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Abstract: Predicting metro traffic flow is crucial for efficient urban planning and transit management.
It enables cities to optimize resource allocation, reduce congestion, and enhance the overall commuter
experience in rapidly urbanizing environments. Nevertheless, metro flow prediction is challenging
due to the intricate spatial–temporal relationships inherent in the data and the varying influence
of external factors. To model spatial–temporal correlations considering external factors, a novel
spatial–temporal deep learning framework is proposed in this study. Firstly, mutual information is
utilized to select the highly corrected stations of the examined station. Compared with the traditional
correlation calculation methods, mutual information is particularly advantageous for analyzing
nonlinear metro flow data. Secondly, metro flow data reflecting the historical trends from different
time granularities are incorporated. Additionally, the external factor data that influence the metro
flow are also considered. Finally, these multiple sources and dimensions of data are combined and
fed into the deep neural network to capture the complex correlations of multi-dimensional data.
Sufficient experiments are designed and conducted on the real dataset collected from Xi’an subway to
verify the effectiveness of the proposed model. Experimental results are comprehensively analyzed
according to the POI information around the subway station.

Keywords: metro flow prediction; mutual information; spatiotemporal correlations; external
factors; transformer

1. Introduction

Urban rail transit is an important means of transportation in modern times. Due to the
high cost of opening a new line [1], analysis of passenger flow is helpful to make full use of
existing urban rail transit and to improve route planning, so as to improve its efficiency.
Therefore, it is particularly important to analyze its passenger flow and predict it.

The main factors affecting the passenger demand include space, time, and semantic
factors [2]. From the perspective of space, urban areas can be divided into residential areas,
commercial areas, industrial areas, scenic areas, and other functional areas. In different
urban functional areas, the distribution of subway stations and the demand for taking
subways are different. Passenger demand between areas with similar urban functions
is related [3]. In addition, passenger demand between adjacent stations is correlated. If
the passenger demand of the first few stations is large, there is a high probability of high
passenger demand at the next station [1]. From the perspective of time, subway passenger
demand between different stations may change over time. Aside from time and space
factors, whether residents choose to take the subway is also subject to a variety of semantic
factors, including meteorological factors, traffic control for holidays and special activities,
and other factors [4], such as location conditions and textual semantic information [5,6].
Therefore, the difficulty and key point of accurately predicting subway passenger demand
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is to fuse semantic-rich nonlinear features and dynamically model the spatial–temporal
correlation of data.

There are three main types of methods to predict metro flow: statistical methods,
traditional machine learning methods, and deep learning methods. To predict metro flow,
traditional methods like the simple moving average (MA) [7], autoregressive moving
average (ARMA) [7,8], autoregressive integrated moving average (ARIMA), and their
variants [7–9] are used. For example, Tang et al. used the ARIMA method in terms of
varying features, forecasting steps, and forecasting horizons [9]. Nevertheless, metro flow
data is usually nonlinear. This means that the linear assumption of these models limits
their prediction accuracy.

To understand nonlinear dependencies in metro flow data, researchers have studied
machine learning approaches like multilinear regression (MLR) [10], support vector re-
gression (SVR) [9], logistic regression (LR) [11], support vector machines (SVMs) [12,13],
decision trees (DTs) [14], the hidden Markov model (HMM) [15], and back propagation neu-
ral networks [16]. These methods overcome the limitations of the linear assumption of data.
Nevertheless, the traditional machine learning methods often rely on feature extraction
and selection, and they can only capture shallow nonlinear dependencies. Predicting traffic
accurately is very difficult because we cannot capture detailed patterns in big datasets. This
limits the use of accurate metro flow prediction.

Deep learning is a powerful machine learning technique. It has great potential for
predicting metro flow [17]. Deep learning can automatically model complex relationships
between stations and time intervals. For instance, Xiong et al. proposed a real-time metro
flow prediction model using a convolutional neural network (CNN) to predict an urban
rail transit passenger flow time series and spatial–temporal series [18]. Recurrent neural
networks (RNNs) have emerged as the preferred neural network for temporal dependen-
cies [19]. Nevertheless, traditional RNNs have the problem of gradient disappearance and
gradient explosion in long-term prediction. LSTM and GRU networks are special versions
of RNNs that solve the gradient problem effectively [20]. GRUs can capture long-term
dependencies in sequential data and train the model faster [21]. Shi et al. used a fully
connected neural network with short-term memory to predict metro flow [21]. The network
was trained using historical metro flow data and meteorological data. Furthermore, there
are advanced deep learning approaches like attention mechanism-based methods and
semi-supervised deep learning methods [22–24]. Xie et al. innovatively built a spatial–
temporal dynamic graph relationship learning model [25], and Zhang et al. introduced a
spatial–temporal graph GAN for accurate short-term passenger flow forecasting [26].

However, these studies lack sufficient consideration at the semantic level of the de-
mand for subway travel. The spatial correlation modeling did not consider the impact
of metro flow patterns and similar regional functions of adjacent stations ahead of the
examined station. Furthermore, the long-term dependency features of the incorporated
data were not taken into account when modeling time correlation.

In summary, the key to accurately predicting metro flow lies in modeling the spatial-
temporal and semantic information of the metro flow data. Therefore, this paper proposes
a novel deep learning method to model the spatiotemporal correlations of the incorporated
data considering semantic information. The contributions of this study are as follows:
(1) This paper models the spatial correlation of metro flow data considering the flow of
related stations ahead of the examined station. Firstly, from a location perspective, there
may be a correlation between the metro flow of related stations ahead of the examined
station. Thus, this paper selects the metro flow data of strongly correlated stations using
mutual information as the incorporated data. Compared to Pearson’s coefficient, mutual
information methods are more suitable for nonlinear flow data. Secondly, from a semantic
perspective, stations with similar urban functions (point of interest) may have similar
metro flows. Thus, this paper explains the experimental results from the perspective of
urban functions. (2) Besides the urban function factor, there are other external factors that
may affect the metro flow of stations, such as meteorological factors. Thus, this paper



Appl. Sci. 2024, 14, 1949 3 of 18

incorporates external data. (3) According to the previous two steps, the incorporated
data includes the metro flow data of the examined station, the metro data of the selected
stations, and various external data. To model the temporal correlation of the incorporated
data, the transformer neural network is adopted to capture the time dependence between
multidimensional data. The self-attention mechanism in the network can perform parallel
computation and overcome information attenuation in long-term sequence prediction.
In addition, the self-attention mechanism can enable deep neural networks to focus on
features that are important for improving prediction accuracy when training the network.
Compared with neural networks without self-attention mechanisms, the predicted results
are more explanatory. (4) Finally, sufficient experiments are conducted on real metro flow
data set collected from Xi’an subway to verify the effectiveness of the proposed method.
Moreover, this study analyzes the prediction results, visualizes the feature weights learned
from the network at different times, analyzes the important features and moments captured
by the network, and evaluates the prediction results.

2. Related Work
2.1. Factors’ Impact on Metro Flow

Metropolitan traffic flow is a complex and dynamic phenomenon influenced by various
intrinsic and extrinsic factors, including spatial characteristics, temporal dependencies,
and external factors from multi-source data. From the view of spatial modelling, subway
systems, as integral components of urban transportation networks, exhibit a dynamic
spatial structure wherein the flow of passengers is intricately connected. The downstream
flow of metro stations is influenced by the upstream flow. Yuhang Xu et al. proposed a
feature fusion network (AFFN) to fuse spatial dependencies from multiple knowledge-
based graphs and even hidden correlations between stations [27].

From the perspective of temporal dependencies, historical passenger flow has a certain
impact on the future passenger flow, and human flows in a city have shown periodic
patterns over days, weeks, or months. Metro passenger data is generally associated with
temporal characteristics that are repetitive at fixed time intervals. For example, the metro
passenger flow at a certain time interval may be similar to that of the same time interval
on the previous day, which suggests that 24 h should be taken as the cycle period [19].
Hongwei Jia et al. proposed a network which uses three independent channels with
the same structure to model recent, daily periodic, and weekly periodic complicated
spatiotemporal correlations, respectively. This model captured not only the steady trend,
but also the sudden changes in passenger flow [28]. Peikun Li et al. proposed a framework
of short-term passenger flow to explore the factors that influence prediction accuracy based
on time granularity and station class [29].

External factors may influence passenger flow, such as weather conditions, air quality,
the day of the week, holidays, and events. Arief Koesdwiady et al. adopted a DBN to
predict traffic flows and investigated the correlation between weather parameters and traffic
flow [30]. Jinlei Zhang et al. proposed an architecture to forecast short-term passenger flow
in an urban rail transit on a network scale. It was the first time that air-quality indicators had
been taken into account, and their influences on prediction precision were quantified [31].
Junbo Zhang et al. proposed a deep learning approach to forecast the entry and exit flow of
crowds in each region of a city. This approach was combined with external factors, such
as weather [32]. Enhui Chen et al. proposed a generic framework to analyze short-term
passenger flow, considering the dynamic volatility and nonlinearity of passenger flow
during special events [33].

2.2. Metro Flow Prediction Models

Methods for predicting metro flow have usually been classified into traditional sta-
tistical approaches and machine learning techniques. The traditional statistical method
ARIMA comprises a linear combination of time-lagged variables and error terms. It has
found extensive application in predicting traffic-related data including, but not limited to,
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metro flow, traffic flow, travel time, speed, and occupancy [34–36]. For instance, Yan et al.
used ARIMA and focused on determining the most appropriate parameters of ARIMA
to predict short-term metro flow [37]. The traditional statistical approaches demonstrate
strong and consistent performance in modeling time series that exhibit linearity and station-
arity. However, metro flow data often exhibits nonlinearity, thereby limiting the predictive
accuracy of models based on linear assumptions.

To capture nonlinear dependencies within metro flow data, researchers have explored
a range of machine learning approaches, including multilinear regression, support vector
machines, random forest regression, hidden Markov models, backpropagation neural
networks, hybrid methods, and so on. For instance, Liu et al. proposed a least-square
support vector approach to handle the complex fluctuations in holidays and predicted
passenger flow for a metro system [12]. Yao et al. proposed an innovative approach
for predicting metro flow, employing a random forest regression model and leveraging
multi-source data [38]. Nevertheless, these conventional machine learning methods are
constrained in their ability to capture only shallow nonlinear dependencies, neglecting the
long-term time series patterns and deeper nonlinear dependencies inherent in the data.

Recently, deep learning has evolved into an advanced machine learning technique,
holding considerable promise for predicting metro flow. Deep learning methods possess
the ability to automatically model intricate spatial and temporal dependencies within data.
Moreover, the reliance on manual feature engineering can be mitigated by employing
deep neural networks. For instance, deep neural networks are designed to intricately and
abstractly extract nonlinear features embedded in their inputs [39]. Shen et al. used a
convolutional neural network (CNN) model for metro passenger flow prediction employ-
ing spatial–temporal data fusion. The dynamics of spatial–temporal passenger flow were
transformed into a two-dimensional time–space matrix that characterized the temporal
and spatial relationships of passenger flow. Then, the optimal hyperparameter combina-
tions for the CNN were determined by the grid search algorithm [40]. Recurrent neural
networks (RNNs) are able to model temporal dependencies. However, they face challenges
such as gradient vanishing and explosion during long-term prediction. Long short-term
memory (LSTM) networks and gated recurrent units (GRUs), as specialized RNN vari-
ants, effectively address the severe gradient problem. They excel in capturing long-term
dependencies in sequential data, with the added advantage of faster model training for
GRUs. Sun et al. proposed a novel ensemble learning model assembling LSTM, support
vector regression (SVR), and a sparrow search algorithm to deal with long term metro
passenger flow prediction [41]. Moreover, several advanced deep learning approaches have
been applied to metro flow prediction, such as attention mechanism-based approaches,
graph neural network-based approaches, and some hybrid deep learning approaches. For
example, Zhang et al. proposed a novel deep learning method combining a graph convolu-
tional network (GCN) and a three-dimensional convolutional neural network (3D-CNN)
enhanced by the incorporation of a residual module and an attention mechanism [42].
Due to their self-attention mechanism, transformer-based deep learning architectures are
applied for traffic prediction widely, and are capable of sequential data modeling. Thus, a
transformer-based deep learning framework is designed, incorporating various types of
influencing factor data, for this study.

3. Methods
3.1. Problem Statements and Framework

The objective of predicting the passenger flow at a specific subway station is to utilize
historical data to accurately predict the numbers of inbound and outbound passengers for
forthcoming single or multiple time intervals. Let Si = (S1, S2, . . . , Sn) represent a station
with a total of n stations. For time t, the data of entry or exit given the target site over the
past h time intervals is denoted as X = (Xt−h+1, Xt−h+2, . . . , Xt), where X ∈ Rh and Xt

represent the entry (or exit) data of station Si during the tth time interval. Xt contains XSi
t ,

Xi
t, XT , and XFi

t , which represent related station flow data, station flow data, periodic flow
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data, and external factor data, respectively. The predicted flow of the future t time intervals
is denoted as X′ = (Xt+1, Xt+2, . . . , Xt+t′), where X ∈ Rt′ and t are positive integers.

To address the problem of metro flow prediction, this study proposes a spatiotemporal
framework based on a transformer framework considering external factors and time period-
icity, which is shown in Figure 1. Specifically, the input of the framework includes the recent
historical metro flow data of the examined and related stations, temperature, precipitation
data, and the historical metro flow for different time periods. From the spatial perspective,
the mutual information is utilized to select the strongly correlated upstream stations of
the examined relation. The metro flow from the selected stations is incorporated into the
neural network. From the temporal perspective, the current metro flow is influenced by the
historical metro flow from recent time intervals and the historical metro flow data from the
previous days and weeks at the same interval. Thus, the metro flow from recent historical
intervals and different time periods is considered to be incorporated. From the semantic
perspective, the metro flow is also influenced by external factors, such as temperature, and
precipitation. Those data are represented as a multidimensional feature matrix and input
into the transformer network. Then, the metro flow of the future intervals is predicted.
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3.2. Spatial Correlation Based on Station

Stations exhibiting similar patterns of flow fluctuations are regarded as correlated.
Consequently, in this study, the metro flow of correlated stations is incorporated to construct
predictive models. However, stations with such correlations are not always geographically
adjacent. Additionally, the metro flow at a specific station is typically influenced by the flow
patterns at stations that are similarly correlated. Thus, the mutual information is utilized in
this study to select the stations that have an important impact on the current station using
historical metro flow data. Mutual information is very capable of capturing the nonlinearity
of flow data. Unlike traditional correlation coefficients, such as the Pearson correlation
coefficient, which predominantly focuses on linear relationships, mutual information has
the ability to effectively measure both linear and nonlinear correlations. Considering that
the traffic of the examined station is affected by the traffic of the upstream stations, only the
upstream stations that have a significant impact on the examined station are considered.

The vectors Xi = (xi
1, xi

2, · · · , xi
h) and Xs = (xs

1, xs
2, · · · , xs

h) represent the entry and
exit station sequences of site i and site s, respectively. Where i, s ∈ (1, 2, · · · , n), h represents
the number of input data and xi

h represents the entry and exit flow at station i in the hth time
interval. The series statistics represent the number of entry and exit stations of a station
over a fixed length of time and arrange them in chronological order. The information
entropy, H(Xi),of the entry and exit stations, Xi, of the station, i, is expressed as

H(Xi) = ∑
ci∈Xi

p(ci)lgp(ci) (1)

Here, ci is the number of entry and exit stations at a certain time in the sequence of
station entry and exit stations in Xi, while p(ci) is the probability of xi

t = ci.
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The mutual information, Iis(Xi; Xs), of Xi and Xs is calculated to represent the corre-
lation between site i and site s.

Iis(Xi; Xs) = H(Xi)− H(Xi|Xs ) (2)

Iis(Xi; Xs) = ∑
ci∈Xi

∑
cs∈Xs

p(ci, cs)lg
p(ci, cs)

p(ci)p(cs)
(3)

Here, H(Xi; Xs) is Xi conditional entropy of given Xs, which represents the uncertainty
of the entry and exit station quantity Xi of station i when the value of the entry and exit
station quantity Xs of station s is given; p(ci, cs) is a joint probability function of xi

t = ci
and xs

t = cs. The mutual information measures the degree of interdependence between two
variables, indicating the reduced uncertainty of one variable by knowing another variable
by computing the mutual information to obtain the two upstream sites most relevant to the
current site.

3.3. Temporal Correlation Based on Three Views of Historical Metro Flow

Many previous studies only use historical metro flow data at several previous time
intervals. Two sequences of data come from the same number of historical time inter-
vals, which may also differ due to factors such as peak intervals, holidays, etc. Thus,
temporal features such as previous time and the day of the week require consideration
when constructing a prediction model. Previous time intervals represent the correlations
between metro flow at a current time interval and historical time intervals. Day of the week
represent the historical trend of metro flow change because the data comes from the same
time interval of the same day during previous weeks. Time series-related flow features
are represented as XT =

{
XT

t , XD
t , XW

t
}

, where t represents the tth time interval. XT
t rep-

resents the metro flow at the tth time interval, XD
t =

(
XD

t−d, XD
t−2d, . . . , XD

t−nd

)
represents

the metro flow at the same time interval of previous days, and n is the number of days.
XW

t =
(
XW

t−w, XW
t−2w, . . . , XW

t−mw
)

represents the metro flow at the same time interval of
previous weeks and m is the number of weeks. As the framework figure shows, there are
three views of historical flow data that are considered. Except for the recent historical flow
data, the flow data with historical trends is incorporated into the deep neural network.

3.4. Incorporation of External Influencing Factor Data

From the semantic perspective, this study incorporates external factor data into the
predictive model, which is represented as XFi

t =
(

XF1
t , XF2

t , . . . , XFl
t

)
, where l is the num-

ber of external factors. In this paper, the external factor data includes temperature and
precipitation. The underlying reason is the substantial impact that weather conditions
have on individuals’ choices of transportation modes when traveling. For instance, higher
temperatures or heavy rainfall can lead to changes in the usual patterns of subway usage,
such as increased ridership during rainy days, as people avoid walking or cycling. By
including these external factors in the predictive model, the accuracy and reliability of the
prediction model is enhanced.

3.5. Prediction Model Construction Based on the Transformer Framework

Multidimensional feature data contains rich spatiotemporal information. The data are
fed into the deep neural network for complex temporal correlation of multi-dimensional
data. The data includes the historical metro flow from highly correlated stations, historical
metro flow of examined stations from two temporal perspectives, and external factor data.

After calculating the mutual information, the selected flow data of the two sites most
related to the examined site, the historical flow data of the examined site, the periodic
flow data, and the external factor data are combined to obtain the model input data
Di = (di

1, · · · , di
h), where Di ∈ Rh×l . The l includes the most related station’s S1 and S2,
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the historical flow data of the current site, the periodic flow data, the temperature, and the
precipitation, and the periodic flow data contains XT

t , XD
t , and XW

t .
The combined multi-dimensional data are then input into the transformer network.

The network adopts an encoder–decoder structure, and the encoder consists of a multi-head
self-attention layer and a feed-forward layer. A normalization layer is used after each layer
to increase the speed of network training. The encoder is trained to generate a hidden layer
vector and pass it to the decoder. The decoder consists of two multi-head self-attention
layers and a feed-forward layer, each sub-layer is followed by a normalization layer, and
the first multi-head self-attention layer uses a mask mechanism.

The core of encoding–decoding is the multi-head attention mechanism, which prelimi-
narily encodes Di to obtain matrix A = (a1, · · · , ah), where at is the vector obtained by di

t
after encoding and t ∈ (1, 2, · · · , h). The initialized feature matrices WQ, WK, and WV are
used to linearly transform A to obtain the query vector, Q = (q1, · · · , qh), the key vector,
K = (k1, · · · , kh), and the value vector, V = (v1, · · · , vh), i.e.,

Q = WQ A, K = WK A, V = WV A (4)

In the self-attention mechanism, the scaled dot product is usually used as the attention
scoring function. Firstly, the attention score is obtained through the dot product of query
vector Q and key vector K, then it passes the softmax and product value vector, V, to obtain
the whole weight and output vector. Its equation is represented as:

Z(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (5)

Then, the multiple groups of WQ, WK, and WV are multiplied with the encoded input
vectors to obtain multiple groups of Q, K, and V. The multiple group matrix b1, · · · , br
obtained from groups WQ, WK, and WV are stitched together to obtain the final output, b.
The transformer network trains with the multi-head attention mechanism as its core, and
the potential temporal correlation in the data can be effectively captured.

4. Dataset, Experimental Settings, and Evaluation
4.1. Dataset Description

To verify the effectiveness of the method proposed in this study, the entry and exit
metro flows with fifteen-minute granularity from Xi’an subway stations between October
2018 and March 2019 were collected. Table 1 shows the station names and numbers used in
this study.

In addition, temperature and precipitation data of Xi’an city with the same time gran-
ularity were also collected for experiments. Moreover, POI data were collected according
to the latitude and longitude range of the subway station and utilized to explain the experi-
mental results in this study. A POI refers to a distinct geographic location that provides a
particular service to individuals, such as a shopping center, industrial facility, or residential
area. In total, there were 241,869 POIs collected near each subway station within an 800 m
radius of line 1 to line 4. In this study, Zhonglou station and Hangtiancheng station were
selected as the research objects.

4.2. Experimental Settings

Experiments were conducted using Python 3.7 and PyTorch 1.7.1 on a desktop com-
puter with an Intel i9-13900KF 3.0 GHz CPU (Intel, Santa Clara, CA, USA), which has a
performance of 153,377 MOps/s and 64 GB RAM. It used 80% of the data in the dataset
for training and another 20% for test data. LSTM and GRU have a two-layer network with
128 neurons each. The deep encoder network was set up to 12 heads. The learning rate was
set to 0.001, the training iteration was set to 100 times, and the batch size was set to 64.

The typical approaches used for time series data prediction were adopted as the
baseline methods, including LSTM, GRU, and the transformer framework.
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Table 1. Subway station descriptions.

Station Number Station Name

S1 Beikezhan Station

S2 Beiyuan Station

S3 Yundonggongyuan Station

S4 Xingzhengzhongxin Station

S5 Fengchengwulu Station

S6 Shitushuguan Station

S7 Daminggongxi Station

S8 Longshouyuan Station

S9 Anyuanmen Station

S10 Beidajie Station

S11 Zhonglou Station

S12 Yongningmen Station

S13 Nanshaomen Station

S14 Tiyuchang Station

S15 Xiaozhai Station

S16 Weiyijie Station

S17 Huizhanzhongxin Station

S18 Sanyao Station

S19 Fengqiyuan Station

S20 Hangtiancheng Station

S21 Weiqunan Station

4.3. Evaluation

To verify the prediction performance of the proposed method, the RMSE, MAE, and
MAPE were adopted as the evaluation indicators. The equations are as follows:

RMSE =

√√√√ 1
C

C

∑
i=1

(
yi − y′i

)2

(6)

MAE =
1
C

C

∑
i=1

∥∥yi − y′i
∥∥ (7)

MAPE =
1
C

C

∑
i=1

∥∥∥∥yi − y′i
yi

∥∥∥∥ (8)

Here, y′i and yi denote the predicted value and observed true value, respectively, and
C is the number of all samples.

5. Experimental Results
5.1. Results of Spatial Modelling

The object of spatial modelling is to incorporate the flow data of highly correlated
stations into the model to improve the prediction accuracy. MI was used to measure the
spatial correlation of stations using the flow data. The results of MI among all stations
are shown in Figure 2. According to the results, the station XiaoZhai was selected as the
correlated station of the predicted station, Zhonglou. The MI value was 0.9, which is higher
than other stations.
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5.2. Results of Time Interval Determination

When predicting metro flow, data with different historical time intervals can lead to
different results. Shorter time intervals might not provide enough input data for the model
to capture time-related patterns, while longer intervals could incorporate irrelevant inputs.
Thus, to determine the optimal number of historical time intervals for superior predictive
performance, this study incorporates historical data with different time intervals into the
model to forecast entry and exit flows for the next time interval. The entry and exit metro
flow prediction results of different historical time intervals for the two selected stations are
illustrated in Table 2.
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Table 2. The entry and exit flow prediction results of different historical time intervals.

Time Interval

Evaluating Indicators

Zhonglou Station
(Entry) Zhonglou Station (Exit) Hangtiancheng Station

(Entry)
Hangtiancheng Station

(Exit)

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

24 75.25 49.32 13.69% 91.08 61.42 22.71% 56.31 36.30 25.37% 61.15 40.46 39.58%

28 78.20 51.76 13.67% 91.99 59.51 23.55% 56.10 34.75 16.37% 60.59 41.24 44.43%

32 74.90 48.54 20.52% 88.77 57.41 20.76% 56.12 34.04 16.54% 58.67 39.05 42.97%

36 78.73 50.21 17.14% 88.67 60.03 14.85% 56.15 34.82 18.25% 59.82 39.55 35.64%

40 74.51 48.82 17.14% 90.41 63.14 35.93% 55.98 37.83 31.40% 54.39 37.23 31.49%

44 73.10 49.22 19.02% 88.45 60.95 20.05% 54.29 33.46 20.82% 54.62 36.97 36.77%

48 71.27 46.85 10.35% 85.78 59.50 26.49% 53.46 33.51 19.12% 52.80 35.19 18.78%

52 69.27 45.34 16.02% 87.24 59.57 15.40% 53.83 32.35 17.89% 54.01 36.04 30.34%

56 70.55 47.89 19.14% 86.28 55.52 13.97% 55.01 33.05 17.83% 53.69 36.27 27.52%

60 67.63 45.30 14.75% 93.86 60.84 18.00% 54.74 33.40 19.63% 53.60 36.65 35.14%

The results indicate that the optimal historical time intervals for predicting entry and
exit flow at Zhonglou Station are 48 and 56, respectively. Similarly, the optimal historical
time intervals for predicting entry and exit flow at Hangtiancheng Station are 52 and 58,
respectively. Taking Zhonglou Station’s entry flow prediction as an example, when the
input time interval was set to 48, the RMSE, MAE, and MAPE were 71.27, 46.85, and
10.35%, respectively. Notably, the MAPE exhibited the most significant decrease compared
to other time intervals. The model demonstrated the best predictive performance under
these specific input time intervals. Therefore, this time interval configuration was adopted
for subsequent experiments.

5.3. The Predicted Results of the Selected Stations

Table 3 presents the specific numerical values of three evaluation indicators for entry
and exit metro flow predictions at Zhonglou Station and Hangtiancheng Station using
different methods. In comparison to baseline methods (LSTM, GRU, transformer), the
proposed method based on the transformer (MFP-EP) framework outperformed the base-
line methods. The self-attention mechanism effectively captured the underlying long-term
dependencies among features. Based on the results, incorporating various related data can
improve the prediction accuracy. The model considers the influence of the upstream flow,
the correlated stations, the recent historical metro flow, the historical temporal trend, and
the external factors.

Moreover, when incorporating all factors comprehensively, the predictive accuracy
was higher compared to considering individual factors separately. For instance, taking
Zhonglou Station’s entry flow as an example, the overall predictive performance of MFP-EP
+ F1 + F2 + 2S + 4C was the best among the methods considered. Its RMSE, MAE, and MAPE
values were 68.60, 45.86, and 10.04%, respectively. Compared to the transformer method,
these values decreased by 13.58%, 18.56%, and 64.50%, respectively. Additionally, when
compared to LSTM, these values decreased by 18.18%, 20.37%, and 67.08%, respectively.

5.4. Analysis of Prediction Results

Figure 3 illustrates the distribution of predicted values versus actual values when
the model comprehensively considered factors such as temperature, precipitation, and
the actual metro flow of the two stations that were most correlated to the target station
based on the transformer method. According to the figure, it is evident that the distribution
of predicted values closely aligns with the actual values, with most predictions closely
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matching the real data. The model successfully captured the peak and off-peak patterns of
entry and exit flow. In Figure 3a, the peaks and troughs are marked with hollow circles.
The peak occurred during the evening rush hours, specifically between 17:00 and 19:00,
while the trough corresponds to the early morning hours when the subway services are
temporarily halted.

Table 3. Prediction results for the selected stations.

Experimental
Methods

Zhonglou Station
(Entry) Zhonglou Station (Exit) Hangtiancheng Station

(Entry)
Hangtiancheng Station

(Exit)

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

LSTM 83.84 57.59 30.50% 96.72 66.94 22.52% 56.57 35.83 28.06% 60.39 38.68 36.50%

GRU 82.66 55.00 31.24% 96.66 67.35 22.99% 55.84 34.21 27.52% 58.91 40.38 38.74%

Transformer 79.38 56.31 28.28% 96.90 65.49 19.56% 55.21 34.50 24.24% 59.15 40.80 33.25%

MFP-EP + F1 72.57 48.06 15.24% 92.25 64.96 43.82% 55.73 34.61 18.04% 54.78 38.91 41.23%

MFP-EP + F2 72.86 48.22 16.44% 97.29 63.18 15.53% 53.88 35.21 21.55% 55.57 37.82 31.28%

MFP-EP + F1 + F2 70.43 47.68 19.33% 90.77 61.15 23.06% 55.12 35.14 27.73% 54.53 38.01 38.24%

MFP-EP + 1S 72.58 49.55 20.13% 93.61 60.93 23.32% 54.85 33.39 21.71% 54.35 37.01 25.89%

MFP-EP + 2S 70.06 48.08 10.80% 83.56 55.73 18.71% 53.31 36.47 21.83% 55.06 37.42 35.20%

MFP-EP + F1 +
F2 + 2S 71.27 46.85 10.35% 86.28 55.52 13.97% 53.83 32.35 17.89% 52.80 35.19 18.78%

MFP-EP + F1 + F2
+ 2S + 4C 68.60 45.86 10.04% 80.26 51.52 13.35% 52.42 30.24 16.83% 51.39 33.83 17.84%
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Furthermore, the experimental results indicate that the peak entry and exit flows at
Zhonglou Station are generally higher than those at Hangtiancheng Station. Both stations
exhibited certain patterns, with variations in entry and exit flow between weekdays and
weekends. Specifically, the peak entry and exit flows at Zhonglou Station typically ranged
between 2000 and 2500, whereas at Hangtiancheng Station, the peak flow usually ranged
between 1400 and 2000. This study then explained the flow changes from the perspective
of urban functional zones. POI data within an 800 m radius around Zhonglou Station and
Hangtiancheng Station were collected, as shown in Table 4. The data in the table refers to
the number of POIs of a specific type within 800 m of the site. For example, 884 refers to
the number of food and beverage services within 800 m of Zhonglou Station. The results
indicate significantly higher numbers for sports and leisure services, accommodation
services, public facilities, and scenic spots around Zhonglou Station (256, 900, 91, 35,
respectively) compared to Hangtiancheng Station (53, 166, 10, 7, respectively). This suggests
that Zhonglou Station serves as a commercial and tourist hub with a relatively high
population density. Additionally, the number of companies, government institutions, and
social organizations around Zhonglou Station is notably higher than around Hangtiancheng
Station, indicating a larger daily population flow.

Moreover, 10 March 2019 was a Sunday, a typical rest day for most people. As
expected, the entry and exit flows at the target stations significantly decreased on this day.
In contrast, from 11 March to 15 March, which fall within the workweek, the entry and exit
flows exhibit similar patterns. Additionally, the residential areas around Hangtiancheng
Station are noticeably more abundant than around Zhonglou Station. This indicates that
Hangtiancheng Station is located in a residential area, resulting in lower entry and exit
counts on weekends compared to weekdays. In contrast, Zhonglou Station, as a tourist
destination, experiences higher entry and exit counts on weekends compared to weekdays.

Finally, a few predicted values deviated from the actual values, which could be
attributed to prediction errors caused by uncertain events. This observation aligns with the
real urban traffic conditions, where traffic congestion during peak hours and unexpected
traffic incidents can irregularly impact travel demand data, thus reducing the model’s
predictive accuracy.

Table 4. POI data within an 800 m radius around Zhonglou Station and Hangtiancheng Station.

POI Zhonglou Station Hangtiancheng Station

Food and beverage services 884 792

Shopping services 838 882

Life services 888 811

Sports and leisure services 256 53

Health care services 160 188

Accommodation services 900 166

Scenic spots 35 7

Government agencies and
social organizations 216 115

Science and education cultural services 149 114

Transportation facilities services 263 69

Financial and insurance services 81 39

Incorporated businesses 302 81

Public facilities 91 10

Industrial parks 0 2

Residential areas 71 105
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5.5. Analysis of Time Interval Correlation by Attention Mechanism

In comparison to other time intervals, the network focuses more on learning the entry
flow of nearby time intervals within the same day. Taking the prediction of entry flow
at Zhonglou Station as an example, Figure 4 illustrates the attention weight distribution
obtained from an attention layer with a time interval of 48 steps. The horizontal axis
represents the time steps, with each tick indicating one time interval, and the color intensity
indicates the corresponding attention weight. For instance, consider Figure 4a, where the
prediction time is 8:45~9:00. Time steps 2, 46, 47, and 48, corresponding to the time intervals
9:00~9:15, 20:00~20:15, 20:15~20:30, and 20:30~20:45, respectively, have relatively higher
attention weights. These time intervals represent specific periods on the same day, as well
as on previous days and weeks. Furthermore, Zhonglou Station is located near popular
tourist attractions, and the entry flow during these time intervals remains high throughout
the day, as the predicted time interval also falls within the peak period.
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5.6. Analysis of Multi-Step Prediction Results for Entry and Exit Flow

The predictive performance of the model was also validated for multi-step metro flow
prediction. Figure 5 illustrates the multi-step prediction results for the next eight steps
(2 h). Compared with the baseline method, the proposed method is more accurate over a
longer prediction period. Specifically, compared with the LSTM model, the mean values of
MFP-EP + F1 + F2 + S1 + S2 for RMSE, MAE, and MAPE were reduced by 15%, 24.63%,
and 34.02%, respectively, when the predicted step size is 2, and the proposed method was
reduced by 6.5%, 7.26%, and 34.70%, respectively, compared with the mean of the baseline
method when the predicted step size was 8.

The prediction error increased with the prediction step size. There are two main
reasons for this. Firstly, compared with single-step prediction, the error accumulates in
the process of multi-step prediction. The larger the number of prediction steps, the greater
the accumulated error. Secondly, with the increase in time steps, the traffic environment
gradually becomes complex, and the nonlinearity and fluctuation of the flow data in and
out of the station gradually increase.

Compared with deep learning methods such as LSTM, the performance advantage of
the proposed method in multi-step prediction is more obvious. This is not only due to the
fact that the self-attention mechanism of the transformer model can capture more informa-
tion in the time series prediction, but also because the model considers the temperature, the
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precipitation, the flow of the correlated stations, and the flow of different time granularities.
The error accumulation rate of the method in multi-step prediction is much lower than that
of methods such as LSTM.
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6. Conclusions and Future Works

In conclusion, this study emphasizes the importance of integrating spatiotemporal and
semantic aspects in metro flow prediction. To accurately predict metro flow, a novel deep
learning model is proposed considering the spatial correlations, the temporal correlations
from different time granularity, and the external weather factors. To model the spatial
correlations, mutual information is leveraged to explore the nonlinear flow patterns be-
tween stations and determine the highly correlated stations. Then, the metro flow of recent
historical time intervals, the metro flow at the same time intervals of previous days and
weeks, and the temperature and precipitation data are combined and incorporated as the
input data. Then, the multi-source and multi-dimensional data are fed into the transformer
neural network. The self-attention mechanism of the network allows for effective handling
of multidimensional data and enhances the accuracy of long-term predictions by focusing
on key features. Extensive experiments with real data from the Xi’an subway validate our
method’s efficacy, providing insights into significant features and moments that impact
metro flow. Additionally, with POI information around the selected stations, our study
delves into the fluctuations in metro flow. This analysis has the potential to offer valu-
able insights and practical recommendations for management authorities. The proposed
method and comprehensive analysis highlight the significant potential of our approach in
enhancing the accuracy and applicability of metro flow predictions in urban settings.

In the future, we will explore how to incorporate the distribution of POI features into
the prediction model, investigating the influence of POI size and the distribution of geo-
graphical location on entry and exit traffic flow. Additionally, we will collect data on sudden
events to study their impact on passenger flow and develop prediction models accordingly.
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