
Citation: Fang, Q.; Zeng, J.; Xu, H.;

Hu, Y.; Yin, Q. Learning Ad Hoc

Cooperation Policies from Limited

Priors via Meta-Reinforcement

Learning. Appl. Sci. 2024, 14, 3209.

https://doi.org/10.3390/

app14083209

Academic Editors: He Cai and

Maobin Lv

Received: 19 March 2024

Revised: 5 April 2024

Accepted: 8 April 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Learning Ad Hoc Cooperation Policies from Limited Priors via
Meta-Reinforcement Learning
Qi Fang, Junjie Zeng , Haotian Xu , Yue Hu and Quanjun Yin *

College of Systems Engineering, National University of Defense Technology, Changsha 410073, China;
fangqinudt@nudt.edu.cn (Q.F.); zengjunjie13@nudt.edu.cn (J.Z.); xuhaotian@nudt.edu.cn (H.X.);
huyue11@nudt.edu.cn (Y.H.)
* Correspondence: yinquanjun@nudt.edu.cn

Abstract: When agents need to collaborate without previous coordination, the multi-agent coop-
eration problem transforms into an ad hoc teamwork (AHT) problem. Mainstream research on
AHT is divided into type-based and type-free methods. The former depends on known teammate
types to infer the current teammate type, while the latter does not require them at all. However, in
many real-world applications, the complete absence and sufficient knowledge of known types are
both impractical. Thus, this research focuses on the challenge of AHT with limited known types.
To this end, this paper proposes a method called a Few typE-based Ad hoc Teamwork via meta-
reinforcement learning (FEAT), which effectively adapts to teammates using a small set of known
types within a single episode. FEAT enables agents to develop a highly adaptive policy through
meta-reinforcement learning by employing limited priors about known types. It also utilizes this
policy to generate a diverse type repository automatically. During the ad hoc cooperation, the agent
can autonomously identify known teammate types followed by directly utilizing the pre-trained
optimal cooperative policy or swiftly updating the meta policy to respond to teammates of unknown
types. Comprehensive experiments in the pursuit domain validate the effectiveness of the algorithm
and its components.

Keywords: ad hoc teamwork; meta-reinforcement learning; self-play; agent types; online adapting

1. Introduction

In traditional multi-agent cooperation problems, prior to being deployed, the partic-
ipating agents can engage in multiple episodes of coordination to establish a commonly
accepted protocol, thereby enhancing their task performance. Numerous studies have been
conducted in this regard, such as QMIX [1], QTRAN [2], and MADDPG [3]. However,
as the number of intelligent agents increases and the demand for collaboration among
them expands, situations arise where agents lack the time for prearranged coordination
and must collaborate with unfamiliar teammates. Imagine a scenario where a sudden
outbreak of an epidemic occurs in a certain area, requiring urgent mobilization of medical
personnel from other regions to assist in overcoming this crisis. In such emergencies, the
temporarily deployed personnel may not have sufficient time to communicate and develop
a comprehensive plan. Moreover, unfamiliarity exists between the local medical staff and
the externally deployed personnel. In the absence of prior coordination, agents required to
collaborate with unknown teammates are termed ad hoc agents, and the problem of coop-
eration with unknown teammates is referred to as an ad hoc teamwork (AHT) problem [4].
This presents one of the current challenges faced by multi-agent systems, with implications
for emergency response, disaster management, and other dynamic environments.

Existing AHT methods are broadly categorized into two categories, i.e., type-based and
type-free approaches. Type-based approaches typically assume that agents have knowledge
about a set of known types of teammates, referred to as a type repository. Agents can acquire

Appl. Sci. 2024, 14, 3209. https://doi.org/10.3390/app14083209 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14083209
https://doi.org/10.3390/app14083209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4353-1093
https://orcid.org/0000-0001-5018-8687
https://doi.org/10.3390/app14083209
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14083209?type=check_update&version=1

Appl. Sci. 2024, 14, 3209 2 of 21

optimal reactive policies by pre-training with these teammates, enabling them to infer the
types of current teammates during online cooperation based on information such as their
trajectories. Consequently, they select cooperative policies accordingly. Representative
works in this area include the tactical adaptation method proposed by Bowling et al. [5,6]
for the CMDragons robot soccer competition. Since 2010, some type-based approaches
have also addressed scenarios where the current teammate is not included in the type
repository, such as HBA [7], E-HBA [8], PLASTIC [9], and TEAMSTER [10]. Their focus lies
in learning the policies of unknown teammates and planning the actions of the ad hoc agent
based on these policies. To accurately learn these policies and effectively plan behaviors, a
comprehensive environmental model or multiple episode samples are generally required.
However, in most real-world scenarios, achieving this is not feasible.

The type-free approach argues that providing a set of known teammate types is
impractical and ensuring the diversity of manually collected teammate types is challenging.
Furthermore, if the type of a teammate is not included in the type repository, ad hoc
cooperation performance tends to decline. Therefore, the focus of type-free approaches
is to address this challenge by directly adapting to unknown teammates online, such
as OPAT [11]; or by equipping agents with diversified behaviors to adapt to them, as
demonstrated in EDRQN [12]; or by automatically generating a diverse range of teammate
types for the agents, as seen in methods like BRDiv [13], L-BRDiv [14], and the research of
Canaan et al. [15]. However, in practical scenarios, completely lacking prior knowledge
of teammate types is also unrealistic. For instance, in the mentioned case of a pandemic
outbreak, temporarily deployed personnel typically possess some level of medical treatment
experience to fulfill their roles. These ad hoc agents may have prior collaboration experience
with other agents, thereby mastering partial cooperative expertise. Utilizing the prior
knowledge of a few known teammate types can also enhance the performance of the ad
hoc agent in task completion.

Therefore, this paper focuses on investigating a problem setting of more practical
interests than both type-based and type-free assumptions, i.e., scenarios where priors about
a limited number of teammate types can be leveraged by the ad hoc agent and only a single
episode is allowed for adapting to an unknown teammate. Meanwhile, to more accord
with real-world application requirements, the agent is provided with sparse rewards but no
environmental model. As a result, we present a method that relies on meta-reinforcement
learning and self-play to utilize the prior knowledge about a small set of known types for
adaptive cooperation with various teammates, called a Few typE-based Ad hoc Teamwork
via meta-reinforcement learning (FEAT). The general motivation of this paper is to achieve
a combination of (a) offline pre-training for acquiring a repository of diverse teammate
types and a highly adaptive policy and (b) online fast adaptation for performing agile
cooperation with encountered teammates of known or unknown types.

For offline pre-training, we treat the collaboration of the ad hoc agent with different
known types of teammates as distinct tasks. Based on this idea, a meta-reinforcement
learning (Meta-RL) policy that exhibits sensitivity to task parameters and rapid adaptabil-
ity to new tasks is acquired. By employing the policy in self-play within environments
characterized by stochastic reward perturbations, FEAT produces an extensive repository
of clustered usable types along with corresponding collaborative policies, thereby avoid-
ing inefficient online zero-shot adaptation. This reduces the probability of encountering
an unknown teammate type during the testing phase, with which the ad hoc agent has
no satisfactory way to cooperate. During online inference, if the agent can identify the
actual type of the current teammate by leveraging prior knowledge of known teammate
types, the agent can swiftly utilize the optimal cooperative policy. Otherwise, due to the
high adaptability of the Meta-RL policy, the ad hoc agent can quickly update their policy
within a single episode by imitating teammate behaviors without the need for environ-
mental rewards and models. Experimental results in a pursuit domain have confirmed
the effectiveness of our approach when there is already only a limited number of known
teammate types.

Appl. Sci. 2024, 14, 3209 3 of 21

To sum up, the main contributions of this paper are as follows. First, we propose
a method that maximizes the utilization of a few known teammate types to develop a
highly adaptive ad hoc agent policy. This enhances the efficiency of the ad hoc agent in
adapting to unknown teammates. Second, we utilize this policy to automatically generate
a diverse type repository, thereby improving the usage efficiency of known types and
expanding the coverage of the repository for test teammates. Finally, we introduce a
training approach for the ad hoc agent based on environmental characteristics, which does
not rely on environmental models or rewards, and we demonstrate its effectiveness in a
pursuit domain. The organization of this paper is as described below. Section 2 introduces
relevant research related to this work. Section 3 covers the background knowledge involved
in this work. Section 4 presents the primary methods of this work. Section 5 conducts
benchmark experiments and ablation studies to explore the effectiveness of the algorithm,
and Section 6 concludes the paper.

2. Related Work

This section presents an overview of related work on ad hoc teamwork, covering both
type-based and type-free approaches.

2.1. Type-Based Ad Hoc Teamwork

In current research on AHT, studies focusing on type-based approaches are the most
prevalent. This line of approaches typically involves preparing a range of potential team-
mate types for ad hoc agents. Key aspects of their investigation include (a) how to infer
the actual type of teammates from already known types based on a limited set of obser-
vations and (b) how to devise cooperative policies for ad hoc agents based on known
teammate types.

For key point (a), the repository is typically composed of manually designed teammate
types. For example, Bowling et al. [5] developed a comprehensive tactical library. Also,
Barrett et al. [9] utilized externally created soccer robot teams as their known teammate
types. Moreover, some studies acknowledge the absence of explicit teammate types in the
repository, thus requiring learning teammate types online. For instance, Barrett et al. [16]
proposed the TwoStageTransfer [17] algorithm to learn unknown teammate types based on
weighted models from existing manually designed types. This method, utilizing the C4.5
decision tree learner, although straightforward, is computationally intensive. PLASTIC-
Model [9] learns models of teammate types from scratch via supervised learning, while
PLASTIC-Policy [9] employs Deep Q-Networks (DQN) [18] to learn ad hoc agent policies
through online trajectory sampling; both exhibit low utilization rates of known teammate
types. Moreover, PLASTIC-Policy often requires multiple episodes to learn effective coop-
erative policies in sparse-reward environments, whereas our approach only needs a single
episode. Additionally, the CTCAT [19] algorithm addresses the issue of mixed types in the
repository, which differs from the focus of this study.

The manually designed types and the types requiring online learning together form the
type repository, provided to the ad hoc agent during the testing phase, known as the testing
type repository. Based on it, Bowling et al. [5,6] proposed, in the context of small-scale
robot soccer leagues, that ad hoc agents maintain a selection weight for three tactics and
employ a weight update algorithm to choose the most suitable tactic dynamically. However,
this approach relies on environmental feedback rewards, which may be very sparse in
real-world cases. The AATEAM [20] algorithm employs attention mechanisms to measure
the similarity between current teammate types and those in the testing types repository.
However, this method requires a large amount of data to train the attention network, which
is inefficient. Barrett et al. and Stone et al. [9,16,21] introduced the Bayesian theorem to
compute beliefs that the actual teammate type belongs to the testing type repository, and
they employed a polynomial weighting algorithm for updating. Albrecht et al. [7] modeled
the AHT problem as stochastic Bayesian games (SBG) and utilized time-specific weighted
posteriors for belief updates in the known type repository. All these methods require a

Appl. Sci. 2024, 14, 3209 4 of 21

repository of a sufficient number of prepared types as support. Comparatively, in our study,
there is no need to manually specify a sufficient type repository in advance.

Concerning essential point (b), Stone et al. [16,22] utilized the Monte Carlo Tree Search
(MCTS) [23] method to strategize agent behavior in a pursuit domain, while PLASTIC-
Model [9] and TEAMSTER [10] employ the Upper Confidence Bounds for Tree (UCT) [23]
algorithm for planning ad hoc agent behavior. However, all these methodologies require
accurate teammate and environmental models, a condition not stipulated in our setup.
Meanwhile, PLASTIC-Policy [9] introduces the Fitted Q Iteration (FQI) [24] algorithm,
which eliminates the necessity for an environmental model. However, it mandates multiple
episodes for task completion, unlike our method, which accomplishes environmental
adaptation within a single episode.

Charakorn et al. [25] introduced the Meta-RL algorithm into the domain of AHT
problems, which is similar to our approach. However, their experimental setting is compar-
atively simplistic, with rewards provided at every step, facilitating the rapid adaptation of
the Meta-RL policy. This is not applicable in our sparse-reward environment. Furthermore,
they only employed the Meta-RL model during the testing phase, resulting in its under-
utilization. In contrast, we utilized the Meta-RL policy during the pre-training phase to
rapidly generate a comprehensive range of the type repository, thereby notably improving
the utilization of Meta-RL models and the efficiency in tackling AHT problems.

2.2. Type-Free Ad Hoc Teamwork

Research on AHT without reliance on priors of teammate types has gained traction in
recent years. It eliminates the need to manually design a repository of extensive teammate
types, instead opting for approaches such as online adaptation or automated generation of
a repository with diverse types.

Among the first kind of solution, Wu et al. [11] treated AHT problems as a series of
sequential games, utilizing UCT [23] for online planning of agent behaviors. However, this
method entails an environmental model, which is not practical. The EDRQN [12] algorithm
introduces the policy entropy to generate ad hoc agents with diverse behaviors, yet their
approach generates black-box models, making it challenging to ensure adaptability to
teammates in real-world environments.

As for the second kind of solution, Canaan et al. [15] proposed a population generation
algorithm that leverages quality diversity to acquire a diverse population of Hanabi agents.
However, their approach is limited by its reliance on domain-specific knowledge of Hanabi,
hindering its applicability to other domains. The BRDiv [13] algorithm avoids generating
teammate types with superficially different behaviors, automatically creating a diverse
range of type repositories. Meanwhile, the L-BRDiv [14] algorithm introduces Minimum
Coverage Sets (MCSs) in AHT problems to obtain the optimal response policy set against
the policy of any teammate type. However, they did not employ any known types, which
is a practice deemed unrealistic in this study. A small set of known types can significantly
enhance the efficiency of generating diverse repositories. Therefore, this paper focuses
on utilizing a limited set of known types to automatically generate teammate types and
leveraging these to adapt to unknown teammates.

3. Preliminaries

This section presents our preliminary work. We formalize the problem of ad hoc
teamwork, followed by an introduction to the meta-reinforcement learning algorithm
called Model-Agnostic Meta Learning (MAML) [26].

3.1. Ad Hoc Teamwork

The ad hoc teamwork issue is a sequential decision problem. Sequential decision
problems are typically solved based on the Markov Decision Process (MDP). Due to the
partial observability of the ad hoc agent in our problem and the presence of multiple agents
in the ad hoc team, we adopt the Decentralized Partially Observable Markov Decision

Appl. Sci. 2024, 14, 3209 5 of 21

Process (Dec-POMDP) [27] to comprehensively represent the ad hoc team problem. Based
on Dec-POMDP, the model of the AHT problem is as follows:

⟨n, I , Θ,S ,A, P, R, Z,O, γ⟩,

where:

• n denotes the quantity of agents within the ad hoc team.
• I represents all agents in the ad hoc team, where I0 ∈ I denotes the ad hoc agent,

which is the agent under our control, and I−0 ⊂ I represents all agents in the ad hoc
team except the ad hoc agent.

• Θ denotes the set of known teammate types, comprising m types. Θ−0 denotes the
true types of all I0’s teammates, with no limitation that Θ−0 ⊆ Θ.

• St ∈ S represents some feature representation of the environmental state observed by
all agents at time t.

• At ∈ A represents the joint action of all agents at time t.
• P : S ×A× S → [0, 1] denotes the transition function of the environment.
• R : S ×A → R represents the reward function of the agents.
• Z : S ×A → O denotes the observation function of all agents.
• Ot ∈ O represents the observation obtained by the agents based on the observation

function Z(St = s, At = a).
• γ ∈ (0, 1] represents the reward discount factor, which captures the uncertainty of the

future.

Each agent I ∈ I has a policy π : O×A → [0, 1] and interacts with the environment to
generate a series of action–observation histories τt = {O0, A0, · · · , Ot, At}. Here, the policy
of the ad hoc agent is denoted by π0, and the policy set of all its teammates is denoted by
π−0. The task of the AHT problem is to enable agent I0 to learn a policy π0 that maximizes
the collective reward through cooperation with teammates:

J(π0, π−0) = E
[

H

∑
t=0

γtRt

]
, (1)

where H classifies the maximum length of the ad hoc teamwork environment.

3.2. Model-Agnostic Meta Learning

MAML [26] is a Meta-RL method that does not require an environment or opponent
model, making it applicable to various learning problems. The algorithm trains the initial
parameters of the model through dual-level gradient updates. By updating the gradients of
model parameters’ gradients, the parameters can exhibit strong performance in a new task
after one or more gradient steps. Inspired by MAML, this paper treats collaborating with
different teammates in the ad hoc teamwork problem as distinct tasks, defined as follows:

T = {π−0(A−0
t = a−0

t |O
−0
t = o−0

t)}, (2)

where π−0 represents the policies of teammates. Utilizing prior knowledge of teammate
types refers to employing teammate policies in this context. All possible tasks constitute a
task distribution p(T).

A known set of teammate types Θ for each combination of teammate types {Θi}n−1 ⊆ Θ,
corresponding to a task Ti ∼ p(T), is given. The objective is to find a policy π0(·|θ) (denoted
as π0(θ)) for the ad hoc agent that performs well on average across all tasks, where θ is the
parameters of the policy. This is achieved by minimizing the cross-task loss function:

LT
(

π0(θ)
)
= ∑
Ti∼p(T)

LTi

(
π0(θ′)

)
= ∑
Ti∼p(T)

LTi

[
π0(θ)− α∇θLTi

(
π0(θ)

)]
, (3)

Appl. Sci. 2024, 14, 3209 6 of 21

where the loss function for each task is computed as:

LTi

(
π0(θ)

)
= −Eot ,at∼π0(θ),π−0

i

[
H

∑
t=1

Ri(Ot = ot, At = at)

]
. (4)

Updating the cross-task loss function through stochastic gradient descent:

θ ← θ − β∇θ ∑
Ti∼p(T)

LTi

(
π0(θ′)

)
, (5)

which constitutes a double-loop gradient update process. α and β are hyperparameters.

4. Method

In this section, we will elaborate on the details of the FEAT algorithm. Section 4.1
presents an overview of the algorithm, while Section 4.2 describes the process of initial-
izing the ad hoc agent’s policy based on a small set of known types and obtaining the
type repository. Section 4.3 elucidates how the ad hoc agent identifies teammate models
during cooperation, and Section 4.4 delineates how the ad hoc agent adapts to the current
teammate policy.

4.1. Overview of FEAT Algorithm

The overall framework of the algorithm is illustrated in Figure 1. Initially, we utilize
the prior knowledge of a few known teammate types to derive a Meta-RL policy, which
serves as the initial policy for the ad hoc agent. The objective is to enhance the efficiency
of generating a diverse policy repository. Subsequently, the agent engages in self-play
learning within a series of environments with perturbed reward functions. All policies
obtained during this process are collected to form our policy repository, expanding the
range of known teammate types for the ad hoc agent. Next, the types within the type
repository are clustered based on their similarities, facilitating the identification of the
most similar one to the current teammate among a large number of types. At the online
stage, the ad hoc agent searches for the most similar type in the type repository based
on the observations and actions of current teammates. If a similar type is identified, the
most compatible policy from the repository will be directly employed for collaboration.
Otherwise, the policy will be updated by imitating teammate behaviors to accomplish the
current task within a single episode.

Updateθ

0,1 0,2 0,,, , m
t t tτ τ τ

1θ′

()0 ()
iθ π θ∇

nθ′

inner loop

…

··· ()0 ()
i i nθ π θ∈ ′∇ ∑

Compute
Gradient

θ′

outer loop

*θ

*θinit

Training Data

Update

Agent

Meta-RL

0,1 0,2 0,,, , m
t t tτ τ τ

init

Training Data

0,1
tτ

0,m
tτ

Type
Class 1

…

…

o
Environment

Agent

Known Types

Env 1

Disturb

Env 2

…

(b) Self Play

Env e

Type
Class u1,0π 1, jπ…

(c) Type Integration

Teammate 1

Teammate 2…

Possible
Teammates

Teammate i

(a) Meta-RL

Environment

(d) Adaption

Agent

Poli-
cy

Net-
work

Compute
Gradient

Figure 1. The framework diagram of the FEAT algorithm. (a) Acquisition of Meta-RL policy using a
small number of teammate types. (b) Self-play generation of a diverse type repository by the Meta-RL
policy in a perturbed environment. (c) Calculation of diversity metrics and cluster of the diverse type
repository. (d) Online identification and adaptation of teammates during ad hoc agent cooperation.

Appl. Sci. 2024, 14, 3209 7 of 21

4.2. Policy Repository Generation

The policies of known type repository Θ are denoted as Π = {π−0
1 , · · · , π−0

m }. The
performance of different types varies, affecting the efficiency and behavior of the ad hoc
agent when cooperating with them. Following the definition in Section 3.2, we have
T = {T1, · · · , Tm}, comprising a total of m cooperation source tasks, with the loss function
defined across all tasks as follows:

LT
(

π0(θ), Π
)
= ∑
Ti∼p(T)

LTi

(
π0(θ′), π−0

i

)
= − ∑

Ti∼p(T)
J
(

π0(θ′), π−0
i

)
. (6)

Through stochastic gradient descent, the optimization of the above function yields the
Meta-RL policy π0(θ∗) = arg maxLT for the ad hoc agent, as detailed in Algorithm 1.

Algorithm 1 Obtaining Meta-RL policy

Input: T : A few tasks of different known types
Input: Nin: The number of inner-loop iterations, Nout: The number of outer-loop iterations
Output: π0(θ): The meta-RL policy of the ad hoc agent

1: Initialize ad hoc agent’s policy π0(θ)
2: for iteration no in Nout do
3: for Ti in T do
4: for iteration ni in Nin do
5: Use policy π0(θ) to sample L trajectories τi in Ti
6: Compute loss LTi (π

0(θ), π−0
i) based on Equation (4)

7: θ′ ← θ − α∇θLTi (π
0(θ), π−0

i)

8: Use policy π0(θ′) to sample L trajectories τ′i in Ti
9: end for

10: Compute loss LT (π0(θ), Π) based on Equation (6)
11: θ ← θ − β∇θLT (π0(θ), Π)
12: end for
13: end for

In order to automatically generate a diverse type repository using the obtained Meta-
RL policy, we introduce Gaussian noise ϵ ∼ N(µ, σ) to the environment reward function
R, thereby inducing random perturbations and resulting in a series of perturbed reward
functions R̃. Figure 2a illustrates the initial reward distribution in the environment, charac-
terized by rewards of 1 at the four corners of the grid. Two essential properties must be
preserved when perturbing the environment:

• Consistency: The agent’s goals should remain within the original goals.
• Reachability: The agent should be able to achieve its goals.

To maintain consistency, a more significant value for the perturbation µ of rewards
at the agent’s original target states and a smaller value for σ are selected. For reachability,
smaller values for both µ and σ are applied for perturbations at states other than the agent’s
original target states. Consequently, the perturbed reward function is defined as follows:

R̃ =

{
R(s) + ϵ1, s ∈ Goal
R(s) + ϵ2, s /∈ Goal

. (7)

Among these, we can take ϵ1 ∼ N(20, 5), ϵ2 ∼ N(0, 1). The perturbation outcomes
are illustrated in Figure 2b,c, where rewards at the four target states remain significantly
higher than at other states, and the perturbed rewards are adjusted to prevent the agent
from being trapped in local optima.

Appl. Sci. 2024, 14, 3209 8 of 21

The obtained Meta-RL policy π0(θ∗) then engages in self-play in a series of perturbed
environments, with the loss function computed as follows:

LSP

(
π0(θ∗)

)
= −J

(
π0(θ∗), π0(θ∗)

)
= −Eot ,at∼{π0(θ∗),π0(θ∗)}

[
H

∑
t=0

γtR̃t(ot, at)

]
. (8)

1+ 0 0 1+

0 0 0 0

0 0 0 0

1+ 0 0 1+

(a)

18.3+ 0.94− 0.71 16.3+

1.15 0.1 0.05− 0.86−

1.88− 0.09 1.09 1.07

34.2+ 0.90− 0.15 22.9+

(b)

29.7+ 0.55 0.18 33.4+

1.51− 0.43 0.17 0.86−

0.46− 0.82− 1.49 1.69

20.9+ 1.43− 1.41− 22.9+

(c)

 Figure 2. Visualization of the perturbed environment reward function. (a) Initial reward distribution
in the environment, with four highlighted red areas representing the target regions for the agents to
reach. (b) A situation of reward distribution after one perturbation. (c) Another situation of reward
distribution after one perturbation.

After multiple training rounds, we generate a considerable number of effective policies,
which augment the initial set of m policies to form the policy repository Π′, also known as
the type repository Θ′. Subsequently, to enhance the efficiency of identifying the teammate
and obtaining the best-response cooperative policy, we evaluate the diverse policies within
this repository from two perspectives (πi, πj) ⊆ Π′:

• Similarity. Since policies represent the probability distributions of different actions
under specific observations, the comparison of the similarity between two policies
involves the comparison of the similarity between two probability distributions. We
chose the Jensen–Shannon (JS) divergence to measure the similarity between policies.
Although JS divergence exhibits symmetry, it has a limitation in its inability to update
gradients when two distributions do not completely overlap. This situation results in
a constant divergence value regardless of the distance between their centers, leading
to a gradient of zero and preventing gradient updates. However, this limitation does
not influence our method, since we do not employ gradients. Therefore, the formula
for computing the similarity of policy pairs is as follows, where q = 1

2 (πi + πj):

M(πi, πj) :=
1
2
DKL(πi||q) +

1
2
DKL(q||πj). (9)

• Compatibility. This concept is derived from LIPO [28]. We extend its scope to measure
the compatibility between pairs of policies, defining it in terms of task completion,
task performance, and task completion time. The expressions are as follows:

C(πi, πj) :=
1
K

K

∑
k=1

d(πi, πj)

[
λ1 ∑

t
Rt + λ2(1− Nstep/Nmax)

]
. (10)

In this context, d(πi, πj) measures the ability of the policy pair to complete the task,
where d = 1 indicates successful completion and d = 0 denotes failure. ∑t Rt assesses
the rewards gathered by the policy pair within a single episode, over a total of K
episodes. The third term (1− Nstep/Nmax) measures the duration of task completion,
where Nstep signifies the number of steps required for task completion, and Nmax repre-
sents the maximum number of steps permissible in the environment. In reinforcement
learning training, a discount factor γ ∈ (0, 1] is typically applied to the accumulated

Appl. Sci. 2024, 14, 3209 9 of 21

rewards to regulate the agent’s focus on short-term rewards. It also serves to minimize
the number of steps required to complete the task during training; the more steps
taken, the smaller the final returns γtRt accumulated. We aim to prevent the agent’s
returns from decreasing exponentially with an increase in steps; therefore, we compute
the task completion reward and the completion steps independently, using λ1 and λ2
to manage their respective importance.

After calculating the similarity and compatibility for all policy pairs in Π′, we obtain
the similarity matrix M and the compatibility matrix C.

4.3. Teammate Identification

In Section 4.2, a diverse type repository has been provided for the ad hoc agent. If
the ad hoc agent can identify the current teammate’s policy based on limited observations
and deduce the teammate’s current actions, it can execute the task more effectively, as the
Algorithm 2 shows.

Algorithm 2 Adapating to teammates

Input: Π′: Automatically generated type repository
Input: π0(θ∗): The Meta-RL policy

1: Initialize ad hoc agent policy π0(ϕ)← π0(θ∗)
2: Initialize policy π0

∗ ← None
3: while not done do
4: Get observation o0

t ,o−0
t ,a−0

t−1
5: Add o−0

t , a−0
t−1 into the replay buffer B

6: b finter, bfinter ← UpdateBelief(Π′,B)
7: for Π′i in Π′ do
8: if Π′i satisfies the condition (14) with bfinter then
9: b fintra, bfintra ← UpdateBelief(Π′i,B)

10: for π′i,j in Π′i do
11: if π′i,j satisfies the condition (14) with bfintra then
12: π0

∗ = arg maxπ0∈Π′ C(π
0, π′i,j)

13: π0(ϕ)← π0
∗

14: end if
15: end for
16: end if
17: end for
18: if π0

∗ is None and len(B) ≤ NB then
19: Compute LIL(π

0(ϕ)) based on Equation (16)
20: Update ϕ← ϕ−∇LIL(π

0(ϕ))
21: end if
22: end while
23: Function UpdateBelief (Π, B):
24: n← the size of Π
25: Initialize belief distribution b f ← [1

n , · · · , 1
n]n

26: Initialize belief distribution list bf
27: for Πi in Π do
28: for (o−0

t−1, a−0
t−1) in B do

29: Update P(Πi) with (o−0
t−1, a−0

t−1) based on Equation (12)
30: b f [i]← P(Πi)
31: end for
32: end for
33: b f = b f / ∑i b fi
34: Add b f in bf
35: return b f , bf

Appl. Sci. 2024, 14, 3209 10 of 21

Before initiating collaboration with the teammate, we initialize the Meta-RL policy
π0(θ∗) (denoted as π0(ϕ)) as the initial policy for the ad hoc agent. We assume that the ad
hoc agent receives the teammate’s previous action a−0

t−1 and current observation o−0
t at each

time step and stores them in the replay buffer B. Next, the process involves discerning
among the policies in the policy repository based on the data in the replay buffer. However,
as the types in the repository are automatically generated in an environment with random
perturbations, resulting in a large number of generated types, we adopt the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [29] algorithm to classify the type
repository based on the similarity matrix C, obtaining a total of u type clusters, the policy
clusters of which are denoted as

⋃
i={1,··· ,u}Π′i = Π′.

For each sample pair (o−0
t , a−0

t) ∼ B in the replay buffer, we compute the probability
of each policy cluster Π′i = {πi,1, · · ·πi,l} in taking action a−0

t under observation o−0
t based

on the policy repository.

P(a−0
t |o

−0
t ; Π′i) =

1
l ∑

j
πi,j(a−0

t |o
−0
t). (11)

Using this likelihood, the posterior probability of the current teammate’s policy in
different policy classes is calculated as follows:

P
(

Π′i|(o−0
t , a−0

t)
)
= (1− η · loss) · P

(
Π′i|(o−0

t−1, a−0
t−1)

)
, (12)

wherer, loss = 1− P(a−0
t |o

−0
t ; Π′i), (13)

where η = 0.5, the prior probability P
(

Π′i|(o
−0
0 , a−0

0)
)

, determining the type class to which
the teammate type belongs, is uniformly initialized. Following computation at each time
step, the posterior probabilities of all type classes are normalized.

The teammate policy is considered to belong to policy class Π′i at time step t when
the following conditions are met. The first condition specifies that over h consecutive
time steps, based on the current observation, the Π′i obtained from Π′ that is most sim-
ilar to the current teammate policy remains consistent. The second condition indicates
that over h successive time steps, the posterior probability of Π converges based on the
current observation.

arg maxΠ′i
P
(

Π′i|(o
−0
t , a−0

t)
)
= · · · = arg maxΠ′i

P
(

Π′i|(o
−0
t−h+1, a−0

t−h+1)
)

∑h
j=1 ∑h

p=1

∣∣∣∣P(Π′i|(o
−0
t−j, a−0

t−j)
)
− P

(
Π′i|(o

−0
t−p, a−0

t−p)
)∣∣∣∣ ≤ ξ

. (14)

Subsequently, each policy within this policy class is subject to iterative updates of
the previously mentioned posterior probability, utilizing observations and actions from
the replay buffer. Ultimately, identify the policy π−0

i,j ∈ Π′i that most closely resembles
the teammate’s policy within the policy repository. Following this, the ad hoc agent
continues to explore the repository to identify the policy that is most compatible with
the previously identified policy, serving as its current collaborative policy, denoted as
π0
∗ = arg maxπ0∈Π′ C(π

0, π−0
i,j).

4.4. Teammates’ Policies Adaption

If the current teammate type is absent from the type repository, the ad hoc agent is un-
able to accurately determine the teammate type through updates of posterior probabilities.
In the absence of knowledge regarding the teammate type, it is imprudent to blindly adopt
behaviors. Additionally, in the context of a sparse-reward environment in which rewards
are unattainable during task completion, the ad hoc agent is incapable of updating its
policy using reinforcement learning methods within a single episode. Therefore, leveraging
environmental characteristics is crucial to facilitate the updating of the policy for the ad
hoc agent.

Appl. Sci. 2024, 14, 3209 11 of 21

Nevertheless, it is noteworthy that should the environment be role-invariant, the ad
hoc agent has the capability to update its policy using observations.

For an environment E comprising n agents, each with its own policy πi, they together
form a joint policy ΠE = {π1, π2, · · · , πn}. The environment is deemed role-invariant
provided there exists any permutation pm : {1, · · · , n} → {1, · · · , n} and its corresponding
inverse permutation pm−1 such that pm−1(pm(ΠE)) = ΠE and the following conditions
are satisfied:

pm−1(pm(ΠE)(ot)) = ΠE (ot) = {π1(o1
t), π2(o2

t), · · · , πn(on
t)}. (15)

Considering an environment with two agents, at each time step, the ad hoc agent
randomly selects b instances (oi

t, a1
i) from the replay buffer. The loss function is computed

as follows.
LIL

(
π0(ϕ)

)
= − log π0(ϕ)(a1

i |o1
i). (16)

Utilizing stochastic gradient descent, the loss function is updated to formulate a new
policy for the ad hoc agent, facilitating improved cooperation with the teammate, as the
Algorithm 2 shows. Furthermore, as the ad hoc agent is initialized using the Meta-RL policy,
it displays high adaptability, leading to effective outcomes with limited imitation samples.
This approach can also be applied to environments with multiple agents, in which a larger
number of samples is added to the replay buffer at each time step, thereby providing more
favorable conditions for training the ad hoc agent’s policy.

5. Experiments

In this section, our experimental study is presented to demonstrate the effectiveness
of FEAT. Section 5.1 outlines the experimental environment. Section 5.2 describes the
primary settings and research objectives of the experiments. Section 5.3 presents the main
experimental results. Section 5.4 showcases the ablation study results, primarily focusing
on the design functionalities of various components within the algorithm.

5.1. Domain Description

The experimental environment utilized in this study is identified as the Pursuit Do-
main, which is a setting where numerous studies about the AHT problem have been
undertaken. A variant of the Pursuit Domain similar to that utilized by Xing et al. [12] is
employed, with the distinction that in the present environment, a reward of 1 is awarded
only when both predators capture the same prey simultaneously, contrasting with their
setting, where a reward of 1 is given as soon as one predator captures the prey.

The experimental environment is depicted in Figure 3a. The map comprises a
20 × 20 square grid, representing a toroidal world. Four light blue regions are present on
the map, each hosting one prey that is restricted to move randomly within the confines of
its respective region. Two predators are randomly placed at the center of each region with
the objective of simultaneously capturing one of the four prey. If a predator occupies one of
the four adjacent squares around a prey, the prey is considered captured by that predator,
as depicted in Figure 3b. Subsequently, the predator and prey maintain their positions for
the next time step.

The objective of this experimental setting is for two predators to capture a prey
simultaneously. A successful capture yields a reward of 1, whereas capturing different prey
or exceeding the maximum game steps results in a reward of −1. For all other scenarios,
no reward is awarded, defining it as a sparse-reward environment. The task terminates
when one of the following conditions is met:

• Both predators simultaneously capture the same prey;
• Both predators capture different prey;
• The task execution steps exceed the maximum step length of the environment.

Appl. Sci. 2024, 14, 3209 12 of 21

1
2

3
4

1 2

1
2

3
4

1
2

(a) (b)

Figure 3. Illustration of the pursuit domain environment. (a) The initial state of the environment
features two orange predators randomly placed in the central area, and four blue prey randomly
placed in the surrounding light blue areas. (b) An illustration of prey capture, depicting both
predators simultaneously positioned within the neighboring grid to the prey.

Predators have five potential actions: moving up, down, left, right, or staying station-
ary. Movement order for the predators is determined randomly, and should an obstacle
obstruct the intended destination, they will remain stationary. Observations encompass
their own positions, their teammate’s position, and the position of the nearest prey.

5.2. Experiment Setup

To evaluate the effectiveness of our method, we select PLASTIC-Policy [9], a highly
representative method among type-based approaches within the PLASTIC algorithm.
We excluded PLASTIC-Model, another variant within the PLASTIC algorithm, due to
its requirement for an accurate model of the environment, which is unavailable in our
experiments. Subsequently, we selected the EDRQN [12] algorithm, representing type-
free approaches. In brief, the configuration for the compared algorithms is established
as follows:

• FEAT: The algorithm proposed in this paper;
• PLASTIC-Θ: An implementation of a typical type-based algorithm PLASTIC-Policy

under the setting of leveraging a constrained set of types Θ as the known teammate
types, on the online testing phase;

• PLASTIC-Θ′: An implementation of a typical type-based algorithm PLASTIC-Policy
under the setting of leveraging the diverse type repository Θ′ obtained in Section 4.2
as the known teammate types, on the online testing phase;

• EDRQN: A representative type-free algorithm that the ad hoc agent learns a policy
demonstrating diverse behaviors without utilizing any knowledge about known types
in the pre-training phase. Subsequently, during the online testing phase, the agent
directly cooperates with its teammates;

• Random: A baseline wherein the ad hoc agent selects actions randomly at each time
step, establishing the lower bound for experimental performance.

This study supplies sets of known teammate types numbered 2, 3, and 4, with their
performances documented in Table 1. At the end of each episode, the teammates collabo-
rating with the ad hoc agent are switched. Additionally, during the online testing phase,
we established three configurations for teammate scenarios:

• InΘ: Possible teammate types are within Θ;
• InΘ′: Possible teammate types are within Θ′;

Appl. Sci. 2024, 14, 3209 13 of 21

• NFInΘ′: Possible teammate policies are not fully within Θ′.

The results of the experiments are detailed in Section 5.3.

Table 1. Performance metrics for the known teammate types. The success rates of completing
tasks, the IDs of prey captured, and the average number of steps required to complete tasks are not
completely identical across different types. The final column specifies the category of the teammate
type repository to which each teammate type is affiliated.

Win Rate (%) Caught Prey ID
Average

Number of
Steps

Affiliated
Known

Repository

Type 01 92.00 0 58.35± 43.46 N = 2, 3, 4
Type 02 100.00 3 37.67± 20.76 N = 2, 3, 4
Type 03 81.00 2 13.67± 2.91 N = 3, 4
Type 04 57.00 1 93.53± 63.53 N = 4

5.3. Main Results

Leveraging prior knowledge from a range of known types, a total of 35 types were
generated. The quantity of these types within the constructed type repository is detailed
in Table 2a. Within this table, Θ denotes the known types, Θ′ the type repository gener-
ated by the algorithm, and ΘT the externally supplied types of teammates required for
collaboration. During the testing phase for various algorithms, combinations involving
the known teammate type repository and the required types for collaboration are detailed
in Table 2b. It is noteworthy that neither the EDRQN nor the random algorithms require
known teammate types. Additionally, the approach for selecting teammates during testing
aligns with that of the aforementioned algorithms.

Table 2. Explanation of type repositories varies in different experimental settings. Table (a) delineates
the number of types provided and the respective quantities of types contained within three distinct
type repositories. Table (b) depicts the combinations of testing type repositories provided to the ad
hoc agent and potential teammate types during the online testing phase for three algorithms across
various teammate configurations.

(a) Quantity of types

Θ Θ′ ΘT
N = 2 2 37 67
N = 3 3 38 67
N = 4 4 39 67

(b) Composition of type repository

InΘ InΘ′ NFInΘ′

FEAT Θ′, Θ Θ′, Θ′ Θ′, ΘT
PLASTIC-Θ Θ, Θ Θ, Θ′ Θ, ΘT

PLASTIC-Θ′ Θ′, Θ Θ′, Θ′ Θ′, ΘT

In the testing phase, we implemented a sampling method without replacement to
select a type of teammate from ΘT for collaboration in each episode. Each algorithm and
teammate executed ten collaborative interactions, except for EDRQN, which participated
in fifty. Based on this methodology, we calculated the win ratios of the ad hoc agent and
the average number of steps required to successfully complete their tasks. The detailed
results are presented in Tables 3 and 4.

As demonstrated in Tables 3 and 4, the FEAT algorithm exhibits superior performance
and robust stability across various experimental setups. It facilitates efficient teamwork
even without constraining the actions of teammates to achieve optimality.

Appl. Sci. 2024, 14, 3209 14 of 21

Table 3. The average win rates and corresponding standard deviations for various algorithms throughout the experiments.

N = 2 (%) N = 3 (%) N = 4 (%)

InΘ InΘ′ NFInΘ′ InΘ InΘ′ NFInΘ′ InΘ InΘ′ NFInΘ′

FEAT 100 ± 0.0 95.95 ± 2.18 93.73 ± 1.86 100 ± 0.0 95.53 ± 1.69 94.33 ± 2.48 95.00 ± 10.00 95.90 ± 3.28 94.63 ± 2.02
PLASTIC-Θ 100 ± 0.0 69.46± 5.55 60.20± 1.86 96.67± 10.0 69.47± 6.47 61.64± 5.86 77.50± 17.5 71.54± 7.90 68.21± 4.12
PLASTIC-Θ′ 100± 0.00 93.24± 3.47 83.13± 4.12 93.33± 13.33 93.16± 4.28 81.49± 3.61 75± 11.18 90.77± 5.15 83.43± 6.35

EDRQN 64.00± 34.70 84.05± 5.83 85.55± 4.80 74.00± 25.20 85.95± 5.27 86.09± 4.11 67.00± 21.47 83.19± 6.40 85.58± 3.48
Random 35.00± 32.02 31.62± 7.46 34.03± 5.28 26.67± 38.87 25.79± 5.98 34.03± 5.29 32.50± 25.12 31.28± 8.33 34.03± 5.29

Table 4. The average step lengths and associated standard deviations for successful task completions by various algorithms.

N = 2 N = 3 N = 4

InΘ InΘ′ NFInΘ′ InΘ InΘ′ NFInΘ′ InΘ InΘ′ NFInΘ′

FEAT 52.05 ± 27.23 28.27 ± 3.22 26.59 ± 4.10 49.57 ± 30.55 27.94 ± 3.29 26.08 ± 2.00 46.48± 15.58 31.08 ± 5.14 27.97 ± 2.89
PLASTIC-Θ 72.6± 49.96 51.66± 9.86 42.36± 5.08 60.83± 49.49 47.12± 8.13 43.10± 4.60 43.52 ± 17.80 44.16± 9.15 43.36± 7.46
PLASTIC-Θ′ 80.80± 35.99 36.59± 5.91 28.14± 3.25 50.58± 24.02 33.96± 3.93 30.15± 2.37 60.69± 26.87 36.16± 6.70 29.95± 4.11

EDRQN 103.36± 58.87 70.63± 9.63 69.71± 6.56 72.48± 39.55 68.96± 9.32 71.51± 5.71 92.29± 36.26 70.91± 9.99 69.55± 6.76
Random 151.50± 14.73 117.35± 14.73 107.10± 11.73 149.75± 53.69 114.63± 17.97 107.104± 11.73 115.38± 35.84 107.15± 22.09 107.10± 11.73

Appl. Sci. 2024, 14, 3209 15 of 21

The PLASTIC algorithm exhibits high performance when the actual types of teammates
fall within a known type repository, as demonstrated by PLASTIC-Θ (InΘ) and PLASTIC-
Θ′ (InΘ, InΘ′). However, as the diversity of cooperating teammate types increases, there is
a tendency for the performance of the PLASTIC algorithm to decline. This improvement
in algorithmic performance from PLASTIC-Θ to PLASTIC-Θ′ underscores the benefits of
automatically generating a diverse type repository.

The EDRQN algorithm displays a lack of stability, as evidenced by its performance in
the test with N = 2(InΘ), where the standard deviation of its win rate reached 34.70%. The
algorithm’s performance deteriorates significantly when the collaborating agents’ policies
are suboptimal. For instance, in fifty collaborations with an agent whose average task
completion steps amounted to 43.65, the win rate stood at merely 40%. However, as the
diversity of tested teammate types increased, there was an improvement in the win rate.
This improvement can be attributed to the increased presence of optimal policy-using
teammates in the ΘT , resulting in a higher win rate for the EDRQN agents. The findings
indicate that the EDRQN algorithm tends to train policies that are responsive to optimal
actions by teammates, resulting in poor performance when coupled with suboptimal
or inferior teammates. Furthermore, the black-box form of the collaboration policies
encountered by the ad hoc agents throughout the pre-training process complicates the
comprehensive types of coverage assessment.

The random algorithm acts as the experimental performance baseline, where task
completions occur coincidentally.

5.4. Ablation Results

The ablation experiments in this section indicate that each module designed in our
experiments contributes to the final experimental outcomes. The issues we aim to explore
in the ablation experiments include the following:

1. What level of performance does the initially generated Meta-RL policy exhibit?
2. Does the type repository generated by the Meta-RL policy exhibit diversity and offer an

advantage over self-play with the randomly initialized policy in terms of type generation?
3. What is the performance level of our method in the absence of automatic generation

of a substantial type repository?
4. How significant is the contribution of the module that imitates the current behavior

of teammates during an episode?

Initially, to better demonstrate the effectiveness of our experiment, we made tiny
adjustments to the environment for this experiment. The environment does not terminate
automatically when two predators capture different prey. For example, if both predators
capture different prey at the 100th time step, a single predator would accumulate a reward
of ∑t Rt = −201. Likewise, if both predators capture different prey at the 50th time step, a
single predator would accumulate a reward of ∑t Rt = 251.

In question 1, we pre-trained the Meta-RL policy using prior knowledge about a
predefined number of N types and evaluated them on a diverse group of 45 teammates
with varying performance levels. The results are depicted in Figure 4. We set N = 2, N = 3,
and N = 4 , with teammate performance configurations matching those in Table 1.

As depicted in Figure 4, testing rewards steadily improve and converge as training
steps increase. Obviously, there is an improvement in policy performance after a gra-
dient descent. Figure 4b clearly indicates that the Meta-RL policy trained with N = 4
demonstrates superior performance compared to N = 3 and N = 2, with N = 2 showing
the weakest performance. This suggests that the Meta-RL policy exhibits a parameter-
sensitive characteristic, requiring minimal samples and iterations to collaborate effectively
with unknown teammates. Furthermore, enhancing pre-training with a broader range of
known teammate types can significantly enhance their performance in collaborating with
unknown teammates.

Appl. Sci. 2024, 14, 3209 16 of 21

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

0

100

200

300

Ep
is

od
e

R
ew

ar
d

(a) Playing with Testing Teammates

N=4
N=3
N=2

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

100

0

100

200

300

Ep
is

od
e

R
ew

ar
d

(b) Playing with Testing Teammates

N=4
N=3
N=2

Figure 4. The variation in average episode rewards with training steps during testing with ad hoc
team members. (a) After each training step, we sampled three teammates and generated 20 trajectories
for each teammate. The average reward of 60 trajectories was then plotted on the vertical axis as the
average episode reward during testing. (b) After each training iteration, an evaluation of the current
policy was conducted. Initially, a new teammate was randomly selected, and the current policy
collaborated with this teammate to produce 20 trajectories. These trajectories were then utilized as
samples to update the policy through a single round of gradient descent. Subsequently, the updated
policy collaborated with the same teammate once more, generating an additional 20 trajectories. This
procedure was repeated with three different teammates, resulting in a total of 60 trajectories, with the
average trajectory rewards depicted on the y-axis.

In problem 2, using the policies obtained from N = 4, we acquired an additional
35 types to construct the type repository Θ′. We assessed the type repository using the
similarity and compatibility metrics outlined in Section 4.2. The visualization of similarity
and compatibility results is shown in Figure 5. Herein, the diagonal denotes the outcome
of self-play within the same type, indicating the highest similarity and compatibility. The
analysis reveals that the types exhibit a moderate level of similarity and substantial differ-
ences in compatibility. Furthermore, types with high compatibility tend to have greater
similarity, as shown by M(π′30, π′35) and C(π′30, π′35). This demonstrates the diversity of
the type repository.

Appl. Sci. 2024, 14, 3209 17 of 21

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(a) Similarity Matrix

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(b) Compatibility Matrix
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5. Description of the similarity and compatibility matrices of the type repository. (a) Each
square depicts the similarity between corresponding policies of type pairs, as identified by the
horizontal and vertical coordinates. (b) Each square depicts the compatibility between corresponding
policies of type pairs, as determined by the horizontal and vertical coordinates.

Next, we contrasted the performance of self-play in the environment using policies
initialized with the Meta-RL policies and randomly initialized policies using the PPO
algorithm, as shown in Figure 6. The reward configuration corresponds to the environment
before adjustments were made. The graph clearly shows that the Meta-RL policy requires
fewer steps and achieves higher efficiency in obtaining a reliable policy.

0 25 50 75 100
Training Rounds

0.25

0.00

0.25

0.50

0.75

1.00

Ep
is

od
e

R
ew

ar
d

(a)

0 25 50 75 100
Training Rounds

0

50

100

150

200

250

300

Ep
is

od
e

Le
ng

th

(b)

Meta-RL
Random

Figure 6. A comparative analysis of performance outcomes in self-play, which contrasts the effects of
initializing with the Meta-RL policy that of random initialization. The horizontal axis denotes the
number of training rounds. (a) This plots the average reward gained across 100 episodes following
each training round. (b) This illustrates the average number of steps needed to complete a task across
100 episodes following each training round.

For problem 3, we did not utilize the automatically generated diverse type repository
Θ′ or utilize the Bayesian formula to identify the actual type of teammates during ad
hoc collaboration. The performance of the algorithm is illustrated in Table 5. A total
of 67 possible teammates are in ΘT . Despite this, the algorithm achieves a high success
rate and completes tasks in a relatively short number of steps. Moreover, as the number
and diversity of known teammate types increase, the algorithm’s performance gradually

Appl. Sci. 2024, 14, 3209 18 of 21

improves. This improvement can be attributed to the enhanced generalization of the
Meta-RL policy, enabling the algorithm to better adapt to unknown teammates.

Table 5. The efficacy of Meta-RL ad hoc agents, which are initialized with various known teammate
types, in collaboration with teammates from ΠT without employing Bayesian inference or a diversity
type repository.

Win Rate (%) Average Num of Steps

N = 2 74.33± 3.26 41.92± 4.80
N = 3 76.57± 1.77 50.75± 6.20
N = 4 83.28± 1.86 45.32± 5.08

Regarding problem 4, we initiated the ad hoc agent using known teammate types with
N = 3. The agent collaborated with various teammates in the environment for ten episodes
and we randomly sampled one of them, which had more than 50 time steps. Throughout
this process, we did not utilize the teammate type identification module. Before each
episode, the ad hoc agent’s policy was reinitialized using the Meta-RL policy. We sampled
20 trajectories of the ad hoc agent collaborating with the current teammate at each time
step and calculated the average reward. Figure 7 shows the results of the ad hoc agent
collaborating with six different types of teammates, and Table 6 details the performance of
each teammate.

Table 6. Diverse teammate performances are depicted in Figure 7, as well as their compatibility with
the Meta-RL policy.

Win Rate (%) Caught Prey Id Average Num of
Steps Compatibility

Figure 7a 93.00 0 97.68± 68.58 0.67
Figure 7b 97.00 1 66.30± 44.18 0.74
Figure 7c 98.00 2 11.95± 2.33 0.23
Figure 7d 97.00 3 93.53± 63.53 0.41
Figure 7e 95.00 3 25.00± 8.72 0.53
Figure 7f 100.00 3 11.99± 2.23 0.24

From Table 6, it is clear that the compatibility between the teammate depicted in
Figure 7c and the current Meta-RL policy is minimal. Consequently, as depicted in
Figure 7c, their average cooperation reward is approximately −100, which indicates a
significant challenge in completing tasks. However, after imitation learning, their rewards
experience a rapid and substantial improvement, highlighting the sensitivity of the Meta-RL
policy to parameters and the significance of updating policies through imitation learning.
In Figure 7b, teammates exhibit maximal compatibility with the Meta-RL policy, as evi-
denced by uniformly positive cooperation rewards and consistent task completion. The
performance experienced a modest enhancement following imitation learning.

Further, we analyzed the impact of the cooperative teammates’ performance on the
joint outcomes, as depicted in Figure 7e,f. Notably, when teammates require fewer steps
to complete tasks independently, as demonstrated in Figure 7f, there are fewer samples
available for the ad hoc agent to learn from. Despite performance enhancements in the
context of previously low compatibility, the limited number of training samples challenges
the achievement of superior cooperative performance.

Appl. Sci. 2024, 14, 3209 19 of 21

200

0

200

400

Ep
is

od
e

R
ew

ar
d

(a) (b)

200

0

200

400

Ep
is

od
e

R
ew

ar
d

(c) (d)

0 10 20 30 40 50
Training Steps

200

0

200

400

Ep
is

od
e

R
ew

ar
d

(e)

0 10 20 30 40 50
Training Steps

(f)

INIT IL

Figure 7. The variation in policy performance of ad hoc agents when cooperating with six distinct
types of teammates, as shown in (a–f). The red line represents the performance of the ad hoc agent
after updating its policy via imitation learning without inferring the teammate type.

6. Conclusions

In this paper, we introduced an algorithm termed FEAT for AHT, which is predi-
cated on a small set of known teammate types. To optimally utilize prior knowledge of
these types, FEAT employs meta-reinforcement learning algorithms to derive a Meta-RL
policy that is highly responsive to new tasks. Subsequently, random perturbations were
introduced to the environment’s reward function, enabling the Meta-RL policy to par-
ticipate in self-play within this perturbed setting and cultivate a diverse type repository.
Based on this type repository, ad hoc agents initialized with the Meta-RL policy identify
teammate policies while simultaneously imitating teammate behaviors to achieve effec-
tive cooperation. Comprehensive experimental analyses in the pursuit domain validated
the effectiveness of the individual module designs within the FEAT algorithm, which
outperforms representative methods such as PLASTIC [9] and EDRQN [12].

Our approach represents the first explicit algorithm designed for AHT, which focuses
on a limited number of known types. The algorithm shows its capability to adapt to
teammates within a single episode in partially observable and sparse-reward environ-
ments. However, prior related studies usually needed multiple episodes for successful
collaboration with teammates. Moreover, based on the foundational assumptions of our
algorithm, we suggest several promising directions for future research. Firstly, we assume a
role-invariant experimental environment, which allows us to utilize teammate behavior im-
itation for adaptation. To address environments with variable roles, integrating opponent
and environmental modeling with the Meta-RL policy seems to provide a feasible solution.
Secondly, we assume that ad hoc agents have access to teammate observations and actions.
To relax this assumption, we recommend exploring the concept of ODITS [30]. Finally,

Appl. Sci. 2024, 14, 3209 20 of 21

despite creating a diverse type repository, the main purpose of it within the algorithm is
to identify teammate policies. To further enhance this capability, we propose integrating
transfer learning to infer teammate policies using the type repository. It is important to
mention that our experimental setup, which involves only two agents, can be adapted
to environments with different numbers of agents without impacting the performance of
the algorithm.

Author Contributions: Conceptualization, Q.F. and J.Z.; methodology, Q.F. and H.X.; validation, Q.F.
and H.X.; formal analysis, Q.F.; investigation, Q.F. and J.Z.; data curation, Q.F.; writing—original draft
preparation, Q.F.; writing—review and editing, Q.F., J.Z. and Y.H.; visualization, J.Z.; supervision,
Y.H., J.Z. and Q.Y.; funding acquisition, Y.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of China (grant number
62306329, 62103420) and the Natural Science Foundation of Hunan Province of China (grant number
2023JJ40676).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code of EDRQN can be found at https://github.com/dxing-
cs/EDRQN, accessed on 23 October 2023. The source code of PLASTIC can be found at https:
//github.com/jmribeiro/PLASTIC-Algorithms, accessed on 12 October 2023. And the pursuit
environment is contained at https://github.com/dxing-cs/EDRQN, accessed on 23 October 2023.

Acknowledgments: We thank Xing et. al. and João Ribeiro for the opensource code.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Rashid, T.; Samvelyan, M.; De Witt, C.S.; Farquhar, G.; Foerster, J.; Whiteson, S. Monotonic value function factorisation for deep

multi-agent reinforcement learning. J. Mach. Learn. Res. 2020, 21, 1–51.
2. Wjkde, H.; Son, K.; Kim, D.; Qtran, Y. Learning to factorize with transformation for cooperative multi-agent reinforcement

learning. In Proceedings of the 31st International Conference on Machine Learning, Proceedings of Machine Learning Research,
PMLR, Long Beach, CA, USA, 9–15 June 2019.

3. Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December
2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.:
New York, NY, USA, 2017; Volume 30.

4. Stone, P.; Kaminka, G.; Kraus, S.; Rosenschein, J. Ad hoc autonomous agent teams: Collaboration without pre-coordination. In
Proceedings of the AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010, Volume 24; pp. 1504–1509.

5. Bowling, M.H.; Browning, B.; Veloso, M.M. Plays as Effective Multiagent Plans Enabling Opponent-Adaptive Play Selection. In
Proceedings of the ICAPS, Whistler, BC, Canada, 3–7 June 2004; pp. 376–383.

6. Bowling, M.; McCracken, P. Coordination and adaptation in impromptu teams. In Proceedings of the 20th National Conference
on Artificial Intelligence, AAAI’05, Pittsburgh, PA, USA, 9–13 July 2005; AAAI Press: Washington, DC, USA, 2005; Volume 1,
pp. 53–58.

7. Albrecht, S.V.; Ramamoorthy, S. A game-theoretic model and best-response learning method for ad hoc coordination in multiagent
systems. In Proceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’13,
Richland, WA, USA, 6–10 May 2013; pp. 1155–1156.

8. Albrecht, S.V.; Crandall, J.W.; Ramamoorthy, S. E-HBA: Using action policies for expert advice and agent typification. In Proceed-
ings of the Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–26 January 2015.

9. Barrett, S.; Rosenfeld, A.; Kraus, S.; Stone, P. Making friends on the fly: Cooperating with new teammates. Artif. Intell. 2017,
242, 132–171. [CrossRef]

10. Ribeiro, J.a.G.; Rodrigues, G.; Sardinha, A.; Melo, F.S. TEAMSTER: Model-based reinforcement learning for ad hoc teamwork.
Artif. Intell. 2023, 324, 104013–104038. [CrossRef]

11. Wu, F.; Zilberstein, S.; Chen, X. Online Planning for Ad Hoc Autonomous Agent Teams. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain, 16–22 July 2011; pp. 439–445. [CrossRef]

https://github.com/dxing-cs/EDRQN
https://github.com/dxing-cs/EDRQN
https://github.com/jmribeiro/PLASTIC-Algorithms
https://github.com/jmribeiro/PLASTIC-Algorithms
https://github.com/dxing-cs/EDRQN
http://doi.org/10.1016/j.artint.2016.10.005
http://dx.doi.org/10.1016/j.artint.2023.104013
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-081

Appl. Sci. 2024, 14, 3209 21 of 21

12. Xing, D.; Liu, Q.; Zheng, Q.; Pan, G. Learning with Generated Teammates to Achieve Type-Free Ad-Hoc Teamwork. In
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, Montreal, QC, Canada, 19–27
August 2021; Zhou, Z.H., Ed.; Main Track; International Joint Conferences on Artificial Intelligence Organization: San Francisco,
CA, USA, 2021; pp. 472–478. [CrossRef]

13. Rahman, A.; Fosong, E.; Carlucho, I.; Albrecht, S.V. Generating Teammates for Training Robust Ad Hoc Teamwork Agents via
Best-Response Diversity. Trans. Mach. Learn. Res. 2023 . [CrossRef]

14. Rahman, A.; Cui, J.; Stone, P. Minimum coverage sets for training robust ad hoc teamwork agents. arXiv 2023, arXiv:2308.09595.
15. Canaan, R.; Gao, X.; Togelius, J.; Nealen, A.; Menzel, S. Generating and Adapting to Diverse Ad Hoc Partners in Hanabi. IEEE

Trans. Games 2023, 15, 228–241. [CrossRef]
16. Barrett, S.; Stone, P.; Kraus, S.; Rosenfeld, A. Learning Teammate Models for Ad Hoc Teamwork. In Proceedings of the AAMAS

Adaptive Learning Agents (ALA) Workshop, Valencia, Spain, 4–9 June 2012.
17. Pardoe, D.; Stone, P. Boosting for regression transfer. In Proceedings of the 27th International Conference on International

Conference on Machine Learning, ICML’10, Madison, WI, USA, 21–24 June 2010; pp. 863–870.
18. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]
19. Xing, D.; Gu, P.; Zheng, Q.; Wang, X.; Liu, S.; Zheng, L.; An, B.; Pan, G. Controlling Type Confounding in Ad Hoc Teamwork

with Instance-wise Teammate Feedback Rectification. In Proceedings of the 40th International Conference on Machine Learning,
PMLR, 23–29 July 2023; Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J., Eds.; The International Machine
Learning Society: Stroudsburg, PA, USA, 2023 ; Volume 202, pp. 38272–38285.

20. Chen, S.; Andrejczuk, E.; Cao, Z.; Zhang, J. AATEAM: Achieving the Ad Hoc Teamwork by Employing the Attention Mechanism.
Proc. Aaai Conf. Artif. Intell. 2020, 34, 7095–7102. [CrossRef]

21. Barrett, S.; Stone, P. Cooperating with Unknown Teammates in Complex Domains: A Robot Soccer Case Study of Ad Hoc
Teamwork. Proc. Aaai Conf. Artif. Intell. 2015, 29, 2010–2016. [CrossRef]

22. Barrett, S.; Stone, P.; Kraus, S. Empirical evaluation of ad hoc teamwork in the pursuit domain. In Proceedings of the 10th
International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’11, Richland, WA, USA, 2–6 May 2011;
Volume 2, pp. 567–574.

23. Kocsis, L.; Szepesvári, C. Bandit based monte-carlo planning. In Lecture Notes in Computer Science, Proceedings of the European
Conference on Machine Learning, Berlin, Germany, 18–22 September 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 282–293.

24. Ernst, D.; Geurts, P.; Wehenkel, L. Tree-based batch mode reinforcement learning. J. Mach. Learn. Res. 2005, 6, 503–556.
25. Charakorn, R.; Manoonpong, P.; Dilokthanakul, N. Learning to Cooperate with Unseen Agents Through Meta-Reinforcement

Learning. In Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21,
Richland, WA, USA, 3–7 May 2021; pp. 1478–1479.

26. Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th
International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.; The
International Machine Learning Society: Stroudsburg, PA, USA, 2017 ; Volume 70, pp. 1126–1135.

27. Bernstein, D.S.; Zilberstein, S.; Immerman, N. The complexity of decentralized control of Markov decision processes. In
Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, UAI’00, San Francisco, CA, USA, 30 June–3 July
2000; pp. 32–37.

28. Charakorn, R.; Manoonpong, P.; Dilokthanakul, N. Generating Diverse Cooperative Agents by Learning Incompatible Policies.
In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023.

29. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.
KDD 1996, 96, 226–231.

30. Gu, P.; Zhao, M.; Hao, J.; An, B. Online Ad Hoc Teamwork under Partial Observability. In Proceedings of the International
Conference on Learning Representations, Virtual, 25–29 April 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.24963/ijcai.2021/66
http://dx.doi.org/10.48550/arXiv.2207.14138
http://dx.doi.org/10.1109/TG.2022.3169168
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1609/aaai.v34i05.6196
http://dx.doi.org/10.1609/aaai.v29i1.9428

	Introduction
	Related Work
	Type-Based Ad Hoc Teamwork
	Type-Free Ad Hoc Teamwork

	Preliminaries
	Ad Hoc Teamwork
	Model-Agnostic Meta Learning

	Method
	Overview of FEAT Algorithm
	Policy Repository Generation
	Teammate Identification
	Teammates' Policies Adaption

	Experiments
	Domain Description
	Experiment Setup
	Main Results
	Ablation Results

	Conclusions
	References

