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Abstract: To solve the problem that noise seriously affects the online monitoring of parts signals
of outdoor machinery, this paper proposes a signal reconstruction method integrating deep neural
network and compression sensing, called ADMM-1DNet, and gives a detailed online vibration signal
monitoring scheme. The basic approach of the ADMM-1DNet network is to map the update steps of
the classical Alternating Direction Method of Multipliers (ADMM) into the deep network architecture
with a fixed number of layers, and each phase corresponds to an iteration in the traditional ADMM. At
the same time, what differs from other unfolded networks is that ADMM-1DNet learns a redundant
analysis operator, which can reduce the impact of outdoor high noise on reconstruction error by
improving the signal sparse level. The implementation scheme includes the field operation of
mechanical equipment and the operation of the data center. The empirical network trained by the
local data center conducts an online reconstruction of the received outdoor vibration signal data.
Experiments are conducted on two open-source bearing datasets, which verify that the proposed
method outperforms the baseline method in terms of reconstruction accuracy and feature preservation,
and the proposed implementation scheme can be adapted to the needs of different types of vibration
signal reconstruction tasks.

Keywords: deep neural network; ADMM-1DNet; compressed sensing; deep unfolding network

1. Introduction

Online monitoring of mechanical equipment status is essential to extend equipment
service life and ensure operational safety. However, general industrial equipment operated
for a long time, and parts deteriorated slowly. With the increase in monitoring points and
monitoring time, there are issues such as storage and transmission difficulties after the
gradual accumulation of monitoring data [1,2]. Faced with this challenge, the industry
urgently needs a reliable data compression method to effectively manage and store these
large-scale monitoring data. In 2006, Donoho proposed compressed sensing (CS) [3], which
provides a new idea for large-scale data storage and transmission. CS theory believes that
if the signal itself is sparse or has a sparse property under a set of bases or dictionaries,
then CS can recover the signal at a sampling rate significantly lower than the sampling rate
specified by Nyquist theory [4–7].

In recent years, CS technology has developed rapidly and is widely used in quite
a few fields, such as image processing [8,9], wireless communication [10], direction of
arrival (DOA) estimation [11], and pipeline leakage detection [12]. Especially in industrial
production, the CS reconstruction method based on acoustic emission signals [13–15] and
multi-source composite fault signals [16,17] solved many practical industrial problems.
These methods are generally applicable to the operation of mechanical equipment indoors
or in stable environmental conditions, and signal acquisition is relatively easy to meet the
sparse conditions of the compressed measurement. However, for mechanical equipment
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required to work in an open environment, the acquisition of monitoring signals is very
vulnerable to environmental noise or human factors, such as fluctuation conditions [18,19],
missing data from acquired signals [20–22], and high-noise interference [23], which results
in the acquired signals not accurately reflecting the corresponding fault feature information.

In response to high-noise outdoor working conditions, some mechanical equipment
monitoring and reconstruction methods have emerged. Generally, these methods are re-
lated to optimization-based methods [24,25], such as sparse optimization methods [26–31],
waveform matching and dictionary learning-based methods [32–35], and multi-sensor
fusion-based methods [36]. Although the need for accurate reconstruction of industrial vi-
bration signals can be effectively addressed by the signal reconstruction methods described
above, the disadvantages of the traditional method, such as having many parameters, slow
convergence speed, and being prone to significant error at high compression ratios [37–39],
are still difficult to avoid, resulting in the theory not being applied to the online monitoring
demand of actual production equipment.

Recently, with the continuous development of deep learning, some scholars have
proposed the application of neural networks to CS signal reconstruction, aiming to make full
use of the advantages of neural networks to compensate for the shortcomings of traditional
reconstruction algorithms. This work is usually divided into two main categories: data-
driven methods and model-driven methods. The data-driven approach adapts to the
data structure by adjusting the network models, such as DR2-Net networks [40], Deep
Inverse networks [41], and CSNet networks [42]. The model-driven method is an idea that
unfolds traditional CS methods into learning networks, first proposed in 2010 [43]. The
article establishes the Learned Iterative Shrinkage Threshold Algorithm (LISTA) model
on the basis of the ISTA [44] to solve sparse encoding problems. Since then, this idea
has been widely applied to many signal and image problems [45–47]. In addition to the
LISTA model, researchers also proposed unfolded network models such as ISTA-NET [48],
LADM-NET [49], and AMP-Net [50]. These network models have obtained satisfactory
results in the corresponding fields, but they do not involve the processing of high-noise
and other interference components in the signal. This is because the network is sensitive to
the sparse level of the signal and cannot be directly grafted into other outdoor, high-noise
signal reconstruction fields.

Inspired by the CS signal reconstruction method based on an unfolded network [51–54],
we propose a new signal reconstruction method, called ADMM-1DNet, for the online
monitoring of bearing parts of mechanical equipment working in an open environment.
Each iteration of the classical ADMM algorithm is unfolded into the layers of a deep neural
network (DNN), and the network simultaneously learns a redundant analysis operator for
sparse representation of the signal to address the impact of high-noise interference on re-
construction accuracy. The parameters of the ADMM algorithm are translated into network
parameters. The network’s forward propagation is comparable to performing a limited
number of iterations of the ADMM algorithm, followed by back-propagation training of the
network to learn the model parameters from the training set. All parameters in the network
are learned end-to-end, so the problem of large errors caused by relying on empirical values
can be avoided. In addition, the establishment of the neural network follows the guidance
of the traditional ADMM reconstruction algorithm. The expansion algorithm can not only
efficiently reconstruct the signal but also make the signal reconstruction process have a
certain interpretability [55,56].

The rest of this paper is organized as follows: two traditional convex optimal CS
reconstruction algorithms are introduced in Section 2 and compared with the proposed
method as the baseline method. Section 3 introduces the specific theory of the ADMM-
1DNet network and the detailed signal online monitoring implementation scheme. In
Section 4, the parameter setting and signal sparse level recovery performance of the network
are explored on the simulation signal, and then the proposed method is compared with the
traditional algorithm by taking the real bearing vibration signal as an example. Section 5
summarizes and discusses the results of this paper.
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2. Theoretical Background

Generally, there are two kinds of algorithms to solve the reconstruction problem of the
CS signal, i.e., the greedy algorithm [57,58] and the convex optimization algorithm [59–61].
Among them, the greedy algorithm is generally a heuristic method, which gradually builds
the global optimal solution by selecting the local optimal solution every time. The convex
optimization algorithm approximates the optimal solution step by step iteratively and
has a convergence guarantee. For the problem with sparse structure, stable and accurate
results can be obtained. The mathematical model for solving the signal inversion problem
of compressed sensing under sparse conditions is defined as follows:

min
x∈Rn

1
2
∥Ax − y∥2

2 + λ∥φx∥1, (1)

where x ∈ Rn is the signal to be reconstructed, A is the measurement matrix, y is the
measurement value; λ is the regularization parameter, and φ is the transformation matrix.

2.1. CS Based on ISTA

The ISTA algorithm is a gradient-based approach in which the differentiable gradient
is projected at each iteration and then reduced to a specific value by a threshold. Given the
compression measurement y, ISTA achieves the reconstruction of the vibration signal by
iterative solution (1) of gradient and signal. The signal to be reconstructed is updated by
the x-shrinkage threshold operation, and the specific iterative formula is defined as follows:

Z(k) = y − Ax(k), (2)

x(k+1) = ηλ

(
x(k) + ρATZ(k)

)
. (3)

where k is the number of iterations, Z(k) ∈ R M×1 is the immediate reconstruction signal
of the kth iteration, ρ is the step size, ηλ (·) is the soft threshold function. The specific
expression formula is defined as follows:

[ηλ(x)]i ≜ sign(xi)(|xi| − λi), (4)

where λi is the threshold parameter, and sign(·) is the sign function.
The flow of the ISTA-based CS algorithm is shown in Figure 1. Where x0 is the

initialization value, rk is the residual error obtained during the calculation process, and x̂ is
the final reconstruction signal value.
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Ref. [48] combines the above method with deep neural networks to propose the classic
ISTA-NET method. In the following text, we will compare ISTA-NET with the proposed
method in terms of overall performance.

2.2. CS Based on ADMM

The ADMM algorithm is also a classical convex optimization algorithm that introduces
new variables to decompose the original objective function into several smaller subprob-
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lems for solution, and then the global optimal solution of the original objective function
is obtained through the solution among the coordination sub-problems. ADMM has a
broader definition for the solution of the inverse problem in Formula (1):

min
x∈Rn

1
2
∥Ax − y∥2

2 +
C

∑
i=1

λig(Dix), (5)

where g(·) is the nonlinear regularization parameter, and Di is the transformation matrix.
ADMM introduces the dyadic variable Z, which transforms Equation (5) into the following:

min
x,{z}C

i=1

1
2∥Ax − y∥2

2 +
C
∑

i=1
λig(zi),

s.t. zi = Dix(∀i).
(6)

Its corresponding Tseng generalized Lagrangin function is defined as follows:

Lρ(x, z, εi) =
1
2
∥Ax − y∥2

2 +
C

∑
i=1

λig(zi) +
ρi
2
∥Di − zi + εi∥2

2, (7)

where εi is a binary variable, and ρ is a penalty parameter. ADMM method is obtained by
alternately minimizing Equation (7) with bivariate updating, as follows:

Xk : x(k) =
(

ATA +
C
∑

i=1
ρiDT

i Di

)−1[
ATy +

C
∑

i=1
ρiDT

i

(
z(k−1)

i − ε
(k−1)
i

)]
Zk : zk

i = S
(

Dix(k) + ε
(k−1)
i ; λi/ρi

)
Mk : εk

i = ε
(k−1)
i + η

(
Dix(k) − z(k)i

) , (8)

where ni is a constant parameter, and S(·) is a proximal mapping with parameter λ.

2.3. CS Based on ADMM + K-SVD

The mathematical model of the K-SVD dictionary learning algorithm is as follows:

∥Q − DX∥2
F =

∥∥∥∥∥Q −
k

∑
j=1

djX
j
T

∥∥∥∥∥ =

∥∥∥∥∥
(

Q − ∑
j ̸=k

djX
j
T

)
− dkX(k)

T

∥∥∥∥∥
2

F

=
∥∥∥E(k) − d(k)X

(k)
T

∥∥∥2

F
, (9)

where Q is the sample signal, D is the original dictionary, X is the sparse vector matrix and
E(k) is the residual. The de-zero contraction of X(k)

T yields ER
(k), then performs singular value

decomposition, yielding the following:

ER
(k) = U∆VT . (10)

The dictionary training process uses the elements in the U-matrix obtained by decom-
position to assign values to the atomic training in dictionary D one by one.

It has been proven in the literature that the CS method based on K-SVD has the best
reconstruction performance using an empirical dictionary as the initial dictionary [62,63].
The steps of the CS reconstruction signal method based on ADMM + K-SVD algorithms are
shown in Table 1.
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Table 1. CS based on ADMM + K-SVD.

CS Based on ADMM + K-SVD

Step 1: The monitoring end receives the observation y, and the reference vibration signal is used
as a training sample to obtain the initial dictionary D0.
Step 2: The ADMM algorithm is used to solve the optimization problem in Equation (1), resulting
in the initial sparse approximation coefficients θ0. Solving for ỹ0 = D0θ0. gives the initial
reconstructed signal data.
Step 3: Update the sparse transformation dictionary D with the K-SVD dictionary learning
algorithm, and use the updated dictionary D to make a sparse representation of the preliminary
reconstructed data from the previous step.
Step 4: Solve the updated sparse coefficients θi with the ADMM algorithm to update ỹi = Diθi.
Step 5: Take the data obtained in step 2 as the input data for the next iteration; repeat Steps 3 and
4 until the algorithm converges. Output the reconstructed data ỹ to realize the vibration signal
reconstruction.

3. The Method Proposed in This Paper
3.1. ADMM-1DNet

For the outdoor high-noise signal reconstruction problem, the compressed measured
value y according to CS theory is shown in Equation (11). Where the original signal x ∈ Rn,
e ∈ Rm, m < n corresponds to the noise in the acquired signal and ∥e∥2 ≤ η.

y = Ax + e. (11)

We assume that there exists a redundant sparse transformation Φ ∈ RN×n(N > n)
called the analysis operator that makes Φx approximately sparse. To obtain x, a common
approach is to transform it into solving the l1-minimization problem as follows:

min
x∈Rn

∥Φx∥1 s.t. ∥Ax − y∥2 ≤ η. (12)

The ADMM algorithm is a classical convex optimization algorithm for solving the
problem of Equation (12), which considers the equivalent generalized LASSO form of
Equation (12), as follows:

min
x∈Rn

1
2
∥Ax − y∥2

2 + λ∥Φx∥1. (13)

Introducing the dual variables z, u ∈ RN, Equation (13) is transformed into the following:

min
x∈Rn

1
2
∥Ax − y∥2

2 + λ∥z∥1, s.t. Φx − z = 0. (14)

The optimization problem of Equation (14) can be solved using an iterative scheme of
ADMM for the penalty parameters ρ > 0, k ∈ N and the initial points (x0, z0, u0):

x(k+1) =
(

ATA + ρ ΦTΦ
)−1(

ATy + ρ ΦT
(

z(k) − u(k)
))

, (15)

z(k+1) = Sλ/ρ

(
Φx(k+1) − u(k)

)
, (16)

u(k+1) = u(k) + Φx(k+1) − z(k+1). (17)

Iterative steps (15)–(17) converge to the solution of Equation (14) [54], i.e.,∥∥∥Ax(k) − y
∥∥∥2

2
+
∥∥∥z(k)

∥∥∥
1
→ p∗ and Φx(k) − z(k) → 0 as k → ∞ .

The idea of ADMM-1DNet is to map the aforementioned ADMM iterative scheme
into a multilayer DNN, where each layer corresponds to an iteration of ADMM. The
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first Equation (15) is transformed into the update rules (16) and (17), and the second
Equation (16) into (17).

u(k+1) = (I − W)u(k) + Wz(k) + b − Sλ/ρ

(
(−I − W)u(k) + Wz(k) + b

)
,

z(k+1) = Sλ/ρ

(
(−I − W)u(k) + Wz(k) + b

) (18)

where
W = ρΦ

(
ATA + ρΦTΦ

)−1
ΦT ∈ RN×N , (19)

b = b(y) = Φ(ATA + ρΦTΦ)
−1

ATy ∈ RN×1. (20)

We introduce v(k) =
[
u(k); z(k)

]
∈ R2N×1 and set Θ = (−I − W

∣∣W) ∈ R2N×1 and

Λ =
(

I − W
∣∣W) ∈ RN×2N to get the following:

v(k+1) =

(
Λ

ON×2N

)
v(k) +

(
b
0

)
+

(
−Sλ/ρ(Θv(k) + b)
Sλ/ρ(Θv(k) + b)

)
. (21)

Setting Θ̃ = [Λ; ON×2N ] ∈ R2N×2N , I1 = [IN×N ; ON×N ] ∈ R2N×2N and
I2 = [−IN×N ; IN×N ] ∈ R2N×N , transform Equation (21) into the following:

v(k+1) = Θ̃v(k) + I1b + I2Sλ/ρ(Θv(k) + b). (22)

Based on the above equation, the ADMM algorithm is expanded to an L-layer neural
network is defined as follows:

f1(y) = I1b(y) + I2Sλ/ρ(b(y)), (23)

fk(v) = Θ̃v + I1b + I2Sλ/ρ(Θv + b), k = 2, . . . , L (24)

where Φ is trained as a trainable parameter, denote L such layers (all having the same Φ) as

f L
Φ(y) = fL ◦ · · · ◦ f1(y). (25)

Applying the radiation mapping T driven by Equation (15) to the final layer of the
neural network yields the final output x̂, i.e.,

x̂ = T
(

f L
Φ(y)

)
=
(

ATA + ρΦTΦ
)−1(

ATy + ρΦT
(

zL − uL
))

, (26)

where
[
uL; zL] = vL, in order to clip the output when the number of paradigms is out of

range, it is necessary to add an additional function σ : Rn → Rn defined as: if ∥x∥2 ≤ Bout,
then σ(x) = x, otherwise σ(x) = Boutx/∥x∥2, where Bout > 0 is a fixed constant. A
hypothetical class is introduced containing the functions used that can be realized by
ADMM-1DNet:

HL =
{

σ ◦ h : Rm 7→ Rn : h(y) = T( f L
Φ(y)), Φ ∈ RN×n, N > n

}
. (27)

Given the above-hypothesized class and a set S = {(yi, xi)}s
i=1 containing S training

samples, ADMM-1DNet yields a function hs ∈ HL that aims at reconstructing x from y = Ax.
Figure 2 gives a schematic diagram of ADMM-1DNet, where the operations of each block
follow Equations (23) and (24).

Input Φ, ρ, and λ into the ADMM-1DNet network as parameters. So that they can
learn adaptively rather than remaining constant during the training process. So here ΦT is
actually not a transpose of Φ in the strict sense.
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3.2. Signal Online Monitoring Scheme Design

The implementation scheme of ADMM-1DNet mechanical equipment component
vibration signal reconstruction based on CS can be realized in the following three steps:

Step 1 The sensors collect and compress bearing vibration signals y and then transmit
the signals to the local data center.

Step 2 The local data center uses the collected historical data to train the ADMM-1DNet
network model, with the training guidelines following the settings in Section 4.2.1.

Step 3 The trained network accepts the data from Step 1, reconstructs the compressed
measurement values, and outputs the reconstructed signal x̂.

As shown in Figure 3, the detailed online monitoring scheme for mechanical equip-
ment component signals based on ADMM-1DNet is provided.
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4. Experiment
4.1. Evaluation Indicators

In order to quantify the difference between xi and x̂i = hs(yi), i = 1, . . . , s, we choose
to use the training and the testing mean squared error as metrics to assess the reconstruction
performance, defined as follows:

Ttrain =
1
s

s

∑
i=1

∥h(yi)− xi∥2
2 (28)

Ttest =
1
d

d

∑
i=1

∥h(ỹi)− x̃i∥2
2 (29)

D = {(ỹi, x̃i)}d
i=1 is a set of data used for testing, containing d samples that were

not used during the training phase. The data center reconstructs the outdoor collection
data using the network model trained on historical data, and the closer the outdoor data
reconstruction effect is to the training reconstruction effect the stronger the network gen-
eralization ability. Therefore, the generalization ability of the network by comparing the
difference Tgen between the average training mean square error and the average testing
mean square error, the Tgen is defined as follows:

Tgen = |Ttest − Ttrain| (30)

Peak signal-to-noise ratio PSNR (in dB), compression ratio r and algorithm iteration
Time (t) are used as evaluation metrics to measure the other performance of the network,
PSNR is defined as follows:

PSNR = 10lg

[
f 2
max

/(
1
N

N

∑
i=1

(
fi − f̂i

)2
)]

(31)

where f denotes the original signal, f̂ denotes the reconstructed signal, and f max denotes the
largest component of the vector f. The higher the value of the reconstruction signal-to-noise
ratio, the better the reconstruction effect. The compression ratio r is defined as follows:

r = m/n (32)

where n is the original signal length and m is the compressed signal length. The smaller the
compression rate r, the higher the degree of signal compression.

The time taken by the algorithm to reconstruct the signal called the algorithm conver-
gence Time (t), is used to characterize the complexity of the algorithm and as a reference
for comparing the performance of different algorithms.

4.2. Simulated Signal Experiment
4.2.1. Network Parameters Setting Method

To explore the method of setting ADMM-1DNet network adaptation parameters and
develop a more reasonable online monitoring implementation scheme, simulation signals
were used for experimental research. The signal formula is defined as follows:

S(t) = 0.1 sin(100πt + 0.2 cos(40πt)) + 0.2 cos(250πt) + η(t) (33)

The signal is formed by the superposition of the frequency modulation component and
cosine component, where the fundamental frequency is 50 Hz, the modulation frequency
is 20 Hz, the frequency of the cosine component is 125 Hz, η(t) is a white noise term
complying with normal distribution, the intensity is 1, and the time domain waveform
of some signals is shown in Figure 4. In practical application, we can directly obtain the
measured value instead of the original data. Therefore, ADMM-1DNet cannot acquire the
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prior knowledge from the test data, and another training set is required to provide the prior
knowledge. To simulate this, 1024 sampling points in the experiment were defined as one
signal unit and a training set containing 1200 signal units and a test set of 240 signal units
were generated as experiment samples. The experiment r is now set to 20%.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 22 
 

noise ratio, the better the reconstruction effect. The compression ratio r is defined as fol-
lows: 

r m n=  (32)

where n is the original signal length and m is the compressed signal length. The smaller 
the compression rate r, the higher the degree of signal compression. 

The time taken by the algorithm to reconstruct the signal called the algorithm con-
vergence Time (t), is used to characterize the complexity of the algorithm and as a refer-
ence for comparing the performance of different algorithms. 

4.2. Simulated Signal Experiment 
4.2.1. Network Parameters Setting Method 

To explore the method of setting ADMM-1DNet network adaptation parameters and 
develop a more reasonable online monitoring implementation scheme, simulation signals 
were used for experimental research. The signal formula is defined as follows: 

( ) 0.1sin(100 0.2cos(40 )) 0.2cos(250 ) ( )S t t t t tπ π π η= + + +  (33)

The signal is formed by the superposition of the frequency modulation component 
and cosine component, where the fundamental frequency is 50 Hz, the modulation fre-
quency is 20 Hz, the frequency of the cosine component is 125 Hz, η(t) is a white noise 
term complying with normal distribution, the intensity is 1, and the time domain wave-
form of some signals is shown in Figure 4. In practical application, we can directly obtain 
the measured value instead of the original data. Therefore, ADMM-1DNet cannot acquire 
the prior knowledge from the test data, and another training set is required to provide the 
prior knowledge. To simulate this, 1024 sampling points in the experiment were defined 
as one signal unit and a training set containing 1200 signal units and a test set of 240 signal 
units were generated as experiment samples. The experiment r is now set to 20%. 

 
Time(s) 

Figure 4. Simulated signal time–domain diagram. 

Firstly, we explore the initialization method of network redundancy analysis opera-
tor Φ and select three initialization methods, namely, discrete cosine transform (DCT dic-
tionary), Fourier transform (FCT dictionary), and the He (normal) method for the experi-
ment. Figure 5 shows the restructuring effect of the three initialization methods. It can be 
seen that the restructuring Ttest obtained by using the He (normal) initialization method is 
the minimum, and the restructuring PSNR performance of the He (normal) method is sig-
nificantly better than the other two methods. This indicates that when the He (normal) 
method is chosen to initialize Φ, the noise level of the reconstructed signal is relatively 
reduced and closer to the original signal. 

Figure 4. Simulated signal time–domain diagram.

Firstly, we explore the initialization method of network redundancy analysis operator
Φ and select three initialization methods, namely, discrete cosine transform (DCT dictio-
nary), Fourier transform (FCT dictionary), and the He (normal) method for the experiment.
Figure 5 shows the restructuring effect of the three initialization methods. It can be seen
that the restructuring Ttest obtained by using the He (normal) initialization method is
the minimum, and the restructuring PSNR performance of the He (normal) method is
significantly better than the other two methods. This indicates that when the He (normal)
method is chosen to initialize Φ, the noise level of the reconstructed signal is relatively
reduced and closer to the original signal.
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Figure 5. Reconstruction effects of the three initialization methods.

The reconstruction accuracy is the primary index to judge the performance of the
reconstruction algorithm, and then the reconstruction speed shall be considered. The
experiment explores the relationship between the number of network expansion layers,
signal reconstruction Ttest, and network convergence time, and the results are shown in
Figure 6. Using three different color balls to represent the results of network iterations 80,
90, and 100, respectively, it can be observed that when the number of unfolding layers is
4 or more, the reconstruction Ttest is the lowest and gradually converges, indicating that
the setting of four layers is more effective in achieving higher reconstruction accuracy. The
same results are obtained with both 90 and 100 iterations when the number of layers is
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4, but 90 iterations take less time. Experimentally setting the empirical network training
parameters to 4 layers and 90 iterations is a better compromise scheme, as required by the
actual situation.
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Through simulation experiments, the best reconstruction performance of the network
can only be achieved when different types of signals are configured with appropriate
parameters. When training the network in the local data center, the network parameters
should be adjusted one by one according to the principle of control variables. The parameter
configuration process can be done automatically by the embedded program, and then the
error and time cost caused by manual adjustment can be avoided. This “tailored” approach
to network parameter training is not only more reliable than traditional static or empirically
based parameter configuration methods but also allows the network to be adapted for a
wide range of specific vibration signal reconstruction tasks.

In this study, the He (normal) method was used to initialize the redundant analysis
operator Φ. The network deployment layers are all four layers, corresponding to four
stages in the reconstruction process. Set (ρ, λ) = (1, 10−4) and Φ, ρ and λ are the same
among all layers.

4.2.2. Sparsity Recovery Performance Analysis

For bearing parts of mechanical equipment operating outdoors, some fault features
are buried in the noise, which disturbs the signal reconstruction process of CS. The more
non-zero values in the reconstructed signal overlap with the original signal, the more noise
tolerance the algorithm has. The ratio of non-zero elements in the signal can be expressed
by the signal sparsity level LS in Equation (34).

Ŝ = argminS
S

s.t. ∥xS−x∥2
∥x∥2

≤ 0.2, Ls = Ŝ
N

(34)

where xS is the best S-sparse approximation obtained by reserving S non-zero elements
in the original signal x and setting the remaining elements to 0. The parameters of
Equation (33) are adjusted for generating simulated signals with different sparsity levels,
and then the generated signals are used as experimental objects to explore the relation-
ship between the signal sparsity level and the algorithm reconstruction accuracy, which
in turn examines the ability of the ADMM-1DNet implementation to adapt to different
reconstruction tasks.
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Figure 7 shows the relationship between LS and Ttest, and it can be observed that as
the signal LS increases, the Ttest of the reconstructed signal of the three algorithms increases.
It is noted that the reconstruction Ttest of ADMM-1DNet at signal sparse levels of 0.2 and
0.3 is much lower than that of the other two algorithms, and the results remain relatively
stable. This demonstrates that the ADMM-1DNet implementation scheme still has good
robustness when processing signals with different sparse levels and can adapt to the task
requirements of signal reconstruction with different sparse levels.
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4.3. Real Signal Experiment
4.3.1. Experimental Data

Following the network parameter setting guidelines specified in Section 4.2.1, in the
real bearing vibration signal, the reconstruction performance of the ISTA-Net network
proposed in literature [48] and the ADMM + K-SVD-based CS method in literature [35] are
compared with the ADMM-1DNet network algorithm proposed in this paper. To ensure
the fairness of the algorithm reconstruction experiment, the parameters of the CS method
based on ADMM + K-SVD are also optimized by the embedded program. The whole
reconstruction process is described in Section 2.3.

Two authoritative bearing experimental data sets are used in the experiment: the
bearing experimental data set (CWRU) [64], published by CASE Western Reserve Univer-
sity, and the bearing experimental data set (XJTU-SY) [65], published by Xi’an Jiaotong
University. Figure 8 shows the test rigs and the bearings used for the two datasets. The
CWRU vibration data was collected using accelerometers, which were attached to the
housing with magnetic bases. Accelerometers were placed at the 12 o’clock position at both
the drive end and fan end of the motor housing. Four types of bearing data at the drive
end were selected as sample signals in the dataset with a signal frequency of 12 kHz, a
motor load of 1 HP, and a fault diameter of 0.007′′. In the XJTU-SY, two accelerometers
of type PCB 352C33 are positioned at 90◦ on the housing of the tested bearings, i.e., one
is mounted on the horizontal axis and the other is mounted on the vertical axis. In the
dataset, the horizontal outer ring fault signal is selected as the sampling signal at 40 Hz,
the signal sampling frequency is 25.6 kHz, and a total of 32,768 data points are recorded in
each sampling, i.e., 1.28 s, with a sampling period of 1 min. In order to fully simulate the
outdoor working environment of mechanical equipment, Gaussian white noise with an
SNR of 30 dB is added to all signals.

Considering the limited number of equipment fault signal acquisitions, we expand the
data set by sliding window sampling and take 1024 sampling points as a signal sample unit.
Then, the training set and the test set for each signal are set to be 1200 and 240 sample units,
respectively. The dataset name and fault type are shown in Table 2. Normal represents the
normal state; BA, OR, and IR, respectively, represent the ball, outer ring, and inner ring
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faults; and the number after @ represents the orientation of the fault point. MIX includes
four kinds of mixed faults: inner ring, outer ring, rolling element, and cage.
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Table 2. Dataset signal type and bearing parameters.

Dataset
Bearing Parameters

Signal TypeNumber of
Balls (N)

Ball Diameter
d/mm

Diameter
D/mm

Contact
Angle α/(◦)

Rotational
Speed (r/s)

CWRU 9 7.94 38.5 0 1772 Normal, IR,
OR@6, BA

XJTU-SY 8 7.92 34.55 0 2400 MIX, IR, OR

4.3.2. Frequency Domain Quality Analysis of Reconstructed Signals

Whether the reconstructed signal can retain the characteristic frequency of the original
signal is another important indicator to test the reconstruction performance of the algorithm.
When a ball in the bearing rolls over the fault location, it will produce an instantaneous
pulse, so the reciprocal of the time interval between any two adjacent pulses is the fault
characteristic frequency, which is determined by the rotation frequency of the bearing and
the nature of the fault type. In general, for angular contact ball bearings with fixed outer
raceways and rotating inner raceways, the formulas [66,67] for the theoretical values of the
Ball Passing Frequency Inner (BPFI) and Ball Passing Frequency Outer (BPFO) are (fr is the
rotational frequency) as follows:

fBPFI =
N
2

fr

(
1 +

d
D

cos α

)
(35)

fBPFO =
N
2

fr

(
1 − d

D
cos α

)
(36)

IR and OR fault signal data from the CWRU and XJTU-SY data sets are taken as
experimental objects. Based on the calculation formula, the BPFI of the driving end-bearing
signal in the CWRU data set is 160.3 Hz, and the BPFO is 105.5 Hz. The BPFI of the
horizontal bearing signal in the XJTU-SY dataset is 196.7 Hz, and the BPFO is 123.3 Hz.
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Considering the limited number of fault signals collected during equipment bursts,
we selected 3072 sampling points from each signal after reconstruction for characterization.
Figure 9a,b show the IR and OR fault signal time-domain waveforms of the CWRU dataset,
and Figure 9c,d show the IR and OR fault signal time-domain waveforms of the XJTY-SY
dataset. Using the ISTA-Net network, ADMM-1DNet network, and ADMM + K-SVD-based
reconstruction algorithm to conduct reconstruction experiments on the above four signals
and conduct empirical mode decomposition on the reconstructed signals to further analyze
the signal composition and feature information.
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By comparing Figures 10–13, it is found that the reconstruction effect of the ADMM
+ K-SVD algorithm is the worst compared with the other two network-based algorithms,
and the peak value displayed after empirical mode decom-position (EMD) is far from the
theoretical value. These unwanted peaks can lead to a misinterpretation of part failure
characteristics during fault diagnosis and classification. As shown in Figures 10a and 13a,
the reconstruction results of ISTA-Net detect the characteristic frequency of the approximate



Appl. Sci. 2024, 14, 2653 14 of 21

theoretical value, but there are other obvious frequency peaks near the approximate value.
However, the corresponding characteristic frequencies of the four kinds of signals after
reconstruction of ADMM-1DNet are close to the theoretical values, and the difference
between them is not more than 0.6%, and no other approximate peak is found. The
experimental results demonstrate that, compared with the other two baseline methods,
the signal reconstructed by ADMM-1DNet can still retain relevant frequency and feature
information under high noise and high r, which proves the effectiveness of the proposed
online monitoring scheme for practical application purposes.
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Table 3 records the specific Ttest and characteristic frequency values of the above
reconstruction results. The results were obtained by the algorithm through 100 iterations
at most. It is found that the corresponding theoretical characteristic frequency values
are detected no matter whether the reconstruction Ttest is 0.0019 or 0.0675. We further
visualize the experimental results corresponding to the above two accuracies. (The optimal
reconstruction results of the experiments on the two datasets are selected here for visualiza-
tion). Figure 14a shows the fitting diagram of the IR signal and reconstructed signal of the
CWRU dataset, the Ttest is 0.0019. Figure 14b shows the fitting diagram of the OR signal
and reconstructed signal of the XJTU-SY dataset; the Ttest is 0.0675. It can be observed
that, compared with the OR signal, the IR signal has a lower Ttest value, which means the
latter has a higher fit accuracy than the original signal. However, the difference between
the reconstructed signal and the original signal under the two accuracies is very small,
almost completely coincident. This indicates that when the reconstructed Ttest is lower
than a certain value, the reconstructed signal has the most important feature information
of the original signal, and the corresponding feature frequency can be displayed through
empirical mode decomposition and other methods. Therefore, from the perspective of
practical engineering applications, we believe that after a certain number of iterations, the
iteration can be stopped when the signal has the corresponding characteristic frequency.
While continuing iteration can improve reconstruction accuracy, it also slows down the
convergence of the algorithm and increases the cost of unnecessary time.

Table 3. Reconstructed signal indicator results.

Method
CWRU XJTU-SY

IR-Ttest BPFI OR-Ttest BPFO IR-Ttest BPFI OR-Ttest BPFO

ISTA-Net 0.3977 170.2 0.3461 81.6 0.2824 223.7 0.3059 120.5

ADMM + K-SVD 0.2532 102.1 0.3046 148.2 0.4057 354.9 0.3961 79.5

ADMM-1DNet 0.0019 159.7 0.0081 105.3 0.0497 197.3 0.0675 123.1
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4.3.3. Performance Analysis of Signal Reconfiguration Schemes

Signal reconstruction experiments were conducted by feeding the same compressed
measurement signal y into the trained ISTA-Net, ADMM-1DNet, and ADMM + K-SVD
algorithm methods. (For fairness, all reconstruction methods operate independently on the
same computer by comparing the evaluation indexes in Section 4.1).

Figure 15a plots the time-frequency diagram of the CWRU dataset BA fault signal
after noise addition, and Figure 16 shows the corresponding signal reconstruction results
of the three algorithms at different compression rates. It can be observed that the ADMM-
1DNet network can maintain an extremely low restructuring Ttest even at 20% high r.
The reconstruction Ttest of the K-SVD method decreases with the increase in r, but the
value is still much higher than that of the method proposed in this paper. The ISTA-
Net network has unstable reconstruction results with increasing r; it has a lower Ttest for
reconstruction only at a certain r and is still numerically higher than the method proposed
in this paper. Table 4 records the reconstructed PSNR and Time values. Under the same r,
the ADMM-1DNet network achieves the highest PSNR value, and the algorithm has the
fastest convergence speed, while other classical algorithms can only show high performance
at a low compression rate. This demonstrates that the proposed network fully combines the
advantages of the ADMM algorithm, deep neural network, and redundant analysis operator
and significantly improves algorithm reconstruction accuracy and convergence speed.
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Table 4. Comparison of PSNR (dB), Time, and Tgen results for three algorithms reconstructing the BA
signal of the CWRU dataset at different compression rates. The best performance is marked in bold,
and the second-best performance is underlined. Time is a running time record for the three methods,
showing the average time used for 100 iterations of 1024 samples.

C_R
ISTA-Net ADMM + K-SVD ADMM-1DNet

PSNR (dB) Time (S) Tgen PSNR (dB) Time (S) Tgen PSNR (dB) Time (S) Tgen

10% 21.9046 1.7225 0.0107 17.9538 3.6527 -- 27.6102 0.6467 0.00120
15% 22.3762 1.3144 0.0082 18.1029 3.6453 -- 28.3691 0.7308 0.00175
20% 23.4711 1.2104 0.0056 18.2139 3.6291 -- 31.4135 0.6708 0.00051
25% 22.5738 1.3024 0.0093 19.5731 3.5562 -- 32.5003 0.6833 0.00048
30% 23.7329 1.3991 0.0053 22.5722 3.5421 -- 33.0522 0.7117 0.00041
40% 24.8563 1.3667 0.0048 24.3601 3.5409 -- 35.8264 0.7608 0.00022
50% 27.5307 1.2941 0.0041 25.4638 3.5527 -- 36.6274 0.6717 0.00016
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Figure 16. The three algorithms reconstruct the BA signal of the CWRU dataset, corresponding to
different reconstruction Ttest at different compression rates.

The MIX fault signal of the XJTU-SY dataset with higher signal complexity is selected
as the reconstruction object. Figure 15b plots its noise-adding time-frequency diagram.
Figure 17 shows the reconstruction results of the three algorithms under different compres-
sion rates. It can be observed that when facing complex signals, the ISTA Net network is
almost unable to complete reconstruction at compression rates of 25% and 30%, but the
Ttest of the ADMM-1DNet network is still significantly lower than the other two algorithms.
In addition, the PSNR and Time values of the three algorithms under different compression
rates are recorded in Table 5. It can be seen that the ADMM-1DNet network has a high
reconstruction accuracy, while the PSNR and Time (t) of the reconstructed signals are better
than the baseline algorithms.
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Figure 17. The three algorithms reconstruct the MIX signal of the XJTU-SY dataset, corresponding to
different reconstruction Ttest at different compression rates.
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Table 5. Comparison of PSNR (dB), Time, and Tgen results for three algorithms reconstructing the
MIX signal of the XJTU-SY dataset at different compression rates. The best performance is marked
in bold, and the second-best performance is underlined. Time is a running time record for the three
methods, showing the average time used for 100 iterations of 1024 samples.

C_R
ISTA-Net ADMM + K-SVD ADMM-1DNet

PSNR (dB) Time (S) Tgen PSNR (dB) Time (S) Tgen PSNR (dB) Time (S) Tgen

10% 18.1488 1.7350 0.0647 15.6798 3.7033 -- 19.1659 0.7400 0.0150
15% 18.5336 1.9292 0.0586 15.2853 3.6672 -- 20.3437 0.6841 0.0021
20% 19.0301 1.7533 0.0555 15.2113 3.6574 -- 22.0323 0.7150 0.0036
25% 7.8792 1.7575 0.0953 17.0009 3.6502 -- 23.3325 0.7058 0.0024
30% 8.8558 1.7358 0.1062 18.1672 3.5468 -- 25.2719 0.7425 0.0017
40% 19.0870 1.7275 0.0124 20.6455 3.5397 -- 26.1580 0.7217 0.0021
50% 16.6747 1.6250 0.0498 21.2260 3.5564 -- 26.9997 0.7350 0.0011

Tables 4 and 5 also record their reconstruction Tgen values for two network algorithms
involving testing and training. The results show that the Tgen between the two algorithms
is almost one order of magnitude different, and the generalization of the ADMM-1DNet
network is obviously superior to the ISTA-Net network. Excellent generalization means
that the network can effectively process unfamiliar data without being limited to a specific
data set or signal type, which is more robust and reliable in practical applications.

5. Conclusions

In this paper, a new CS signal reconstruction method based on ADMM and neural
networks, called ADMM-1DNet, is especially suitable for the demand for online monitoring
of devices in outdoor high-noise environmental conditions. Taking bearing parts as an
example, combined with modern sensor technology, a detailed implementation scheme
for monitoring mechanical equipment parts is given in this paper. Through experiments
on simulated signals and real bearing vibration signals, we first formulate the parameter
setting guidelines for the ADMM-1DNet network, then explore the relationship between the
signal sparsity level and the reconstruction error, and finally examine the time-frequency
domain quality of the reconstruction signals in a real data set. The experiments show that
the proposed network outperforms other classical algorithms in terms of reconstruction
accuracy and convergence speed, while the learning of redundant analysis operators
enables the online monitoring scheme to adapt to signals with different sparsity levels,
which can further satisfy the needs of different reconstruction tasks. The method in this
paper provides strong theoretical and practical scheme support for practical engineering
applications and is expected to play an important role in the field of monitoring parts
of outdoor working machinery and equipment. In future work, we expect to develop a
more powerful equipment monitoring system by fusing multimodal data on the basis of
ADMM-1DNet to provide more comprehensive and reliable information for monitoring
signal fault identification.
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