment into two parts, namely, dress and pants, whereas the PDN closely approximates the ground truth. In the fourth set of images, EPYNET fails to completely segment the shoes, whereas the PDN achieves a complete segmentation result. These significant outcomes stem from the multi-scale architecture and attention modules designed within the PDN.





3.2. ModaNet Dataset


ModaNet is the largest dataset of fashion parsing [14]. Compared with the UTFPR-SBD3 dataset, the human parsing dataset (ModaNet) involves fewer kinds of clothing labels. Specifically, ModaNet involves 55,176 street images, and the images are annotated by a polygonal mask to 13 categories. We divided the training set (52,254 images) into a training set, validation set and testing set, where the subsets involve 45,000, 5000 and 2254 images, respectively.



3.2.1. Implementation Details


PD construction of ModaNet. We trained VGG-16 on ModaNet, and the results show that the accuracy and IoU only achieve 81.78%. As ModaNet involves more low-quality images, the rough annotations mean that the VGG-16 model cannot extract features. Therefore, we replaced the VGG-16 model with the ResNet-101 model for extracting priori features. ResNet-101 was trained on the reconstructed dataset, where the model was initialized with ImageNet-pretrained ResNet-101. After 20 epochs of training, the model achieved 93% accuracy. Similar to the CFPD and UTFR-SBD3, we also randomly selected 30 images for each category from the training set and generated the PD.



Full model training. Considering the poor performance of the VGG-16 model on the ModaNet dataset, we used ResNet-101 as the backbone of the full model. We initialized the convolutional blocks with ImageNet-pretrained ResNet-101, and other convolutional layers were initialized using the Xavier method. During training, Adam was chosen as the optimizer for our model. We set the learning rate and batch size to 10−4 and 16, respectively, and the training was terminated after 40 epochs.




3.2.2. Results


As shown in Table 2, we compared our model with other SOTA methods, and the PDN with the ResNet-101 backbone yielded a result of 77.91% in mIoU, which is 8.36% higher than TANet. To validate the effectiveness of the PD, we also trained the PDN with a VGG-16 backbone. Although this weaker model only achieved 44.80% in mIoU, it still achieved a superb performance among a series of VGG-16-based models. This result unveils that our proposed design brings great benefit to the CNN models in fashion parsing tasks.



We compared the per-class IoU of our model with TANet, and the results are listed in Table 3. The comparison results show that the PDN can generate higher quality segmentation maps for most of the classes except belts and sunglasses, since belts and sunglasses only occupy 6.0% and 3.8% of all the targets, respectively, and they tend to be smaller compared to other types of targets. It is difficult to capture sufficient features for these small objects, leading to difficulties for the PD in storing templates of the latent representations. However, when the backbone can capture sufficient features, our method still significantly improves fashion parsing accuracy.



In Figure 8, we present the testing results on the ModaNet dataset. The first column shows input images, the second column shows ground truth, and the third column shows the segmentation results obtained using the PDN method. It is evident that the PDN achieves segmentation results closest to the ground truth, both in terms of category classification accuracy and shape segmentation similarity. Particularly noteworthy is its performance on components such as scarves or bags, where the PDN exhibits notable accuracy.





3.3. LIP Dataset


The LIP dataset is the most widely used human parsing dataset, with 19 types of categories. This dataset contains 50,462 images, including 13,672 upper-body images, 19,081 full-body images, 3386 head-missed images and 2778 back-view images. We followed the previous approaches [16] and divided the dataset into 30,462 training images, 10,000 validation images and 10,000 test images. Aiming to explore the performance of the PDN in low-data scenarios, we randomly selected 3046 images to construct a separate training set with limited data. To avoid misunderstanding the notations, let “training set” and “training set (3K)” denote the original training set and the limited training set.



3.3.1. Implementation Details


PD construction of LIP. Considering the poor performances of the VGG-16 model in feature extraction, we adopted ResNet-101 to build the priori dictionary on the LIP dataset. Specifically, the ResNet-101 model was trained on the single-object dataset with the Adam optimizer. The learning rate and batch size were set to 10-5 and 16, respectively. After 35 epochs of training, the accuracy of ResNet-101 achieved 89.7%. Then, we computed the feature templates to build the PD, in which each template was also obtained by randomly selecting 30 images. Moreover, for a fair comparison, we adopted the same parameters to train ResNet-101 on the reconstructed single-object dataset of the training set (3K) and generate a new priori dictionary.



Full model training. We adopted the same network architecture and hyper-parameters settings as those used to train the PDN on the ModaNet dataset. For the complete training set, the training was terminated after 35 epochs; for the training set (3K), the training was terminated after 22 epochs. In the following section, the PDN trained on the training set (3K) is noted as PDN-3K.




3.3.2. Results


For the LIP dataset, we used the LIP validation set as the test set because the official dataset does not provide annotation results for the test set. Similar to [45], we used the same evaluation matrices to measure the performance of our model, including pixel accuracy (PA), mean class pixel accuracy (MPA) and mean intersection over union (mIoU). As shown in Table 4, our model achieves the best PA, MPA and mIoU, which are equal to 76.02%, 54.46% and 45.12%, respectively. Due to the limited generalization caused by the scarcity of training data, the accuracy of PDN-3K noticeably decreased with low-data scenario training. However, it can be found that the evaluation results are still close to those of DeepLabv3+. Overall, our model still achieves the average performance level of segmentation algorithms, indicating that our proposed model exhibits good adaptability, even under extreme conditions. Additionally, the IoU metrics for each category are listed in Table 5. Our PDN model shows a more obvious improvement in upper clothes and skirts, and this is attributed to our proposed clothing priori dictionary module.



In Figure 9, we present a subset of the testing results on the LIP dataset, which are arranged from left to right as follows: the original images from the dataset, the results of PDN-3K, the results of the PDN and the ground truth. It can be observed that although there are some prediction errors in the PDN-3k model for categories such as Skirt and Shoe, the overall segmentation shape remains close to the ground truth, indicating that our model still exhibits good stability even in low-data scenarios. Moreover, the training results on the entire dataset closely approximate the ground truth across all categories, demonstrating that the proposed priori dictionary module can assist the model in capturing more accurate clothing details.





3.4. Ablation Study


We conducted ablation studies on the CFPD dataset to investigate the impact of different modules on the PDN. “Priori-attention” refers to the multi-scale attention mechanism, while “joint loss function” denotes the combined loss function used in this study’s training. The results of the ablation experiments are presented in Table 6.



Compared with the PDN, the model without a joint loss function acquires lower accuracy because the joint function focuses on both the accuracy of label assignment and the continuity of regions. The results show that the priori attention module can clearly improve performance. The model without the attention module and joint loss function cannot extract the segmentation maps of abundant targets, and the model only achieves 59.57% accuracy and 25.39% mIoU.





4. Conclusions


In this paper, we present a priori attention module-based CNN method for fashion parsing. First, we extracted features from training images and built a priori dictionary to store the features. Then, we attached the priori dictionary to a multi-scale backbone derived from VGG-16 and ResNet. Furthermore, a joint loss function that is composed of L2 loss and cross-entropy loss was proposed to guide the model training. We conducted our model on four public datasets, and the experiment results show that the CNN model can effectively annotate different types of targets by introducing our latent features, with mIOU values of 73.99, 79.91, 69.88 and 45.12 on the four datasets, respectively. Through a fair comparison with other State-of-the-Art models, we demonstrate that the PDN can achieve competitive results for fashion parsing. Additionally, the ablation study shows that the priori attention module and joint loss function improve the performance of the model. Although the PDN model can obtain precise parsing results on high-quality annotated datasets, the feature templates cannot lead to a significant improvement in the performance of predicting pixel labels for small targets. In future work, we will explore the use of priori knowledge introduction to improve parsing accuracy in more complex backbone models.
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Figure 1. Samples from fashion parsing dataset, in which different colors of ground truth represent different categories. 
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Figure 2. The visualization results of latent feature templates. 






Figure 2. The visualization results of latent feature templates.



[image: Applsci 14 03509 g002]







[image: Applsci 14 03509 g003] 





Figure 3. An illustration of PD construction. The latent representations are extracted from the CNN, and different colors indicate that the representations are extracted from different kinds of objects. 
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Figure 4. The illustration of attention module. Two reshaped vectors (query vector and key vector) multiply with each other and create the attention matrix, which is used to enhance the useful features. At the end of attention module, a convolutional kernel is applied to restore the feature maps whose dimensions are equal to the dimensions of input feature maps. 
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Figure 5. The illustration of PDN, in which the backbone uses VGG16 as an example. 
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Figure 6. The confusion matrix of PDN results on the UTFR-SBD3 dataset, in which the left and right are the result of EPYNET and PDN, respectively. 
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Figure 7. Samples of PDN results. The first column includes original images from UTFR-SBD3 dataset, the second column includes ground truth, the third column includes the results of EPYNET, and the fourth column includes the results of PDN. 






Figure 7. Samples of PDN results. The first column includes original images from UTFR-SBD3 dataset, the second column includes ground truth, the third column includes the results of EPYNET, and the fourth column includes the results of PDN.



[image: Applsci 14 03509 g007]







[image: Applsci 14 03509 g008] 





Figure 8. The testing samples of PDN on ModaNet dataset. 
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Figure 9. Testing samples of PDN on LIP dataset. 
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Table 1. Results of experiments on CFPD dataset.
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	Reference
	Method
	Accuracy
	mIoU





	[31]
	Color-Fashion
	-
	42.10



	[21]
	Superpixel Parsing
	88.69
	-



	[13]
	Weak Structural
	93.06
	53.51



	[37]
	Locality Aware
	93.52
	53.00



	[38]
	Feature Pyramid
	93.82
	54.39



	[5]
	EPYNET
	93.83
	59.52



	[32]
	PaperDoll
	89.89
	-



	[39]
	ATR
	98.67
	-



	
	PDN (ours)
	99.26
	73.99










 





Table 2. Results of experiments on ModaNet dataset.
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	Reference
	Method
	Backbone
	mIoU





	[31]
	FCN-32s
	VGG
	35.36



	[40]
	FCN-16s
	VGG
	36.93



	[13]
	FCN-8s
	VGG
	38.00



	[41]
	DANet
	ResNet-101
	68.16



	[42]
	Deeplabv3
	ResNet-101
	68.57



	[43]
	PSPNet
	ResNet-101
	68.80



	[44]
	CCNet
	ResNet-101
	69.22



	[29]
	TANet
	ResNet-101
	69.55



	
	PDN (VGG-16)
	VGG
	44.80



	
	PDN (ResNet-101)
	ResNet-101
	77.91










 





Table 3. Per-class IOU on ModaNet.
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	Class
	TANet (IoU%)
	PDN (ResNet-101) (IoU%)





	Background
	98.38
	98.33



	Bag
	77.49
	79.24



	Belt
	55.28
	40.55



	Boots
	50.97
	81.39



	Footwear
	56.35
	69.34



	Coat/Jacket
	73.0.7
	85.81



	Dress
	70.23
	90.79



	Sunglass
	61.56
	44.96



	Pants
	81.41
	91.69



	Top
	72.05
	85.67



	Shorts
	73.60
	83.72



	Skirt
	71.50
	92.65



	Headwear
	73.35
	74.22



	Scarf/Tie
	58.42
	69.88










 





Table 4. Results of experiments on LIP dataset.
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	Reference
	PA
	MPA
	mIoU





	PSPNet [43]
	74.95
	54.20
	44.22



	DeepLabv3+ [42]
	73.70
	51.19
	36.76



	DANet [41]
	72.06
	54.11
	36.51



	DTPR [6]
	74.10
	45.92
	44.29



	PDN-3K (ours)
	68.41
	48.08
	35.24



	PDN (ours)
	76.02
	54.46
	45.12










 





Table 5. Per-class IOU on the LIP dataset.
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	Class
	PSPNet
	DeepLabv3+
	DANet
	PDN





	Hat
	55.08
	52.02
	57.08
	57.35



	Hair
	66.41
	62.75
	67.33
	68.52



	Glove
	34.14
	33.60
	36.85
	37.56



	Sunglasses
	31.49
	26.06
	31.17
	31.69



	Upper Clothes
	65.59
	64.32
	65.77
	67.85



	Dress
	20.77
	20.37
	18.66
	19.64



	Coat
	51.41
	49.34
	50.92
	52.17



	Socks
	40.43
	37.68
	41.23
	39.39



	Pants
	71.05
	72.70
	71.27
	71.19



	Jumpsuits
	26.96
	27.94
	28.14
	29.56



	Scarf
	12.88
	13.89
	15.83
	16.23



	Skirt
	15.59
	14.64
	16.09
	17.54



	Face
	78.03
	74.10
	79.07
	78.62



	Left arm
	57.84
	59.73
	59.15
	60.09



	Right arm
	61.43
	61.97
	62.47
	62.75



	Left leg
	47.93
	48.36
	47.90
	48.03



	Right leg
	49.76
	49.26
	49.89
	49.57



	Left shoe
	29.27
	28.03
	29.67
	30.85



	Right shoe
	28.28
	29.59
	29.23
	29.08



	Avg
	42.23
	41.32
	42.86
	43.41










 





Table 6. Ablation experiments of each module. √ indicates that the module was used.






Table 6. Ablation experiments of each module. √ indicates that the module was used.











	Priori Attention
	Joint Loss Function
	Accuracy
	mIoU





	
	
	48.32
	36.27



	√
	
	98.81
	67.98



	
	√
	59.57
	25.39



	√
	√
	99.26
	73.99
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