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Abstract: Protozoa detection and classification from freshwaters and microscopic imaging are critical
components in environmental monitoring, parasitology, science, biological processes, and scientific
research. Bacterial and parasitic contamination of water plays an important role in society health.
Conventional methods often rely on manual identification, resulting in time-consuming analyses
and limited scalability. In this study, we propose a real-time protozoa detection framework using
the YOLOvV4 algorithm, a state-of-the-art deep learning model known for its exceptional speed
and accuracy. Our dataset consists of objects of the protozoa species, such as Bdelloid Rotifera,
Stylonychia Pustulata, Paramecium, Hypotrich Ciliate, Colpoda, Lepocinclis Acus, and Clathrulina
Elegans, which are in freshwaters and have different shapes, sizes, and movements. One of the
major properties of our work is to create a dataset by forming different cultures from various water
sources like rainwater and puddles. Our network architecture is carefully tailored to optimize the
detection of protozoa, ensuring precise localization and classification of individual organisms. To
validate our approach, extensive experiments are conducted using real-world microscopic image
datasets. The results demonstrate that the YOLOv4-based model achieves outstanding detection
accuracy and significantly outperforms traditional methods in terms of speed and precision. The
real-time capabilities of our framework enable rapid analysis of large-scale datasets, making it highly
suitable for dynamic environments and time-sensitive applications. Furthermore, we introduce a
user-friendly interface that allows researchers and environmental professionals to effortlessly deploy
our YOLOv4-based protozoa detection tool. We conducted f1-score 0.95, precision 0.92, sensitivity
0.98, and mAP 0.9752 as evaluating metrics. The proposed model achieved 97% accuracy. After
reaching high efficiency, a desktop application was developed to provide testing of the model. The
proposed framework’s speed and accuracy have significant implications for various fields, ranging
from a support tool for paramesiology/parasitology studies to water quality assessments, offering a
powerful tool to enhance our understanding and preservation of ecosystems.

Keywords: deep learning; protozoa detection; medical image processing; protozoan parasite dataset;
yolo; convolutional neural network

1. Introduction

The insufficiency of the world’s freshwater resources day by day and the increasing
population requires more careful and meticulous use of water. Fresh water is used by
humans in activities such as drinking water, animal husbandry, irrigation of agricultural
lands, and aquaculture. Bacterial and parasitic contamination of water leads to the spread
of waterborne infections.

Bacteria that infects humans from fresh water sources causes health concerns such
as intestinal diseases, anemia, muscle pain, rotavirus-related diseases, hepatitis, edema,
and diarrhea [1]. The detection of bacteria in the beverages we use in daily life is of critical
importance for our health.
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Today, object detection and classification processes are performed intensively from
microscopic images. Automatic and semi-automatic studies are available. Detection,
identification, and classification of bacteria are important both in terms of working time
and in terms of workforce. Various methods are used to detect the presence of bacteria.
Studies for the detection and diagnosis of protozoa are divided into three different groups.
First, laboratory techniques are used. Secondly, image processing techniques are used for
protozoa detection. Finally, studies are carried out using deep learning techniques.

Deep learning has made significant contributions to the healthcare field besides various
areas like real-time vehicle detection [2], offering innovative solutions and improvements in
various areas, such as medical imaging diagnosis and image segmentation, drug discovery
and development, electronic health records, genomics and personalized medicine, robotic
surgery, and so on. The following examples can be given to the studies conducted using
deep learning in these health fields: DNA damages on comet assay images [3], classification
of white blood cells [4], classification of dentinal tubule occlusions [5], lung cancer nodule
detection [6]. The applications of deep learning in healthcare continue to evolve, promising
advancements in diagnostics, treatment, and overall patient care. However, it is important
to address challenges such as data privacy, interpretability, and regulatory considerations to
ensure the responsible and ethical deployment of these technologies in healthcare settings.
An example of these applications is a study conducted to detect and classify malaria
parasites from blood smear images. In this study, a total of 1920 images belonging to
three classes were used. Using the CNN model, 95.11% and 99.59% success rates were
achieved, respectively [7]. In another study, B-Lymphoblast cells were classified in blood
cell images. Using the C-NMC dataset containing 12,528 images, the model was created by
training on the CNN model. They achieved 99.4% sensitivity, 96.7% specificity, 98.3% AUC,
and 98.5% accuracy [8]. In another, artificial intelligence applications were developed to
determine the severity of the COVID-19 infection. Classical machine learning and deep
learning models were compared using data including clinical, demographic, laboratory,
and serology parameters. In this study, the XGBoost algorithm gave the highest accuracy
result of 97.6% [9]. A mobile application based on an efficient lightweight CNN model
was developed for the classification of B-ALL cancer cells. 3242 images were decoded and
resized for data preparation and data augmentation. In the study, CNN-based EfficientNet,
MobileNetV2, and NASNet Mobile models were used for comparison. The MobileNetV2
model achieved the highest efficiency (100%) in the test data [10].

Microscopic images may have different characteristics according to the color and tone
of the light, and the mobility of protozoa, the deformation of some organisms, and the
pollutants in the water also affect the image state.

The first of these is laboratory techniques. One of them is the physical and chemical
spectrum method with PCR [11-14]. In this technique, sample preparation, partitioning,
PCR amplification, and detection steps were implemented. They analyzed some different
implementations of dPCR for detection of protozoan objects in samples. In [15,16], electro-
chemical detection was carried out. They build a point-of-care device containing a couple
of electrochemical biosensors, media layers, and some other parts. It is difficult to build
portable systems with high sensitivity and resilience, even when used with complicated
matrices. In [17], microfluidic impedance cytometry method was applied. Another was
DNA and RNA methods based on molecular biology [18]. The conventional approach for
diagnosing parasites involves microscopic examination. Despite being labor-intensive and
demanding experienced interpreters for optimal results, the proposed method remains
extensively utilized for diagnosing protozoa, particularly in resource-limited settings.
Nevertheless, numerous laboratories face a shortage of examiners proficient in consis-
tently detecting the existence and classification of intestinal protozoa. This deficiency
contributes to the incapacity to precisely recognize protozoa, distinguish pathogenic from
non-pathogenic species, and discern artifacts during microscopic assessments, ultimately
compromising the sensitivity and specificity of intestinal protozoa diagnosis.
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Secondly, image processing techniques were used to detect protozoan presence. In [19],
their proposed method consisted of a pre-processing operation to activate images, dividing
them into regions and applying edge detection for feature extraction, ANN classification
of regions protozoa or non-protozoa, morphological operations for deciding the regions,
and applying an active contour method to regions whose location could not be identified
precisely. Thirty images were used. The suggested method’s weakness is that it disregards
the filamentous structure. In [20], the parasites were segmented with Active Contour
Without Edge. They performed morphological operations for removing noise and thresh-
olding to segment an image into two areas. Their dataset contains 50 images, and each
file size is 140 x 140 pixels. The accuracy of the work is 97.57% and the False Negative
Rate is 12.04%. In [21], the authors proposed a method to identify malaria parasites from
microscopic images. Their dataset contains 117 microscopic fields of 3136 x 2352 pixels.
In the beginning, they applied an image noise removal operation using Laplacian filter.
The adaptive histogram thresholding technique was used to segment thin and thick smear
images. As well, 8-connectivity was used to label the segmented images in HSV color space.
According to the author, while the manual parasite count was 576, the parasite count by
their proposed method was 627.

Lastly, in the current studies, algorithms such as Classical CNN, Retina Net, R-CNN,
Fast R-CNN, Faster R-CNN, You Look Only Once (YOLO), and single shot detector (SSD)
are among the deep learning methods that stand out in the detection of objects in images
with digital systems. In [22], a classical CNN model was used to detect epidemic pathogens
vibrio cholera and plasmodium falciparum. The training dataset includes 400 images of
both classes and 80 images for testing. A Tensorflow framework was conducted to apply
the CNN. Their CNN model has 6 convolutional layers, ReLU and 2 x 2 MaxPooling
and follows by fully connected layer. Finally, the classification accuracy of the system
is 94% and the validation accuracy is 97%. Another CNN method was used to detect
Intestinal Protozoa by Blain and others in [23]. In [24], a segmentation-driven RetinaNet
system was based on region-based convolutional neural networks (RCNN). Due to the
insufficient data, augmentation was made with image enhancement methods for 69 images
and 117 samples for eight species. However, this caused inaccurate detections. The mAP
for the average precision of segmentation hierarchical retina was 93%. They implemented
random horizontal flip augmentation to prevent facing local minimums. In [25], as an
object detection algorithm, single short detection (SS5D) and Faster R-CNN methods were
used. In the study, there were 643 images with 750 x 750 dimensions. A faster R-CNN
method consists of forming region predictions, and then CNN is applied to classify object
type and the location of bounding box. The method has a region of interest to determine
features and to categorize objects. The network is built on ResNet50 and ResNet101. As
a performance evaluation metric, mAP is 94.48% for ResNet101, with a 42.8 ms inference
time. And single shot detector (SSD) is implemented for multiple object detection. SSD is
selected due to quick extraction and mobile use. The network consolidates predictions from
multiple feature maps with varying resolutions to naturally determine objects of different
sizes. In contrast to methods demanding object proposals, SSD eliminates the need for
generating proposals and subsequent pixel or feature recalibrations because it handles all
calculations in a single network. As a performance evaluation metric, mAP is 83.97% for
InceptionV2, with a 2.24 ms inference time.

Apart from these methods, in [26], a hybrid method was applied to detect and classify
intestinal parasites. In their study, there were 15 different types of parasites located in
images from different parasite database groups. The dataset contains 12.225 images sepa-
rated into 40% for training, 30% for validation, and 30% for testing. The study consisted
of two sections. One of them was manual feature extraction (DS;) and support vector
classification. In the second part, VGG-16 based on deep neural network was used for
image feature extraction and classification (DS;). The hybrid model consisted of DS; and
DS;. The efficiency was not at the desired level and the complexity needed to be simplified.
In [27], the authors applied U-Net, a fully convolutional network model for leishmaniasis
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parasite segmentation. A total of 37 images belong to the leishmania dataset, with five
classes used in this work. As a performance evaluation metric, the average precision value
for five classes is 75.32%. In [24], CNN-based UNet and Unet++ were implemented with
954 microscopic images with 1536 x 1536 resolution for bacillus anthracis bacteria. They
reached a recall of 98% and a precision of 87% for the whole test images.

Table 1 shows a summary of some articles published in the last decade regarding the
detection of protozoa, cholera pathogen, malaria parasite, intestinal protozoa.

Table 1. A summary of studies on the identification of bacteria on images.

Reference Type of Database Data Source Number of Pre-Processing Segmentation/ Performance Results (%)
Organism Class Classifier Evaluation
[7] Protozoa in 1920 images Original 4 Segmentation, Traditional NN,  Average NN: 95.11,
wastewater decoding and 6-layer CNN accuracy CNN: 99.59
resizing,
normalization
[19] Malaria 27 images with  Original 2 (malaria or Grey level with Prewitt Edge Number of Not specified
parasite 1288 x not) histogram, Detector, ANN detections
966 pixels equalization,
median filter
[20] Malaria 50 images with ~ Original - Noise filtering Active Contour  Confusion Accuracy: 97.57
parasite 1280 x (lowpass Without Edge, matrix
candidates 960 pixels filtering),
contrast
enhancement
(contrast
stretching)
[22] Cholera 400 images Google images 2 Not applied CNN generated  Full image Accuracy: 94
pathogen, model accuracy
malaria
parasite
[23] Intestinal 372 slides Original 1 Augmentation CNN Total recall Recall: 92
Protozoa (random 250-by
250-pixel crops)
[24] Protozoa 69 images with  Original 8 Data Hierarchical Binary accuracy,  Binary accuracy:
various pixels augmentation RetinaNet precision, and 98, precision: 93,
recall recall: 95
[25] Malaria 643 images Original 2 (malaria or Data Faster R-CNN, Malaria Faster R-CNN
with 750 x not) augmentation SSD, RetinaNet detection in full mAP: 94.48,
750 pixels (horizontal flip image SSD mAP: 83.97,
augmentation) RetinaNet mAP:
77.46
[26] Intestinal LAR-2: 1852, LAR-2, EGG-9, LAR-2:2, IFT-based image Hybrid System Average mean Accuracy
parasite EGG-9: 12,691,  PRO-7 Dataset ~ EGG-9: 9, processing DS1(p-SVM) + accuracy (PRO-7): 91.01
PRO-7: 37,375 PRO-7:7 operations DS2 (Vgg-16)
[27] Leishmaniasis 45 images with ~ Original 7 Data U-Net Average (Dice Dice score:
Parasite 1500 x augmentation score, precision, 80.01, precision:
1300 pixels recall, and 79.15, recall:
f1-score) 75.53,
f1-score: 75.85
[28] Bacillus 956 images Original 1 Feature UNET++ Bacillus Recall: 98,
anthracis with 512 x normalization detection in accuracy: 97
bacteria 512 pixels Data patch
augmentation
[29] Malaria 676 images Original 2 (malaria or Noise filtering CNNI (40 x 40),  Full image, Accuracy
with 1388 x not) CNN2 (100 x accuracy, (CNNT1): 90.10,
1040 pixels 100), fusion sensitivity, Accuracy
process specificity, (CNN2): 88.91
precision,
f1-score
[30] Malaria 1182 images Public malaria 2 (malaria or Not applied YOLOV4 Malaria YOLOV4 MOD
with 750 x dataset not) modified, detection in full mAP: 96.32,
750 pixels YOLOV3 image YOLOV3 MOD1
modifiedl, mAP: 95.46,
YOLOV3 YOLOV3 MOD
modified2 mAP: 96.14
[31] Malaria 903 images Original 2 (malaria or Data Faster R-CNN, Malaria Faster R-CNN
with 3264 x not) augmentation SSD MobileNet detection in full mAP: 66.09,
2448 pixels through random image SSD MobileNet:
vertical and 62.92

horizontal
flipping
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Utilizing deep learning for microscopic parasite diagnosis has the potential to signifi-
cantly enhance efficiency for medical professionals, leading to a decrease in instances of
misdiagnosis, overlooked diagnoses, and inappropriate medication usage. Despite the
advancements achieved in the application of deep learning to diagnose protozoan para-
sites, several problems still persist. The main problem is the limited number of labeled
datasets publicly available. To overcome this problem, some methods are used to extend
datasets [32]. But, in medical studies, real data should be used instead of artificial data.
However, different image reproduction methods are used in cases where there are not
enough images. The datasets on the internet resources were not sufficient for our study
and were not sufficient in terms of image quality. Therefore, unlike other methods, in
this study, completely real data were used without needing image reproduction methods.
Furthermore, videos and images were obtained at different angles and zoom amounts
using a microscope integrated with a digital camera in the medical biology laboratory of
the Faculty of Medicine.

Microscopes and other imaging devices are widely used for the classification of proto-
zoa in the methods in the literature [13,16,33]. However, there are no real-time and fully
automatic protozoa detectors and classifiers. In this study, a real-time and fully automatic
recognition system was designed with the deep learning-based YOLO algorithm to detect
protozoa bacteria and determine their species. With our proposed method, real-time proto-
zoa detection is achieved in a short time and with higher performance. In addition, this
developed system can also be used as a support tool for education by providing resources
for paramesiology / parasitology studies and for the Single-Celled Creatures course, which
is a laboratory application in the Medical Biology Department of the Faculty of Medicine.
It also helps with the self-education of the students. Furthermore, this fully automatic
classifier can determine the presence of bacteria in the water, the species, and the density of
the variety. To put it briefly, this study can significantly contribute to the literature in terms
of minimizing time loss and increasing the accuracy of determining bacteria in fresh water.

When we look at the studies, it is noteworthy that the images used are not at a sufficient
level. There is a lot of data used in some studies due to the use of data augmentation
methods. These images are artificial, not original images. The background of medical
research should be conducted powerfully and accurately.

2. Methodology

The purpose of this study is to automatically detect protozoan existence and classify its
species among different types. The newly developed approach consists of the classification
stage, applied by You Only Look Once (YOLO). This object detection framework serves as
the key concept of our model.

2.1. YOLO (You Only Look Once)

A deep neural network known as YOLO (You Only Look Once) is utilized for the
purpose of identifying and classifying objects within microscopic images of protozoa.
Demonstrating a favorable sensitivity of 90.82% [34], this network has also been employed
to recognize and segment skin lesions, such as melanoma, benign nevi, and seborrheic
keratoses, present in dermoscopic images. Due to this versatility, YOLO is a suitable
candidate for detecting entities that may be present in microscopic images, encompassing
various sizes, mobilities, and types. In addition to the diverse range of movement exhibited
by protozoa, there exists a variation in shapes and physical characteristics across different
species. The system performs image classification based on input images, and the object
detection process involves determining the object’s location with respect to a bounding box
that surrounds it [35].

2.2. Detector

In the detection stage of the one-stage object detection algorithm of the YOLO algo-
rithm, dense prediction takes place. The last prediction step consists of a vector with three
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a) SxS grid on input

data groups. Firstly, the bounding box is predicted with its coordinates, containing center,
height, and width, the confidence score of the prediction, and the label. Figure 1 shows the
illustration of YOLO determining the location of objects. It splits the picture into (S S) grids
shown in Figure 1a and then assigns a confidence score and class probabilities to each grid
cell to create B potential bounding boxes in Figure 1b.

(b) Bounding boxes (c) Cross probability map (d) Final detections
Figure 1. Schematic presentation of YOLO algorithm.

The confidence is calculated by multiplying the probability of finding an object in the
grid by the intersection over union (IOU) percentage, the intersection of the box in which
the object is located and the predicted box, (see Figure 2), using the following formula:

Confidence Score = Pr(obj) * IoU (1)

Area of Overlap J

Area of Union

IOU=

Figure 2. Intersection over union (IOU), measurement for object detection performance.

The probability of the box containing an object is 70% when the probability of the
object’s presence, denoted as P r(object), is 0.7. A confidence score of zero indicates the
absence of an object in that cell. The confidence score is employed in the calculation of
the mean Average Precision (mAP) at a specified threshold. If a grid cell predicts a 60%
probability of containing a car (pr(Car) = 60%), there is a 60% likelihood that the cell indeed
contains a car and a 40% likelihood that it does not [30]. The bounding box that is hovered
over the image has five parameters in total: [X, y, w, h, confidence score]. Here, (x, y)
represent the coordinates of the middle point of the bounding box, (w, h) the width and
the height.

The standout characteristic of v4 lies in its ability to perform detections across three
distinct scales. YOLO operates as a completely convolutional network, with its final output
derived through the utilization of a 1 x 1 kernel on a feature map. In YOLOV4, the process
of detection involves the application of 1 x 1 detection kernels on feature maps of varying
sizes, strategically positioned at three different locations within the network [36].

The configuration of the detection kernelis 1 x 1 x (B x (5 + C)). In this context, B
represents the quantity of bounding boxes that a cell within the feature map can predict.
The value “5” pertains to the four attributes concerning bounding boxes and an additional
object confidence score, while C denotes the total number of distinct classes. For YOLOv4
models trained on the COCO dataset, B corresponds to 3 and C is set at 80, resulting in a
kernel dimension of 1 x 1 x 255 [37]. The resulting feature map generated through this
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kernel retains the same height and width as the previous feature map, while encompassing
detection characteristics across its depth, as previously elaborated.

3. Experiment

In this section, we use our own dataset. To illustrate the success and adaptability of
our system, we employ a variety of assessment indicators. For the training of the models,
the Google Colaboratory environment, which provides especially high-level graphics card
usage through the cloud platform offered by Google, was used. Google Colaboratory
remote server computer was used for the training of the models with the video card model
Tesla P100-PCIE-16GB. The related server is located in Taipei, Taiwan. We use Python (3.10)
language in the Darknet framework to implement the algorithm.

3.1. Data Set Preparation

Living things need environments with suitable temperatures, humidity, pH, etc., to
survive and reproduce. Microscopic organisms inhabit various aquatic environments,
including ponds, lakes, streams, rivers, estuaries within ocean backwaters, and even,
unexpectedly, rain puddles that have persisted for several days. Although single-celled
organisms are very common in nature, their cultures must be prepared before they can be
examined in laboratories. For this purpose, our collection jars were prepared completely
clean and detergent free. Water samples were collected from rain puddles. Four different
culture mixtures were prepared.

Culture cases were kept in a semi-dark environment for an average of 8-10 days, to
allow for bacteria to appear. Then, samples from these different cultures were taken and
examined under a microscope. After the bacteria started to form, video and images were
obtained with a high-resolution camera. Sampling procedures were repeated at 1-2 day
intervals to ensure the formation of different species, and the data set was enriched. The
system for our study consisting of a microscope, camera and computer is shown in Figure 3.

Figure 3. The examining protozoa with a camera.

Due to the continuous movement of many protozoa species in the images taken as
video, three images were obtained randomly from the frame sets in each second. The data
set was created by combining the images obtained from the videos and the images taken as
photographs. The data set consists of 4653 color images with 1280 x 720 resolution related
to 8 species. The training set is 3257 images, the validation set is 931 images, and the test
set is 465 images. There are 11,252 protozoa objects in the whole data set consisting of
4653 images. Our data set includes Bdelloid Rotifera, Stylonychia Pustulata, Paramecium,
Hypotrich Ciliate, Colpoda, Lepocinclis Acus, Clathrulina Elegans freshwater protozoa
species shown on Figure 4.
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Bdelloid Rotifera Stylonychia Pustulata Paramecium Hypotrich Ciliate
Colpoda Lepocinclis Acus Coscinodiscus Clathrulina Elegans

Figure 4. Protozoan types in the dataset.

3.2. Labeling

MakeSense.ai was used to label images. This is an online tool for labelling images, and
it makes the process of preparing a dataset much easier and faster [38]. The system creates
YOLO format, VOC XML format, and a single CSV file.

The dataset consisting of 4653 images was uploaded to the MakeSense system, and
protozoa species belonging to 8 classes were labeled. The labeling operation is handled
in MakeSense system shown in Figure 5. While some images have a single object, some
images contain 25 objects. After all images were tagged, labeled data was created in YOLO
format. In YOLO format, the class ID, x and y coordinates of the midpoint of the rectangle,
width and height values of the rectangle are normalized in each line.

Figure 5. Labeling with MakeSense.

3.3. Performance Matrix

The Tesla P100-PCIE-16GB was the main equipment used in the experiment.
To assess the experimental findings, we consider accuracy and recall rates as well as
frames recognized per second (FPS). We compute the IoU of the detection and reference
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border boxes to determine the results as true or false. IoU is true when above and equal to
0.5 and false when less than 0.5.

The protozoa dataset has 8 categories, hence multi-class classification was performed.
The metrics given in Equations (2)—(4) are calculated using indices, considering the values
in the confusion matrix acquired in such classifications. These indices are True Positive (TP),
True Negative (TN), False Positive (FP), and False Negative (FN). TP is the true predicted
class numbers among each category, whereas TN is the total number of objects that have
been accurately categorized in all categories but the one that applies. TN is the number of
incorrectly categorized objects from the relevant category. FP shows the total number of
objects that were incorrectly categorized in all categories but the one that applies.

#classes

Y Acc(k) ()

k=1

Average Accuracy = e

#classes

Pre(k) (3)

Average Precision =

#classes =

#classes

Y Sen(k) 4)

k=1

Average Sensitivity = ¥elnsses

Accuracy is calculated as the ratio of the number of correctly predicted objects for
each class to the total number of predicted objects. The average success rate is obtained
by taking the average of all classes shown in Equation (2). Precision is the ratio of true
positives to the sum of all positives shown in Equation (3). The positives are the sum of
true and false predictions. Sensitivity is the ratio of correctly predicted class to actual assets.
The average sensitivity is calculated as the average of the sensitivities of the classes shown
in Equation (4).

3.4. Result and Discussion

In this study, real-time protozoa detection was realized by using YOLOv4 on Darknet-
53 framework. The evaluation of the study is performed by average accuracy, average
precision, average sensitivity, f1-score, and mAP metrics. The class-based average precision
values were also obtained and are shown in Table 2. Class-8 has the highest precision rate
among classes. The evaluation metrics of the system for YOLOv4 method are f1-score 95%,
precision 92%, sensitivity 98%, and mean Average Precision (mAP) 97.52% values shown in
Table 2.

Table 2. Performance evaluation values of protozoa detection.

F1-Score Precision Sensitivity mAP

YOLOv4 0.95 0.92 0.98 0.9752

Table 3 shows class average precision values belonging to eight different classes.
Average precision value of Class-3 (Colpoda) is 92.37% with 419 true positive and 58 false
positive values. Colpoda protozoa has the lowest mAP value by YOLOv4 due to the
similarity in shape with some other protozoan types. This is the lowest perception among
all classes. Class-8 (Hypotrich Ciliate) achieved the highest mAP value among all classes.

YOLOV4 creates bounding boxes of detected objects. Figure 6 shows the IoU bounding
box values of the protozoa classes. As seen in the figure, the places marked with red boxes
show the Bdelloid Rotifera, blue boxes show the Paramecium, yellow boxes show the
Stylonychia Pustulata, green boxes show the Clathrulina Elegans. These boxes show the
highest confidence score among cross-probability maps. For example, Bdelloid Rotifera
was detected on the image 96-98% of the time, even though the bacterium is constantly on
the move and constantly changes its shape, as shown in Figure 6.



Appl. Sci. 2024, 14, 607 10 of 13
Table 3. Training results per class with YOLOv4.
Classes AP TP ot
(Average Precision) (True Positive) (False Positive)

Class-1 (Stylonychia Pustulata) 97.13% 559 81
Class-2 (Bdelloid Rotifera) 97.77% 357 7
Class-3 (Colpoda) 92.37% 419 58
Class-4 (Paramecium) 98.91% 324 6
Class-5 (Clathrulina Elegans) 95.32% 30 1
Class-6 (Coscinodiscus) 100% 131 0
Class-7 (Lepocinclis Acus) 98.91% 92 9
Class-8 (Hypotrich Ciliate) 99.78% 107 3

Figure 6. Protozoa species detection test image.

Figure 7 displays the calculated mAP values of the valid data together with the loss
function graph on the training iteration axis; as the model becomes more trained and learns
to accept YOLO, the loss value drops. Typically, mAP climbs during the first few training
iterations before falling as a result of the deep learning model overfitting after a given
amount of training. Figure 7 shows the accuracy and loss rates after finishing training on
valid bacterial classes data. YOLOv4 achieved an average accuracy of 97% and a loss value
of 1.3792 with 0.5 IoU threshold value. The proposed YOLOv4 model misclassified 52 of
2063 objects out of 900 images in the test class. This result shows that the object detection
accuracy of the YOLOv4 is quite high.

Table 4 indicates the Faster R-CCN and SSD-based deep learning models, compared
according to setting the batch size to 64. The optimal batch size was chosen from alternative
values to reach the global optimum and the correct gradient value for our model. The most
significant accuracy was achieved by YOLOv4 with a precision of 0.9752, FPS of 5. The FPS
seems to be a bit low, but this can be increased with batch size and modifications to the
model. But, in this case, there may be problems like global optimum and correct gradient
value values. And, it may learn noise and it may get stuck at the local optimum and never
reach the global optimum.
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Figure 7. mAP and loss graph.

Table 4. Performance evaluation values of protozoa detection.

Batch Size FPS mAP
YOLOv4 64 5 0.9752
Faster R-CNN 64 2 0.9438
SSD 64 3 0.8746

4. Conclusions

The objective of this study is to create a technique for the automatic real-time recog-
nition, segmentation, and classification of protozoa, with the potential for application to
different species. According to the application results, successful results were obtained
even though the protozoa of the same species in the images used were of different sizes and
changed shape in motion. The detection of protozoa species in real time with deep learning,
the application of the YOLO algorithm for the first time, and the creation of the data set
by us add originality to this study. The developed system can be used in parasitology and
paramesiology studies. Results such as the existence of single-celled organisms and the
number of varieties can be obtained from the puddles. The system also gains importance in
terms of providing information about the density of single-celled organisms and software
support for researchers in the region. Finally, Karabiik University Faculty of Medicine
can use it as an educational support tool in terms of being a source for the single-celled
organisms lesson, which is a medical biology application in term 1, and for students to train
themselves. Lastly, the labeled dataset created specifically for this study will be shared later
and will contribute to academic studies. In addition, more and different protozoa species
will be added by expanding the data set.

5. Suggestions for the Future

This application is open for further development as the proposed method yields a
high success rate. The dataset with eight protozoa species can be further expanded to
provide researchers with an important field of study. In addition, the enriched dataset
can be transformed into a medical biology application that can be used in medical schools.
Methods can be explored to fine-tune the YOLOv4 model to enhance its performance under
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challenging imaging conditions, such as low light, high background noise, or varying
magnifications. Developing an interactive user interface will allow users, especially domain
experts, to annotate and correct the model’s predictions in real time. Collaboration can be
handled with experts in automation to integrate the protozoa detection algorithm with
automated sample processing systems. This could lead to a fully automated workflow for
real-time protozoa detection in environmental samples.
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