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Abstract: Structures inevitably suffer damage after an earthquake, with severity ranging from minimal
damage of nonstructural elements to partial or even total collapse, possibly with loss of human lives.
Thus, it is essential for engineers to understand the crucial factors that drive a structure towards
suffering higher degrees of damage in order for preventative measures to be taken. In the present
study, we focus on three well-known damage thresholds: the Collapse Limit State, Ultimate Limit
State, and Serviceability Limit State. We analyze the features obtained via Rapid Visual Screening to
determine whether or not a given structure crosses these thresholds. To this end, we use machine
learning to perform binary classification for each damage threshold, and use explainability to quantify
the effect of each parameter via SHAP values (SHapley Additive exPlanations). The quantitative
results that we obtain demonstrate the potential applicability of ML methods for recalibrating the
computation of structural vulnerability indices using data from recent earthquakes.

Keywords: rapid visual screening; explainable AI; feature importance; SHAP

1. Introduction

During the last decades, due to the large amount of existing building stock, engineering
focus has shifted from analyzing and designing new structures to maintaining preexisting
buildings to modern standards of safety and serviceability [1]. As is well known, the results
of an earthquake can be catastrophic to society in terms of loss of human lives and require
large monetary reparations, with examples including the Turkey (Izmit) 1999, Athens 1999,
Pakistan 2005, and Turkey 2023 earthquakes.

Governments and authorities can take preemptive measures to mitigate these effects;
however, due to obvious limitations in resources and manpower, it is not possible to do
so for all existing buildings, especially in large urban areas. Thus, most countries have
introduced multi-stage procedures to assess and evaluate the total potential consequences
and losses from an earthquake, and thereby identify the most critical structures where
allocation of further resources should be prioritized.

As a first step in these methods a Rapid Visual Screening Procedure (RVSP) [2] is
usually performed, wherein experts quickly inspect buildings and identify key structural
characteristics that affect the overall seismic behaviour. For example, this could include
whether or not the structure has short columns or soft storeys, the presence of neighboring
buildings that could result in pounding effects, irregularities in the horizontal or vertical
plan of the building, and others [3,4]. Subsequently, these obtained characteristics are
weighted to compute a seismic vulnerability index which is used to rank the structures
according to their expected degree of damage [5]. Finally, the most vulnerable structures
that have been identified from the aforementioned steps are subjected to more accurate
analytical methods such as step-by-step dynamic analysis. These methods take into account
other structural characteristics, such as the design of structural reinforcement and quality
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of concrete, and yield an accurate assessment of the seismic vulnerability of the structures
under consideration. In turn, this allows for the identification of any potentially required
preemptive measures to be applied. However, they are prohibitively costly and time
consuming to apply to every structure in the population.

In USA, the Federal Emergency Management Agency (FEMA) first introduced such an
RVSP [2] in 1988, which has since been modified to include more structural features that af-
fect the overall seismic performance [6]. Countries with high seismic activity, such as Japan,
Italy, Canada, India, and Greece, have derived similar pre-earthquake assessments adapted
to the characteristics of their respective building stocks. The success of RVSP in screening
candidate structures for further analysis heavily depends on accurate calibration of the
weights of the structural characteristics. Thus, past researchers have used data from major
recorded earthquakes in conjunction with engineering expertise for this task [7,8]. Similarly,
for masonry buildings, both index-based [9] and physics-based [10] structural vulnerability
assessment studies have been conducted. The effect of the structural parameters of this
type of building on their structural vulnerability has been studied as well [11,12].

On the other hand, recent years have seen an increase in the use of Machine Learning
(ML) methods for the task of predicting the degree of damage of reinforced concrete
structures. Classification techniques have been previously employed to classify structures
into predicted damage categories. Harichian et al. [13] employed Support Vector Machines,
which they calibrated on dataset of earthquakes in four different countries. Sajan et al. [14]
employed a variety of models, including Decision Trees, Random Forests, XGBoost, and
Logistic Regression. Similarly, regression methods have been employed for this task.
Among others, Luo and Paal [15] and Kazemi et al. [16] used ML methods to predict the
interstorey drift, which can be used as a damage index.

Even though machine learning methods are powerful, they often lack the desired
interpretability. The path that a Decision Tree follows to reach its predictions can be
readily visualized; however, the same does not hold for more complex ML models. Thus,
explainability techniques and models have been employed in ML [17] in order to analyze
how these models weigh their input parameters when making a decision, thereby increasing
the reliability of their predictions. Among others, Mangalathu et al. [18] recently employed
Shapley additive explanations (SHAP) [19] to quantify the effect of each input parameter
on damage predictions of bridges in California. Sajan et al. [14] performed multiclass
classification to predict the damage category of structures and binary classification to
predict whether the damage was recoverable or reconstruction was needed. Subsequently,
they employed SHAP values to identify 19 of the top 20 most important features for both
tasks. However, the features they employed significantly deviated from those in the RVS
procedure, and lack many of the features employed in the present study.

The features employed in the present study have been used previously [20,21]; how-
ever, there is no consensus on the magnitude of the effect that each feature has on the
vulnerability ranking, with different researchers and different seismic codes employing
different values. In this paper, we implement explainable machine learning techniques and
SHAP values to analyze features’ contribution to the relative classification of structures in
the respective damage categories. To the best of our knowledge, the novel contribution
of the introduced approach is that it does not attempt to directly predict the damage cat-
egory. Instead, it considers the well known thresholds of the Serviceability Limit State
(SLS), Ultimate Limit State (ULS), and Collapse Limit State (CLS) to distinguish structures
that not only surpass the ULS threshold but suffer partial or total collapse which could
potentially lead to loss of human life. Moreover, machine learning is used to develop binary
classification models capable of distinguishing between adjacent damage categories.

The benefit of this modeling research effort in comparison with the previously es-
tablished literature is twofold. On the one hand, the obtained binary classifiers have
significantly improved accuracy compared to previous models. This higher accuracy en-
hances the reliability of the extracted feature importance coefficients, which is the main
focus of the present study. On the other hand, the binary classification approach allows
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us to examine each of the damage thresholds separately. This allows us to answer the
following questions: What are the deciding factors that lead a structure which would have
otherwise suffered minimal to no damage to cross the serviceability limit threshold? If
a structure does cross the serviceability threshold, what factors prevent it from crossing
the ultimate limit state threshold as well? Finally, if it does cross the ULS threshold, what
factors prevent it from ultimately collapsing?

2. Materials and Methods
2.1. Dataset Description

The dataset used in the present study is a sample consisting of 457 structures obtained
after the 1999 Athens Earthquake via Rapid Visual Screening (RVS) [20]. The selected
structures suffered damage across the spectrum, ranging from very low or minimal damage
to structures that partially or completely collapsed during the earthquake. The dataset
was drawn from different geographical region; thus, the local conditions varied across
the sample. In [20], the authors took steps to mitigate the effect on the study of potential
biases due to local effects. When sampling from a specific building block, they sampled
structures across the entire damage spectrum. This mitigated the effect of the location of
the structure on its seismic damage, as structures in the same building block had the same
local conditions. The degree of damage was labeled using four categories:

• Black: Structures that suffered total or partial collapse during the earthquake, poten-
tially leading to loss of human life.

• Red: Structures with significant damage to their structural members.
• Yellow: Structures with moderate damage to the structural members, potentially

including extended damage to nonstructural elements.
• Green: Structures that suffered very little or no damage.

An example of the application of the RVS procedure can be seen in Figure 1, courtesy of [20].

Figure 1. Application of Rapid Visual Screening in a specific area. Samples of structures across the
damage spectrum were drawn to mitigate local effects. Image courtesy of [20].

The distribution of structures across the above damage categories is shown in Figure 2.
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Figure 2. Distribution of structures across the damage spectrum.

For each structure, a set of attributes were documented, specifically:

1. Free ground level (Pilotis), soft storeys and/or short columns: In general, this
attribute pertains to structures wherein a storey has significantly less structural rigidity
than the rest. For example, this can manifest on the ground floor (pilotis) when it
has greater height than the typical structure storey, or when the wall fillings do
not cover the whole height of a storey, effectively reducing the active height of the
adjacent columns.

2. Wall fillings regularity: This indicates whether the infill walls are of sufficient thick-
ness and with few openings. The presence of such wall fillings is beneficial to the
structure’s overall seismic response, as during an earthquake they act as diagonal
struts that support the surrounding frames.

3. Absence of design seismic codes: In Greece, this pertains to pre-1960 structures which
were not designed following a dedicated seismic code.

4. Poor condition: Very high or non-uniform ground sinking, concrete with aggre-
gate segregation or erosion, or corrosion in the reinforcement bars are examples of
maintenance-related factors that can reduce the seismic capacity of a building.

5. Previous damage: This pertains to structures which had suffered previous earthquake
damages that was not adequately repaired. Although this is distinct feature from
“poor condition”, it causes a similar reduction in the nominal seismic capacity of
the building.

6. Significant height: This describes structures with five or more storeys.
7. Irregularity in height: This describes structures with a discontinuity in the vertical

path of the loads.
8. Irregularity in plan: This pertains to structures with floor plans that significantly

deviate from a rectangular shape, e.g., floor plans with highly acute angles in their
outer walls or with E, Z, or H-shapes. Irregularity in height, plan, or both can cause
excess seismic overload on the building.

9. Torsion: This affects structures with high horizontal eccentricity, which are subjected
to torsion during the earthquake.

10. Pounding: If adjacent buildings do not have a sufficient gap between them, and
especially if they have different heights, then the floor slabs of one building can ram
into the columns of the other.

11. Heavy nonstructural elements: These elements can potentially create eccentricities if
they are displaced during an earthquake, leading to additional torsion. This is because
even though these are nonstructural elements, they can often contribute to the total
mass and horizontal stiffness of the structure.

12. Foundation Soil: The Greek Code for Seismic Resistant Structures–EAK 200 [3] classi-
fies soils into categories A, B, C, D, and X. Class A refers to rock or semi-rock formations
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extending in wide area and large depth. Class B refers to strongly weathered rocks or
soils mechanically equivalent to granular materials. Classes C and D refer to granular
materials and soft clay, respectively, while class X refers to loose fine-grained silt [3].
In [20], as well as in the present study, soils in EAK category A are classified as S1,
while those in category B are classified as S2; soils in EAK categories C, D, and X were
not encountered.

13. The design Seismic Code: This feature describes the seismic code(s) that the structures
adhered to at the time of their design. Specifically, structures that were built before 1984
are classified as RC1, buildings constructed between 1985 and 1994 are labeled RC2,
and buildings constructed after 1995 are labeled RC3, as the Greek state introduced
updated seismic codes at these milestones.

Note that most of the above features are binary, i.e., the dataset provides a Yes/No
statement about whether or not the structure displayed the relevant feature. We trans-
formed these to Boolean values, i.e., {Yes, No} → {0, 1}. The design seismic code was
transformed to an integer value, i.e., {RC1, RC2, RC3} → {1, 2, 3}. Finally, in 452 out of
the 457 total documents, the authors of [20] noted the exact number of storeys instead of
whether or not this was ≥5. As this was deemed more informative, we opted to disregard
these structures (1.09% of the sample) and use this feature instead.

2.2. Data Preprocessing

The core of the designed and employed modeling effort lies in the development of
a Machine Learning (ML) model for binary classification f : Rn ×Rn → {−1,+1} that,
given a pair of structures (si, sj) with corresponding feature vectors xi, xj ∈ Rn, is capable
of predicting whether sj should rank higher than si or vice versa [22].

However, it can be readily observed from Figure 2 that the “Red” label heavily domi-
nates the sampled dataset. This so-called “class imbalance problem” has significant adverse
effects on any machine learning algorithm [23–26]. It leads the model to be skewed towards
the majority class, creating bias and rendering the algorithm unable to adapt to the features
of the minority classes [23,24]. This imbalance can be treated by undersampling the majority
class, and there are numerous methods in the literature in order to do so [27–29]. These
methods include randomly selecting a subset of the samples in the majority class [30,31],
or using model-based methods such as NearMiss, Tomek Links, or Edited Nearest Neigh-
bours [27–29]. NearMiss-2 was found to perform the best, and is used in the sequelae.
We undersampled the majority class by a factor of 50% in order to achieve a relative class
balance, which, as mentioned, is crucial to the performance of machine learning algorithms.
The distribution of structures across the above damage categories after undersampling is
shown in Figure 3.

Figure 3. Distribution of structures across the damage spectrum after undersampling.

Next, in order to represent the pair (xi, xj) using a single feature vector xnew as input
for the machine learning model, we considered the pairwise transformation T : Rn ×Rn →
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Rn with T(xi, xj) = xj − xi. Other pairwise transformations can be employed, e.g., T2 : Rn ×Rn →
R2n, with T2(xi, xj) = [xi; xj], i.e., appending xj to xi [32]. However, the transformation
employed in the present study has the advantage of a more natural interpretation, which
is the goal of this study. For a example, a value of 2 storeys in the transformed dataset
indicates that structure sj has two more storeys than si. Similarly, a transformed value of
−1 for the “pounding” attribute indicates that si suffered from pounding while sj did not.

A similar transformation was applied to the labels of the damage categories. To this end,
the labels where first ranked in ascending order, i.e., Green, Yellow, Red, Black → {1, 2, 3, 4}.
Then, for a pair of structures (si, sj) with (yi, yj) ∈ {1, 2, 3, 4}2 and yi ̸= yj, the transformed
target variable was ynew = sign(yj − yi), where sign denotes the sign function. Thus,
for example, a transformed variable of −1 indicates that sj suffered more severe damage
than si. As the focus of this research is to gauge the contribution of the involved parameters
to the extent of a structure’s relative damage, pairs with yi = yj were not included in the
transformed dataset.

Thus, the final transformed dataset had inputs Xnew and outputs ynew obtained via the
above transformations described.

2.3. Machine Learning Algorithm

In order to analyze the importance of each feature for the relative classification of each
pair of structures, we considered three different pairings of structures. Specifically, we
considered the subset consisting of the (Green, Yellow), (Yellow, Red), and (Red, Black)
structures. We did this because each of the labels has a very distinct definition: the Black and
Red structures correspond to the Collapse state and Ultimate Limit State (ULS), respectively,
while Yellow corresponds to the Serviceability Limit State (SLS). Thus, by using this pairing
our models learn to distinguish adjacent damage states and the features that lead to this
increase in damage. For each of these pairs, we performed the pairwise transformations
presented above. The number of structures in each pair and each transformed dataset is
shown in Table 1.

Table 1. Number of structures for each label pair and corresponding samples in the transformed dataset.

Pair Damage Threshold Number of Structures Samples in the
Transformed Dataset

(Green, Yellow) Serviceability Limit State (92, 69) 6348
(Yellow, Red) Ultimate Limit State (69, 102) 7038
(Red, Black) Collapse Limit State (102, 90) 9180

We constructed a binary classifier for each of the above pairs, as described in Section 2.2.
The subsequent analysis of the importance of the features of these classifiers helps to
determine the deciding factors that lead a structure to being in the Red rather than the
Yellow category, i.e., crossing the ULS and suffer heavy damage instead of only crossing the
SLS and suffering moderate damage. There are many classifiers available in the literature
to perform this task. In [22], the authors worked on the same dataset and analyzed a
variety of models. The best performing one was found to be the Gradient Boosting (GB)
Classifier [33], which is what we employing in the sequelae. GB is a powerful method that
learns a classifier incrementally, starting from a base model; specifically, it learns a function

f (x) =
N

∑
i=1

αihi(x; θi), (1)

where hi represents the individual “weak” models (Decision Trees [34]) that the algorithm
learns at each iteration, θi represents their parameters, N is the user-defined number of such
models, and αi represents the learned weights that produce the final linear combination.
The steps of the method are shown in Algorithm 1 [35]. The algorithm was implemented
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in Python programming language (v. 3.11.5) using the scikit-learn machine learning
library (v. 1.3.0) [36].

Algorithm 1 Gradient Boosting Learning Process [35]
Initialize f0(x)
for i = 1, 2, . . . , N do:

Compute wj(xj) =
∂L(yj ,F(xj))

∂F(xj)

∣∣∣
F(x)=Fi−1(x)

, j = 1, 2, . . . M

Compute θi = arg min
θ,µ

M
∑

j=1

[
−wj(xj)− µhi(x; θi)

]2

Compute αi = arg min
α

M
∑

j=1
L(yj, fi−1 + αhi(x; θi))

Update fi(x) = fi−1(x) + λαihi(x; θi))

end for

In the above algorithm, L is the loss function that measures the error between the
predictions and the true values, M is the number of samples the model is trained, on and
λ > 0 is the so-called “learning rate”, which modifies the contribution of each individual
tree [37].

2.4. Hyperparameter Tuning

As is evident from (1) and Algorithm 1, Gradient Boosting learns a number of pa-
rameters during its training, e.g., weights αi. However, there are a number of so-called
hyperparameters, i.e., parameters set by the user before training begins, such as the number
N of individual Decision Trees and the maximum allowed depth of each tree. The configu-
ration of these hyperparameters can reduce overfitting [38,39] and has a direct impact on
the overall accuracy of the model [40].

Thus, the importance of appropriately tuning of these hyperparameters to achieve
optimal results becomes clear. This has led to a variety of methods to address this process,
with reviews of the existing algorithms provided by Yu and Zhu [41] and by Yang and
Shami [40]. In this paper we opt for Bayesian optimization, as it does not search the
hyperparameter space blindly, instead using each iteration’s results in the next one, which
can lead to faster convergence to the optimal solution [42]. The implementation was carried
out using the dedicated Python library scikit-optimize [43] (v. 0.10.1).

2.5. SHAP

A common measure used to gauge the strength of each feature’s effect on the outcome,
which is the focus of the present study, is the so-called SHapley Additive exPlanation
(SHAP) [19]. This is the equivalent in the machine learning literature to the Shapley values
in cooperative game theory introduced by Lloyd Shapley in 1951 [44]. SHAP values provide
interpretability by constructing a simpler explainable model in the local neighborhood
of each point in the dataset. Thus, given a learned Machine Learning model f , a local
approximation g can be formulated as follows [19]:

g(u) = ϕ0 +
n

∑
i=1

ϕiui, (2)

where n is the number of features, u ∈ Rn is a binary vector whose value in the ith position
denotes whether or not the corresponding feature was used in the prediction, and ϕi denotes
the SHAP value of that feature, i.e., the strength of its contribution to the model’s output.
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The values of the ϕis, following the notation of Lundberg et al. [45], are computed as
follows: let N = 1, 2, . . . , n be the set of features used and let S ⊆ N be a subset of N; then,
we have [45,46]

ϕi = ∑
S⊆N\{i}

|S|!(n − |S| − 1)!
n!

[ f (S ∪ {i})− f (S)]. (3)

Intuitively, this corresponds to the weighted average over all feature combinations
(coalitions) of tpip inhe difference in the model prediction with and without the inclusion
of the ith feature.

As has been mentioned, the above ϕi values pertain to a specific point. For example,
considering the pair (Red, Black), there were 102 Red structures in the undersampled
dataset and 90 Black ones, yielding 90 × 102 = 9180 pairs, i.e., samples in the transformed
space, as shown in Table 1.

Thus, we have a matrix Φ ∈ R9180×13 in which each value ϕij is the SHAP value
of the jth feature calculated at the ith sample. Thus, in order to obtain an aggregated
value for the whole dataset, we used a normalized norm of each column in the matrix.
We compared the results obtained using the L1 norm (sum of absolute values), which
is the most commonly used in the literature, and the well known Euclidean norm L2,
which increases the contribution of larger values while simultaneously reducing the effect
of smaller noisy components. Thus, for each feature j = 1, 2, . . . , 13 we considered the
alternatives as obtained by Equation (4):

ϕij =


1
m

m

∑
i=1

|ϕij|, using L1

1
m

√
m

∑
i=1

ϕ2
ij, using L2

(4)

where m is the number of samples in the transformed space for each pair, as shown in
Table 1. The computation of the SHAP values was carried out using the dedicated Python
library by Lundberg et al. [47].

Thus, our overall proposed methodology comprises the following steps. For each
damage threshold: (1) obtain the transformed inputs Xnew and outputs ynew as described in
Section 2.2; (2) train the corresponding binary classification ML model using data for the
particular damage threshold; and (3) obtain the feature importance metrics of the trained
ML model using SHAP values via Equation (4).

3. Results

As previously stated, the main focus of this study is to analyze the importance of each
feature in deciding whether a structure will cross each of the respective damage thresholds.
As explained in Section 2.5, this is carried out using SHAP values, which offer just such a
quantification. However, the reliability of any feature importance analysis is directly related
to the performance of the model under consideration. If a model has poor performance,
then the way that it arrives at its predictions will not be very informative. On the other
hand, the higher a model’s performance, the closer its predictions are to the truth. Thus,
the extracted feature importance values are closely coupled with the underlying physical
phenomenon, and can be considered highly reliable.

To this end, the rest of this section is structured as follows. In the first part, Section 3.1,
we present the results of the hyperparameter tuning and the classification performance
metrics. Tuning the hyperparameters allows us to find the model with the highest accuracy
and the most reliable feature importance values. Subsequently, we present the accuracy
metrics obtained using the optimal values of the involved hyperparameters. This demon-
strates the high accuracy obtained by the models, especially in the most critical damage
categories, which enhances the reliability of the extracted feature importance values. Finally,
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in Section 3.2, we present the main results of this research based on the feature importance
values obtained from these models.

3.1. Binary Classifiers and Hyperparameter Tuning

As mentioned in Section 2.3, we constructed a binary classifier for each pair of labels
considered here, namely, (Green, Yellow), (Yellow, Red) and (Red, Black). Each of these
classifiers was tuned separately, and we optimized the following hyperparameters:

• max_depth: This is the maximum allowed depth of each individual Decision Tree; too
large or too small values can lead to overfitting or underfitting, respectively [48].

• n_estimators: This is the number of individual Decision Trees used in Gradient Boosting.
• min_samples_leaf: This is the minimum number of samples that must remain in an

end node (leaf) of each individual tree.
• learning_rate: This controls the contribution of each individual tree, as shown in Algo-

rithm 1. If the value is too large, the algorithm might overfit; however, a lower learning
rate has the trade-off that more trees are required to reach the desired accuracy.

Table 2 presents the tuning range of each hyperparameter as well as the optimal value
for each of the three classifiers considered here.

Table 2. Hyperparameter tuning.

Hyperparameter Tuning Range
Optimal Value per Pair

(Green, Yellow) (Yellow, Red) (Red, Black)

max_depth [3, 11] 3 5 3
n_estimators [50, 300] 297 50 293
min_samples_leaf [1, 10] 9 8 10
learning_rate [0.05, 0.25] 0.086887 0.120314 0.182278

Having obtained the optimal hyperparameter configuration, we trained and tested
our three models using five-fold cross-validation [49]. In this framework, the dataset is
split into five parts and each part is iteratively used as test set, while the remaining parts
are used for training. This ensures that the model’s predictions are always on unseen
data and reduces the sensitivity/variability of the obtained performance metrics. The
performance was measured using the well known classification metrics of Precision, Recall,
F1-score, Accuracy, and Area Under the Curve (AUC) [50], with the results shown in
Table 3. The results clearly show that the classifiers achieved high performance, especially
for the most critical pairs, i.e., (Red, Black) and (Yellow, Red). The accuracy with which the
model was able to distinguish between these two categories increases the reliability of the
feature importance analysis, which is the main focus of the study.

Table 3. Classification metrics for the binary classifier of each pair cross-validated on the whole dataset.

(Green, Yellow) (Yellow, Red) (Red, Black)

−1 +1 −1 +1 −1 +1

Precision 0.69585 0.76301 0.90943 0.86933 0.93992 0.90379
Recall 0.73221 0.72928 0.84995 0.92183 0.88501 0.95024
F1-score 0.71357 0.74576 0.87869 0.89481 0.91164 0.92644

Accuracy 0.73062 0.88732 0.91972
AUC 0.81451 0.95232 0.98128

3.2. Feature Importance

This subsection presents our main results analyzing of the importance of the RVS
features for the relative classification of structures, which we performed using the SHAP
values, as explained in Section 2.5. Note that there is some inherent variability in the
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computations of the ϕi, and consequently in ϕ from (3) and (4). This can stem from how
the algorithm splits the dataset between training and testing at each iteration or from the
computation of the SHAP values themselves. To mitigate the sensitivity of the results
to these factors, we performed 100 runs of our proposed methodology and averaged the
obtained feature importances. This heavily reduces the variability of the computations and
increases the reliability of the extracted feature importance values. Thus, we constructed a
matrix Θ ∈ R100×13, where θij is the value ϕj from (4) for the jth feature at the ith iteration.
From this, we calculated the average value per column/feature, i.e., we defined

λj =
1

100

100

∑
i=1

θij. (5)

Finally, in order to normalize these coefficients, we divided them with their sum, i.e.,

λi =
λj

13
∑

j=1
λj

. (6)

With this normalization, we now have 0 ≤ λi ≤ 1 and
13
∑

i=1
λi = 1; therefore, these

coefficients can be interpreted as the percentage of the contribution of the corresponding
features to the overall predictions of the model. We carried out the above using both of the
alternatives used in (4). The results are shown in Figure 4.

(a) (Red, Black) pair.

Figure 4. Cont.
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(b) (Yellow, Red) pair.

(c) (Green, Yellow) pair.

Figure 4. Feature importance coefficients λi as defined in (6) for the three damage label pairs:
(a) (Red, Black), (b) (Yellow, Red), and (c) (Green, Yellow).

This figure presents the comparative results of the contribution of each feature to the
model predictions expressed as a percentage of the total. As previously discussed, these
correspond to the mean contributions for all pairs of structures, which, given that we are
averaging over thousands of pairs, are representative of the the overall parameter effect on
seismic behaviour across the various limit states of all the structures in the dataset. The left
subfigures in Figure 4a–c pertain to L1, i.e., the absolute values of these features, while the
right subfigures pertain to L2, i.e., their squares. The results demonstrate a basic hierarchy
of the structural properties that influence the seismic vulnerability of the studied structures
and contribute to the observed degrees of damage. In general, the results are in agreement
with the existing structural mechanics literature and the seismic behaviour of reinforced
concrete structures. We analyze and discuss each of Figure 4a–c separately.

• Distinction between Red (ULS) and Black (Collapse): As can be seen from the left
part of Figure 4a, the most crucial factor overall for the Collapse Limit State is the
presence of soft storeys and/or short columns, with a weight of approximately 18%.
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The presence of regular infill panel walls, however, has an almost equal in magnitude,
but a positive effect, which is why the corresponding bar in the figure is hatched. This
is an important feature that helped prevent structures that crossed the ULS to cross
the CLS as well. Finally, the absence of design seismic codes, the number of storeys
in the structure, and the presence of an irregular plan all play import roles for this
damage threshold.
The right part of this feature displays an important distinction, as the absence of design
seismic codes is now the dominant feature, even if only slightly. This can be explained
in the following way. The absence of design seismic codes feature is indeed a crucial
factor, as is well known in the literature, and the model assigns high SHAP values to
it. However, not many structures were affected by this feature. Of the 452 structures
in our dataset, only 26 lacked a design seismic code. Of these, 20 (77%) crossed the
ULS, and 19 of those (95%) crossed the CLS as well. Thus, by taking the squares of
the SHAP values, as per the right figure of Figure 4a, we assign more weight to these
extreme SHAP values even though they pertained to only a limited number of cases.
It is important to note that there is not a noteworthy distinction in the other factors,
such as soft storeys/short columns, regularity of the infill panel walls, or structure
height, between the left and right subfigures of Figure 4a, as the corresponding SHAP
values are more balanced.

• Distinction between Yellow (SLS) and Red (ULS): As can be seen from Figure 4b,
the most important features by far are the presence of soft storeys and/or short
columns as well as the presence of regular infill wall panels. Soft storeys/short
columns had a detrimental effect, accounting for approximately 30% of the total.
On the other hand, regular infill wall panels had a beneficial effect with approximately
equal magnitude. This is in agreement with the established engineering literature,
as bricks walls help to reduce storey drift, and consequently decrease the overall
degree of damage. The absence of design seismic codes did not play an important role
in this case, as most structures that displayed this feature crossed the CLS as well, as
mentioned above. Pounding, on the other hand, had a contribution of approximately
15%. The height of the structure and potential preexisting poor condition accounted
for 7–8% each. Out of the thirteen total features, these five combined to account for
approximately 85% of the total in the model’s predictions. Finally, we note that in this
case the SHAP values are balanced, as the left and right subfigures, using L1 and L2,
respectively, show minimal differences.

• Distinction between Green (minimal to no damage) and Yellow (SLS): Finally,
the results for the distinction between structures that crossed the SLS (Yellow) and
those that suffered minimal to no damage are shown in Figure 4c. It can be seen that
the most important factors here are the existence and type of design seismic codes,
each of which account for approximately 20% of the total. This is in agreement with
the post-1985 Greek seismic codes, which enforce lower damage degrees for the same
earthquake design. Regular infill panel walls, soft storeys and/or short columns, and
the presence of adjacent structures that could lead to pounding were relevant here,
although the magnitude of their effect was only approximately 10%.

4. Summary and Conclusions

In this research, we have employed a novel machine learning methodology to approach
one of the problems commonly found in countries with high seismic activity, namely,
that of the preseismic structural assessment. Specifically, we performed an analysis of
how the features obtained in the Rapid Visual Screening procedure affect the seismic
vulnerability of structures. We specificallyfocused on three well-known damage thresholds:
the Serviceability Limit State, the Ultimate Limit State, and the Collapse Limit State,
to further emphasize structures that, in addition to crossing the ULS, suffered total or
partial collapse. We employed a pairwise approach to perform our analysis, creating pairs
from all structures belonging to adjacent damage categories, as shown in Table 1. We then
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used a Gradient Boosting Machine to create a binary classification model that learned to
distinguish structures for each of the above damage thresholds. As shown in Table 2, we
tuned some of the model’s hyperparameters to increase its performance. This led to the
model having high accuracy, especially in the higher damage categories.

As can be seen from Table 3, the model learned to distinguish the CLS threshold with
almost 92% accuracy; similarly, for the ULS threshold it displayed an accuracy close to 89%.
While the model’s performance dropped to 73% for the SLS, this is the least impactful of the
three damage thresholds in engineering practice. Finally, we used SHAP values to quantify
the effect of each of the features in our models’ predictions. The previously mentioned high
accuracy of our models, especially in the higher damage categories, enhances the reliability
of the subsequently extracted SHAP values.

In addition, the present study highlights the participation of various factors that con-
tribute to the overall structural vulnerability index as calculated via the RSVP. Qualitatively,
our results broadly agree with the previously established engineering literature. For the
CLS threshold, soft storeys/short columns, the height of the structure, absence of design
seismic codes, and irregularities in height and plan were the most impactful detrimental
factors. Regular infill wall panels were shown to have a very positive effect. For the ULS
threshold, the absence of a design seismic code did not have a significant influence, as
the vast majority of structures with this feature that crossed the ULS crossed the CLS as
well. Finally, the implementation of modern design seismic codes played a crucial role in
preventing structures from crossing the SLS threshold.

The quantitative results obtained via the application of ML methods and SHAP values
demonstrates the potential applicability of this approach for recalibrating the computation
of structural vulnerability indices using data from recent earthquakes. The method imple-
mented in the present paper pertains to reinforced concrete structures with a particular set
of input features; however, it could be implemented in an identical manner using a different
set of input features, for example, in countries where other parameters are deemed more
important. It could also be employed in different structural types altogether, for example,
in masonry buildings commonly found in traditional communities.
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