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Abstract: In this work, we aimed to establish a stable and accurate procedure with which to perform
feature selection in datasets with a much higher number of predictors than individuals, as in genome-
wide association studies. Due to the instability of feature selection where many potential predictors
are measured, a variable selection procedure is proposed that combines several replications of
shrinkage regression models. A weighted formulation is used to define the final predictors. The
procedure is applied for the investigation of single nucleotide polymorphism (SNP) predictors
associated with Alzheimer’s disease in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset. Furthermore, the two following data scenarios are investigated: one that solely considers
the set of SNPs, and another with the covariates of age, sex, educational level, and ε4 allele of the
Apolipoprotein E (APOE4) genotype. The SNP rs2075650 and the APOE4 genotype are provided as
risk factors for Alzheimer’s disease, which is in line with the literature, and another four new SNPs
are indicated, thus cultivating new hypotheses for in vivo analyses. These experiments demonstrate
the potential of the new method for stable feature selection.

Keywords: penalized regression; Akaike’s information criterion; high-dimensional data; stability;
overall weighted coefficients; Alzheimer’s disease; SNP

1. Introduction

Selecting the relevant variables for modeling health outcomes and estimating the
effects of said outcomes both frequently cause problems, with many inconsistencies regard-
ing the best choice of the type of analysis, which becomes more acute with genetics due to
the enormous volume of potential predictor variables. This problem is a driving force of
our research.

A genetic variant is an alteration of a human DNA sequence that is shared by at least
1% of the population; this threshold emphasizes that the variant is not limited to a small
number of people in which the alteration could have appeared via a de novo mutation, but
is rather a genetic polymorphism among humans. Given that this variability is inherited
and not caused by the environment, it is expected that genetic variants are responsible for
all kinds of phenotypic variability within the species.

Many human diseases, although not exclusively caused by genetic factors, can be
influenced by the genetic backgrounds of patients, e.g., some genes might exhibit DNA
sequence variants that cause subliminal effects on their function, adding susceptibility to
the individuals’ diseases; some DNA sequence variants might cause compensatory effects
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towards previous variants, thus leading to a lower probability of developing the condition;
some DNA genetic variants might have better detoxification enzymes (again, due to genetic
variants of those enzymes’ genes) and thus might even influence the effectiveness of the
drugs given to the individuals in order to treat that same condition. All these differences
will stratify the population according to disease susceptibility and prognosis and therapy
outcomes, making DNA sequence variants particularly relevant for achieving more effective
(personalized) medicine. Additionally, increasing our knowledge of the complex network
of variants–genes–environment interactions relating to a particular disease is bound to
improve our knowledge regarding the pathophysiology of the disease itself, with obvious
gains in the advancement of biomedicine.

Alzheimer’s disease (AD) is a neurodegenerative condition that is initially charac-
terized by memory impairment and cognitive decline, followed by behavior, speech, vi-
suospatial orientation, and motor system alterations. It is a complex disorder, and its
cause is multifactorial—both environmental and genetic factors can influence its onset [1,2].
One of the most challenging tasks of genetics research has been to uncover the genetic
background of such diseases. Indeed, this is particularly challenging due to gene–gene
and gene–environment interactions that can diminish and/or modulate the influence of
individual genes or variants on the individual’s phenotype. Since most of these diseases
would benefit from early diagnosis, meaning disease progression can be decelerated, it
is important to be able to predict AD prior to the initial symptoms, making genetic risk
calculation an appealing hypothesis. Nevertheless, the genetic variants that were associated
with AD until present have a very low predictability power, due to the above-mentioned
limitations, and it is therefore of great importance to obtain better statistics for this purpose.

Genome-wide association studies (GWAS) are populational studies in which individ-
ual DNA variants are tested for association with a particular trait. This is achieved by
comparing, variant by variant, the allelic frequencies of the affected or unaffected subjects,
specifically looking for discrepancies. Whenever an SNP exhibits a positive association
with a trait, the alternative allele will be more frequent in people with that trait than in those
without it. In recent years, GWAS have been conducted with genome-scale datasets of ge-
netic variants (e.g., single nucleotide polymorphisms—SNPs). The statistics utilized within
GWAS frequently use a model of regression; specifically, a logistic model for case/control
designs or qualitative traits, and a linear model for quantitative ones. This allows for the
inclusion of covariates, which can then accommodate for confounder effects or exclude
any already known mediators of the studied trait. Most of these studies have relied on
approaches consisting of the univariate analysis of the association of each SNP with the
phenotype. Consequently, the possibility of a correlational and interactional structure
between SNPs is not taken into account [3]. This type of approach is not particularly
well suited for the detection of small effects [4], which can only become evident in the
presence of other causal effects. In univariate approaches, multiple tests are performed
independently, making it essential to correct the significance level in order to reduce the
probability of type I errors (false positives). Frequently, however, the correction methods
(e.g., Bonferroni) are too conservative, meaning it is not possible to detect any significant
effects [3], which can consequently lead to a paradoxical increase in type II errors (false
negatives) [5]. Another challenge in finding a plausible method to apply to genetic data is
due to its high dimensionality; the number of variables (i.e., SNPs) is much higher than the
number of individuals (n << p). Consequently, models are formed that can adjust data
well, but that have poor predictive ability when applied to new data (overfitting and high
variability). There are also correlational structures between the predictor variables, which
can lead to multicollinearity problems [6]. Furthermore, traditional multivariate regression
models were not designed to deal with these problems. Therefore, to apply them to high
dimensionality genetic data is not suitable.

One way to deal with the above-mentioned problems are penalization techniques,
which have already been applied in the context of GWAS [3,7]. Penalization techniques refer
to methods used to introduce a penalty or constraint on the model parameters during the
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training process. These techniques help to control the complexity of a model, reduce the risk
of overfitting, and improve its generalization performance on unseen data. The penalized
logistic regression combines traditional logistic regression with this penalty term in order
to simultaneously perform classification and gene selection. This technique signifies the
choice of a penalty parameter (λ), usually via cross-validation procedures, which define the
extent of the predictor coefficient shrinkage. The Least Absolute Shrinkage and Selection
Operator (LASSO) method was proposed by Tibshirani [8], and is a penalization technique
that imposes an L1—norm penalty. LASSO allows the explicit model simplification and,
consequently, the interpretability improvement of the model once the insignificant predictor
coefficients are forced to be equal to zero. For these reasons, the LASSO method has become
very popular in high-dimensional data. However, this method does have limitations. For
example, it cannot select more variables than the sample size. In the context of GWAS,
there are high correlations between variables due to linkage disequilibrium or putative
group structures. This leads to an instability in the selection of highly correlated variables
via the LASSO method, since it arbitrarily only selects up to a few predictors, ignoring
the others [5,9]. Ridge, proposed by Hoerl and Kennard [10], is a penalization technique
that uses an L2—norm penalty. In contrast with the LASSO method, Ridge does not have
sparse properties in terms of the coefficients estimates as none of them are equal to zero [11].
However, Ridge deals with higher correlations between predictors much better since it
shrinks the coefficients of the correlated predictors. To achieve a technique with better
performance, Zou and Hastie proposed a novel tool that consists of a linear combination
of an L1—norm penalty and an L2—norm penalty, which is known as Elastic-Net [12].
In Elastic-Net regression, the balance between the L1 and L2 regularization penalties is
controlled by the α parameter, which has a scalar value ranging from 0 to 1. Elastic-Net
can achieve sparse coefficient estimates and can work appropriately with the correlations
between predictors [11]. While LASSO regression (α = 1) excels in variable selection by
forcing some coefficients to be equal to zero, Elastic-Net regression (0 < α < 1) provides a
compromise between LASSO and Ridge regression, allowing for variable selection, while
also handling multicollinearity more effectively.

As mentioned above, penalized regression models provide the choice of a penalty
parameter (λ), usually through via cross-validation procedures, which establishes the
estimation of predictors coefficients and, consequently, the selection of the most important
predictor variables. The penalization parameter is sensitive to the data, and, in each
iteration of cross-validation, a different parameter value can be chosen. As a result, in
each iteration of cross-validation, the variable selection is not the same. In general, several
runs of the same procedure led to different results, which means that the procedure is not
stable. Additionally, the choice of the analysis method can affect the number and type
of the selected features, the coefficient estimates, and the accuracy and precision of the
coefficient estimates, and the performance depends on the characteristics of the data [13].

Developing procedures that have been adapted to a large volume of data, which have
stability in the identification of influential predictor variables and in the estimation of their
explanatory effects, is imperative.

Therefore, the main goal of this work is to provide a new shrinkage regression pro-
cedure with stable variable selection for structures with a much higher number of vari-
ables than individuals. This procedure will then be applied as a proof of concept to the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) public dataset in order to identify the
SNPs that are associated with AD, thus circumventing the above-mentioned limitations.

2. Materials and Methods

ADNI genotype data. The data used in this study were obtained from the ADNI
public dataset; more specifically, from the ADNI-1 study (https://adni.loni.usc.edu/about/
adni1/, accessed on 1 February 2023). The individuals in this dataset underwent geno-
typing via the Illumina Human610-Quad BeadChip. The dataset contains the genotypic
information of 599,011 SNPs from 757 individuals; 344 individuals had been diagnosed
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with Alzheimer’s disease (IAD), 210 individuals were perceived as cognitively normal
(ICN), and 203 individuals had mild cognitive impairment (IMCI).

The data were submitted to quality control and population stratification, which were
carried out in accordance with the procedure described by Anderson and others (2010) [14],
and was conducted using the PLINK software [15] (version 1.9). To perform our study, we
considered genotypic data from IAD and ICN individuals with western European ancestry,
and information regarding probes that were dedicated to copy number variation was
excluded. During the quality control procedure, a total of 103 samples were excluded. The
exclusions were made as follows: 2 samples due to gender discrepancies; 96 samples due to
divergent ancestry; 16 samples with a heterozygosity rate higher than expected; 2 samples
due to non-reported relatedness to another participant of the study; and 4 samples with
more than 5% missing genotypes. Additionally, for the initial 599,011 genotyped SNPs,
we used filters to allow for the exclusion of SNPs with a missing rate higher than 5%
(19,406), deviation from the Hardy–Weinberg equilibrium (130), and for having a minor
allele frequency lower than 5% (61,218). The criteria used in data filtering and variable
selection aligned with the guidelines for GWAS [16]. Also, the missing rate of genotyped
SNPs was compared between cases (IAD) and controls (ICN), and no significant differences
were detected [14]. An imputation was made to fill in missing genotypes using the bigsnpr
R package, namely the snp_fastImpute method with the default parameters. Therefore, the
final database was composed of 451 individuals, with 163 ICN (36.1%), 288 IAD (63.9%),
and 518,257 SNPs.

Dataset handling. The data were divided into the two following datasets: a training
set and a test set. The training set included 70% of the initial sample (116 ICN—36.7%;
200 IAD—63.3%), and was used to perform variable selection, as well as to build the prediction
models. The test set included the remaining 30% (47 ICN—34.8%; 88 IAD—65.2%), and was
used to assess the performance of the prediction models. This division was made randomly,
and was stratified by the attributes of the dependent variable (IAD and ICN) in order to
maintain the correct proportion of cases and controls.

Stable variable selection method with shrinkage regression. The proposed method
analyzes and combines the results of the repeated applications of a penalized regression
model on the training dataset.

The main objective of our procedure is to identify the most important variables and to
define the corresponding regression coefficient using a measure of the relative quality of fit of
each model. Variables that are selected more often in higher quality models will have greater
potential to be selected for the final model. In fact, the “variable weight” (defined below)
depends not only on the frequency of the selection of the variable in all models, but also on the
inherent quality of the fit of each model. Therefore, the proposed variable selection procedure
is more restrictive than the usual correspondent penalized regression approach.

The final regression coefficient of the relevant variables is calculated based on the
coefficients obtained in each repetition of the penalized regression model. Following
the same reasoning as the selection of the relevant variables, the coefficients associated
with better quality models will greatly contribute to the overall value of the coefficient
of the predictor variable. This final coefficient indicates whether the variable contributes
positively or negatively to the outcome of the study. In the practical application being
analyzed, this coefficient allows us to conclude whether the variable is a risk factor or a
protection factor for Alzheimer’s disease.

In short, from several sets of selected variables, a single set of (the most relevant)
variables is obtained, with a regression coefficient being assigned to each one.

To enhance the clarity of the process, the description of the proposed procedure was
divided into three steps. First, several runs of the same penalized regression method are
performed, and the result of each model is associated with a relative goodness-of-fit weight
(step 1). Then, a global weight is assigned to each variable, defined as the sum of the
weights of all the penalized models in which the variable was selected, representing its
relative importance across the penalized models. If a variable’s weight exceeds a defined
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threshold, it is then selected for the final model (step 2). The coefficient estimate for
each selected variable is determined as the average of its estimated coefficients in each
penalized model, weighted by the relative goodness-of-fit weight of the model (step 3). The
procedure is detailed below, and the graphical summary of the algorithm is available in the
Supplementary Materials.

Penalized regression models (Step 1). Repeated applications of a penalized regression
model are conducted on the training dataset. Each repetition of the penalized regression
model generates a set of predictor variables, which may not be the same. The Akaike’s
information criterion (AIC) was calculated for each model, and the difference between the
AIC and the AIC of the best model was calculated (a higher AIC means a lower fitness):

∆i = AICi − AICmin (1)

The smaller this difference, the better the model’s fit for the data. These differences
allowed us to obtain the Akaike’s weight for each model using the following equation:

w′i =
exp

(
− 1

2 ∆i

)
∑R

r = 1 exp
(
− 1

2 ∆r

) . (2)

Now, the higher the value of this measure, the better the model’s quality of fit. The
model Akaike’s weight is used in the next steps to define the variables across all penalized
models and the regression coefficient in the final model.

Stable variable selection (Step 2). At this point, for each α-penalized regression
technique, we obtained R models, and each one was assigned an Akaike’s weight. The next
challenge was how to combine these weights for the estimation of the relative importance
of each predictor. We defined the variable weight as the sum of the Akaike’s weight of all
repeated penalized models in which the variable appears.

wj = ∑R
i = 1 w′iaij, j = 1, . . . , p. (3)

where
[
a1j, a2j, . . . , aRj

]
is an indicator vector of the non-null jth coefficient, and p is the

number of variables. The criterion for classifying a variable as important was its weight,
wj, being at least 0.8. This importance threshold, in general, demonstrated good properties,
allowing the minimization of the occurrence of type I and II errors [17].

Model coefficients estimation (Step 3). In the final model, only the important pre-
dictors were considered; that is, the predictors with a weight of at least 0.8. For these, the
estimated coefficient was defined by an overall weighted coefficient as follows:

β =
∑R

i = 1 w′i β̂i

∑R
r = 1 w′i

, (4)

where β̂i is the coefficient estimate of the predictor in the model obtained in run i, and w′i
is the Akaike’s weight of that model. For each of the estimated parameters, β, a weighted
variance was also calculated as follows:

ˆvar(β) =
∑R

i = 1 w′
i
(

β̂i − β
)2

∑R
r = 1 w′

i
. (5)

Therefore, it was possible to calculate an asymptotic Z confidence interval for each
estimated parameter. The significance level used was 5%.

CI95% = β ± z0.025 ×
√

ˆvar(β). (6)

Models’ performance metrics and comparison. We analyzed the training dataset,
which consisted of 316 individuals (116 ICN; 200 IAD) and 518,257 SNPs. The proposed
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procedure was applied for the two following scenarios: one considering only the SNPs
(from here on referred to as “Scenario SNPs”), and another considering SNPs that was
adjusted to also consider the covariates of age, sex, educational level, and APOE4 genotype
(here on referred to as “Scenario SNPs + Cov”). Therefore, for each value of the α parameter,
two final models were proposed. The performance of the models was evaluated on the test
dataset, focusing on the area under the curve (AUC), the accuracy, and the F1-measure.

Traditional logistic regression (without shrinkage) is one of the most used methods
with which to model binary outcomes; however, it can only be used when the number of
variables is lower than the number of observations. To overcome this issue, a penalized
regression technique can be applied before traditional logistic regression. We compared
each final model with the corresponding traditional logistic regression model, built based
on the same set of selected variables, in order to discuss the impact of shrinkage on the
estimation of the coefficients (effect sizes). We also compared the two models using the
above-mentioned performance metrics.

Technical details. The
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techniques, namely LASSO (α = 1) and Elastic-Net (0 < α < 1), for the α values in the grid
{0.75, 0.50, 0.25, 0.10, 0.05, 0.01}. For each value of α, we obtained R = 100 models. For each
model, the value of the penalization parameter was achieved via a 10-fold cross-validation,
and the model with the lowest validation error (deviance) was chosen. The generalized
linear models, made via the penalized maximum likelihood, were obtained using the
cv.glmnet R function, available in the glmnet package, using the default parameters.

3. Results

As expected, multiple runs of the same α-penalized regression procedure led to
different results, confirming the instability of such procedures in contexts where the number
of variables (i.e., SNPs) is much higher than the number of individuals. Indeed, there was
a large variability in the number of selected variables across the 100 penalized regression
models, both in cases where models were fitted to covariates (Scenario SNPs + Cov) and in
which they were not (Scenario SNPs).

As shown in Table 1, for all values of α, there was a large dispersion in the number
of selected variables. For example, in Scenario SNPs and α = 0.01, the number of selected
variables ranged from 0 to 6886. In both scenarios, the range and the maximum number of
selected variables generally increased as the α value decreased. In relation to the median
number of selected variables, a tendency to increase as the value of α decreased was also
observed in Scenario SNPs + Cov. Although this trend was not observed in the SNP
scenario for alpha values ranging between 0.05 and 1, the median number of the selected
variables increased substantially for the model where α = 0.01 (Figure 1).

Table 1. Minimum, maximum, and median number of selected variables in 100 penalized regression
models, organized by alpha value, for each scenario: models considering only SNPs (left); and models
adjusted to covariates age, sex, educational level, and APOE4 genotype (right). Results are shown as
the median (minimum–maximum).

Alpha Parameter
Number of Selected Variables

Scenario SNPs Scenario SNPs + Cov

0.01 4958 (0–6886) 4843 (9–6399)
0.05 9 (1–779) 156 (9–1427)
0.10 41 (0–225) 107 (5–419)
0.25 48 (0–153) 61 (4–207)
0.50 33 (0–70) 49 (4–103)
0.75 22 (1–52) 6 (1–14)

1 27 (0–45) 16 (1–66)
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Figure 1. Distribution of the number of selected variables in 100 penalized regression models,
organized by alpha value (α), for each scenario: (a) models constructed considering only the SNPs;
and (b) models adjusted to the covariates age, sex, educational level, and APOE4 genotype.

Regarding the final models, which were built based on the proposed procedure, the
largest number of selected variables occurred when α = 1 (with 11 variables) in Scenario
SNPs, and when α = 0.01 and α = 0.05 (with 9 variables) in Scenario SNPs + Cov. In the
latter scenario, the APOE4 genotype covariate was always selected. It should be noted that,
in the SNP scenario, there were several alpha values for which no variables were selected
(Table 2).

Table 2. Number of selected variables for each final model, organized by alpha parameter, for the two
scenarios: model considering only SNPs (left); and model adjusted to covariates age, sex, educational
level, and APOE4 genotype (right). Scenario SNPs + Cov results are shows as number of SNPs +
number of covariates.

Alpha Parameter
Number of Selected Variables

Scenario SNPs Scenario SNPs + Cov

0.01 0 8 + 1
0.05 1 8 + 1
0.10 0 4 + 1
0.25 0 3 + 1
0.50 0 3 + 1
0.75 1 0 + 1

1 11 2 + 1

The magnitude of the coefficient estimates on the proposed models increased as the
value of α increased. In general, as the alpha value increased, the odds ratio deviated
further from the value 1 (Figure 2(a1,b1)). A high similarity existed between the selected
variables in both scenarios. The main difference was that the model fitted in Scenario SNPs
+ Cov contained the covariate APOE4 genotype, instead of the SNPs rs6090754, rs1052242,
and rs4982401. Naturally, the magnitude of the coefficient estimates was higher in the α = 1
model and, consequently, the risk and protection effects were increased.
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from the value 1 (Figure 2(a1,b1)). A high similarity existed between the selected variables 
in both scenarios. The main difference was that the model fitted in Scenario SNPs + Cov 
contained the covariate APOE4 genotype, instead of the SNPs rs6090754, rs1052242, and 
rs4982401. Naturally, the magnitude of the coefficient estimates was higher in the α = 1 
model and, consequently, the risk and protection effects were increased. 

As expected, due to the shrinkage, the protective and risk effects were always lower 
in our approach than in the traditional logistic regression approach (Figure 2).  
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Figure 2. Odd Ratio (OR) and 95% confidence interval of the variables selected in each final model,
organized by alpha value, for the two scenarios: (a1) Scenario SNPs and (b1) Scenario SNPs + Cov;
and for the corresponding traditional logistic regression model: (a2) Scenario SNPs and (b2) Scenario
SNPs + Cov. The grid of α values was {0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 1}.

As expected, due to the shrinkage, the protective and risk effects were always lower in
our approach than in the traditional logistic regression approach (Figure 2).

The bets performance for Scenario SNPs + Cov was achieved when α = 0.01. In the
case of Scenario SNPs, an overall better result was achieved when α = 1 than for lower
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values of α. Overall, regression models defined for Scenario SNPs + Cov had a better
performance than those for Scenario SNPs (Figure 3).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 12 
 

 
Figure 3. AUC and corresponding 95% confidence interval, accuracy and corresponding 95% confi-
dence interval, and F1-measure (from left to right) for each final model (black) and for the corre-
sponding logistic regression model (gray) for two scenarios: (a1–a3) Scenario SNPs; (b1–b3) Sce-
nario SNPs + Cov. Results are organized by alpha values in grid {0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 1}. 

4. Discussion 
In this work, a stable variable selection method with shrinkage regression was pro-

posed and applied to the ADNI public dataset. Based on the repeated applications of a 
penalized regression model, we designed a procedure that measured the relative im-
portance of each selected variable via the combination of the results of all the penalized 
regression models. Through its design, the procedure highlights the most commonly se-
lected variables, giving greater emphasis to the ones selected in the models that best fit 
the data. Since the proposed procedure is more restrictive than the usual correspondent 
penalized regression approach, stability is favored during variable selection. 

The penalized regression models were constructed using LASSO (α = 1) and Elastic-
Net (0 < α < 1) methods for α values in the grid {0.75, 0.50, 0.25, 0.10, 0.05, 0.01}. The alpha 
parameter controls the balance between the L1 and L2 regularization penalties; α = 1 forces 
some variable’ coefficients to be equal to zero, thus leading to a smaller number of selected 
predictors; and, in general, the number of selected variables increases as the α value de-
creases. 

For each specific value of 𝛼, a large dispersion in the number of selected variables 
was observed in relation to the 100 penalized regression models. The designed procedure 
allowed us to overcome this instability by defining a single set of predictor variables which 
were restricted to the most important variables across all the penalized models. 

In analyzing the final models across the α values, differences were found in the set of 
the selected variables. A more in-depth analysis showed that the variables’ rank by their 
weights, as defined in step 2, is the same across all α values. This means that some varia-
bles were not flagged as important due to the restrictive cutoff value (defined as 0.8), and, 
therefore, they were not included in the final model. The lack of consistency between the 
α models can be overcome via adjusting the threshold value for the α parameter. 

Figure 3. AUC and corresponding 95% confidence interval, accuracy and corresponding 95% con-
fidence interval, and F1-measure (from left to right) for each final model (black) and for the corre-
sponding logistic regression model (gray) for two scenarios: (a1–a3) Scenario SNPs; (b1–b3) Scenario
SNPs + Cov. Results are organized by alpha values in grid {0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 1}.

When comparing the proposed model with the corresponding traditional logistic
regression model, the performances were similar. In truth, the proposed models show a
slightly better performance with higher values of the AUC and the F1-measure (Figure 3).
It should be noted that the traditional logistic regression model was obtained via the prior
selection of variables and was achieved with the proposed approach.

4. Discussion

In this work, a stable variable selection method with shrinkage regression was pro-
posed and applied to the ADNI public dataset. Based on the repeated applications of
a penalized regression model, we designed a procedure that measured the relative im-
portance of each selected variable via the combination of the results of all the penalized
regression models. Through its design, the procedure highlights the most commonly se-
lected variables, giving greater emphasis to the ones selected in the models that best fit
the data. Since the proposed procedure is more restrictive than the usual correspondent
penalized regression approach, stability is favored during variable selection.

The penalized regression models were constructed using LASSO (α = 1) and Elastic-
Net (0 < α < 1) methods for α values in the grid {0.75, 0.50, 0.25, 0.10, 0.05, 0.01}. The
alpha parameter controls the balance between the L1 and L2 regularization penalties; α = 1
forces some variable’ coefficients to be equal to zero, thus leading to a smaller number of
selected predictors; and, in general, the number of selected variables increases as the α

value decreases.
For each specific value of α, a large dispersion in the number of selected variables

was observed in relation to the 100 penalized regression models. The designed procedure
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allowed us to overcome this instability by defining a single set of predictor variables which
were restricted to the most important variables across all the penalized models.

In analyzing the final models across the α values, differences were found in the set
of the selected variables. A more in-depth analysis showed that the variables’ rank by
their weights, as defined in step 2, is the same across all α values. This means that some
variables were not flagged as important due to the restrictive cutoff value (defined as 0.8),
and, therefore, they were not included in the final model. The lack of consistency between
the α models can be overcome via adjusting the threshold value for the α parameter.

As expected, for each fixed α, there were differences between scenarios with and
without the inclusion of the covariates age, sex, educational level, and APOE4 genotype
(Scenario SNPs and Scenario SNPs + Cov, respectively). In general, the results were consis-
tent for the common SNPs of the two scenarios proposed; the significance of the coefficients
and the effects of the variables (risk or protection) remained the same (Figure 2(a1,b1)). The
same was verified in relation to the corresponding traditional logistic regression model.

When analyzing the predictors selected by our procedure in greater detail, particularly
those observed for higher α values, and when comparing these results with the literature,
some interesting results emerge. Both the SNP rs2075650 and the APOE4 genotype are
referenced in the literature as risk factors for AD [18,19]. The first factor was selected
for our procedure in both scenarios (Scenario SNPs and Scenario SNPs + Cov). The OR
estimates obtained by the proposed procedure were, as expected, lower than those obtained
with the traditional regression procedure both in this work and in the literature (e.g., in
reference [18], OR = 4.178 and 95% CI 1.891–9.228). The second risk factor mentioned
above, the APOE4 genotype, was also selected in the construction Scenario SNPs + Cov
regression model.

In addition, the SNPs rs573399 and rs11906462 were identified as important variables
in the two scenarios and, in both cases, as risk factors for AD. Also, rs12054808 and rs486512
were selected consistently with an odds ratio less than one, which indicates an anticipated
protective effect for AD. These SNPs were not found to be associated with AD in the
literature. Since the proposed variable selection procedure is more restrictive than the usual
correspondent penalized regression approach, we believe that the selected variables have
potential to be tested as genetic predictors of AD.

The proposed procedure for feature selection can thus be advantageously applied
to other contexts where a very high number of predictors exist in relation to the number
of individuals under study. It is well known that, in such contexts, the usual feature
selection methods are unstable, i.e., the same dataset yielding distinct results. Our results
demonstrate the potential of this new procedure to overcome this issue, outperforming
other methods in terms of the stability of variable selection.
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