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Abstract: This study is concerned with the nonlinear free vibration of a cracked functionally graded
porous cylindrical panel reinforced with graphene platelets by introducing a phase-field crack
model. Conventional crack modeling by separating the grid nodes lying on the crack line is not only
painstaking but also suffers from numerical instability. To overcome this problem, the internal crack
is modeled by adopting the phase-field formulation and a virtual geometry rotation. The nonlinear
numerical method is developed based on the first-order shear deformation theory incorporated
with the von Kármán geometry nonlinearity in the framework of the 2-D extended natural element
method, a recently introduced mesh-free method. The crack-induced singular field is represented by
adopting the crack-tip singular functions, and the troublesome numerical locking is restrained by
combining the MITC3+ shell concept and the shear stabilization factor. The curved shell surface is
mapped to a 2-D rectangular NEM grid to avoid difficulty in defining the interpolation functions. The
developed numerical method is verified through a comparison with the reference solutions, and the
large-amplitude free vibration of porous cracked functionally graded grapheme platelet-reinforced
cylindrical panels is profoundly examined by changing the major parameters.

Keywords: functionally graded; GPL-reinforced composite; porous cracked cylindrical panel; nonlin-
ear free vibration; 2-D extended NEM; shear stabilization

1. Introduction

Currently, nanocomposites in which nanofillers such as graphene platelets (GPLs)
or carbon nanotubes (CNTs) are reinforced have been attracting much attention [1,2].
These nanofillers exhibit excellent physical, chemical, and electrical properties so that their
introduction can dramatically improve the performances of conventional composites. It
was reported that the structural strength of polymeric composites is greatly increased
when only a tiny amount of nanofillers are reinforced [3]. In terms of application, the
nanocomposites are manufactured in the form of beams, plates, and shells, and their
basic mechanical behaviors such as static deflection, free vibration, and buckling have
been intensively and continuously investigated [4–6]. This is because the quantitative
investigation of their mechanical responses is needed for their practical design in the specific
configuration under consideration, even though the superiority of material grapheme
has been qualitatively well-known. The mechanical behaviors of these nanocomposites
are strongly affected by the distribution patterns of nanofillers, particularly through the
thickness of the composite structures. So, several purposeful thickness-wise distribution
patterns have been proposed according to the notion of functionally graded material
(FGM), which was introduced in the late 1990s to overcome bi-material-type heat-proof
composites [7–10]. The representative functional distributions are FG-U, FG-O, FG-X, and
FG-∧, and the nanocomposite structures with these functional distributions of nanofillers
are called FG-GPLRC and FG-CNTRC structures.
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Besides the functional distribution of nanofillers, the mechanical behaviors of func-
tional nanocomposite structures are affected by the porosity distribution. This is because
the difference in the solidification temperatures of a matrix and a filler during fabrica-
tion produces porosities [11,12], and both the stiffness and mass of composite structure
are remarkably influenced by the amount and distribution pattern of porosity. In this
context, recently, porosity has been widely taken into consideration in the parametric
investigation of the mechanical behaviors of functional nanocomposites with respect to the
porosity coefficient and distribution [13–15]. Moreover, the combination of nanofiller and
porosity distribution patterns leads to more diverse mechanical behaviors of functional
nanocomposites because both distribution patterns are usually not the same as one an-
other. Due to their excellent material properties and the low density, functionally graded
porous nanocomposites have been attracting much attention for high-strength, lightweight
structures [16].

Carbon nanotubes are cylindrical in form so their production costs are relatively higher
than that of graphene platelets. In addition, their material properties are not isotropic but
orthotropic, with a higher elastic modulus in the direction of CNT alignment. Thus, the
mechanical responses of FG-CNTRC structures are sensitive to the CNT alignment direction
such that those in the two off-alignment directions are worse than those of FG-GPLRC
structures [17–19]. On the other hand, FG-GPLRC structures are usually modeled as
isotropic materials according to the micromechanical homogenization approach [20]. For
this reason, together with their relatively low production costs, FG-GPLRC structures
nowadays are attracting more attention [18]. Meanwhile, the studies on FG-GPLRC have
been based on those of FG-CNTRC because GPLs received attention somewhat later than
CNTs. As well, studies on the fundamental mechanical responses of FG-GPLRC structures
have mostly included geometry nonlinearity in the displacement field according to the
increase in interest on large deflection bending and large amplitude vibration.

Regarding studies on the nonlinear free vibration of GPL-reinforced structures,
Feng et al. [21] studied the nonlinear free vibration of a multi-layer polymer composite
beam reinforced with non-uniformly distributed GPLs through the thickness by apply-
ing Hamilton’s principle and the von Kármán nonlinearity to Timoshenko beam theory.
Zhang et al. [22] numerically examined the nonlinear vibration of graphene sheets by ap-
plying the element-free kp-Ritz method to the nonlocal elasticity theory, which accounts for
the size effect. Gao et al. [23] numerically examined the influence of GPL and porosity dis-
tributions on the nonlinear natural vibration of FG-GPLRC porous plates supported by the
elastic foundations by applying the differential quadrature method (DQM). Shen et al. [24]
investigated the temperature-dependent large amplitude vibration of GPLRC-laminated
cylindrical panels resting on an elastic foundation using a two-step perturbation tech-
nique. Kiani [25] proposed a nonlinear formulation for the nonlinear natural vibration of
GPLRC-laminated plates using a non-uniform rational B-spline (NURBS)-based isogeomet-
ric finite element method. Teng and Wang [26] analytically investigated the influence of
porosity coefficient and the foam skeleton distribution on the nonlinear free vibration of
graphene-reinforced plates by applying Hamilton’s principle to the von Kármán nonlinear
plate theory. Song et al. [27] numerically and parametrically investigated the temperature-
dependent nonlinear free vibration characteristics of the cracked FG-GPLRC beams resting
on an elastic foundation using the DQM. Tao and Dai [28] analyzed the size-dependent non-
linear free vibration of FG-GPLRC annular sector microplates by applying the isogeometric
analysis to a four-variable higher-order SDT. Javani et al. [29] investigated the nonlinear
natural vibration of an FG-GPLRC circular plate on the nonlinear elastic foundation using
the generalized DQM. Wang and Chen [30] numerically investigated the nonlinear natural
vibration of an FG-GPLRC titanium alloy trapezoid plate using the Rayleigh–Ritz method
and the direct iterative process.

As can be found from the literature survey, previous studies on the nonlinear free
vibration of FG-GLRC structures were mostly limited to beams and plates and further-
more assumed that the structures are perfect without any cracks. However, the structural
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elements used in real applications have various forms such as cylindrical and conical
shells, and various abnormal loading conditions such as thermal shock may induce micro-
cracking [31] within GPL-reinforced nanocomposite structures. These undesired cracks
damage the surrounding region such that the whole structural strength becomes signif-
icantly weakened, implying that the consideration of a crack is essential in structural
analyses and designs. Meanwhile, the consideration of a crack in a mesh- or grid-based
numerical analysis may frequently suffer from the painstaking crack modeling job [32–34].
Furthermore, the crack modeling deteriorates the mesh uniformity, which may induce
numerical instability and even numerical failure.

In this situation, this study aims to determine the large amplitude natural vibration
of a porous FG-GPLRC cylindrical panel with a central inclined crack. To avoid the
above-mentioned problems in crack meshing, the phase field formulation (PFF) [35,36] is
adopted and a virtual geometry rotation is introduced into the framework of 2-D extended
NEM [19,37]. In other words, the nodes sitting on the crack lines are not separated and
the region at the crack-tip in the grid is not centrally refined. Instead, the crack line
is represented by the phase field and its virtual rotation to the NEM grid line, and the
crack-induced singularity is enhanced by the near-tip singular functions [38]. The large
displacement field is expressed by the first-order SDT incorporated with the von Kármán
geometry nonlinearity. The painstaking definition and manipulation of high-smooth
Laplace interpolation (L/I) functions in NEM is relaxed by mapping the cylindrical neutral
surface to a rectangular plane. And, the troublesome numerical locking [39,40] is restrained
by adopting the MITC3+ shell concept and the shear stabilization factor. In the MITC3+
shell concept, the transverse shear strains are re-interpolated at six tying points within a
three-node triangular shell element to suppress shear locking [41]. The developed nonlinear
vibration method is justified through the comparison with the reference solutions. And,
the nonlinear natural vibration characteristics of porous FG-GPLRC cylindrical panels
are profoundly investigated by changing the major parameters of GPLs and porosity
and by combining the GPL and porosity distributions. Furthermore, a comparison with
FG-CNTRC cylindrical panels is also presented.

2. Functionally Graded Porous GPLRC Cylindrical Panel

Figure 1a represents a cylindrical panel in which GPLs are distributed with a specific
distribution pattern through the thickness. Cartesian coordinates (x, y, z) are introduced
on the corner of the neutral surface ϖ of the panel with the x-axis along the cylinder axis
and the z-axis through the thickness. The radial distance between the neutral surface and
the mid-surface is denoted by e [42]. The geometry of cylindrical panel is characterized
by length L, radius R, sub-tended angle θ0, and uniform thickness h. Then, the material
domain Ω ∈ ℜ3 can be expressed by Ω = ϖ × [−h/2, h/2]. Four thickness-wise functional
distribution patterns of GPLs are depicted in Figure 1b—FG-U, FG-O, FG-X, and FG-
Λ—where the GPLs are uniform in FG-U, biased towards the neutral surface in FG-O,
concentrated in the top and bottom regions in FG-X, and biased towards the bottom in
FG-Λ. In addition, pores and a central crack are included within the panel, as will be
described below.

The thickness-wise volume fractions of the GPLs and the underlying matrix are
denoted by fGPL(z) and fm(z). Then, either one is enough to identify both volume fractions
as two volume fractions satisfy the physical constraint given by

fGPL(z) + fm(z) = 1 (1)
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The GPL volume fraction fGPL(z) is chosen in this study and its mathematical expres-
sion becomes

fGPL(z) =


V∗

GPL, FG − U
2(1 − 2|z|/h)V∗

GPL, FG − O
2(2|z|/h)V∗

GPL, FG − X
(1 − 2z/h)V∗

GPL, FG − Λ

(2)

depending on the GPL distribution pattern, where the total GPL volume fraction V∗
GPL is

calculated by

V∗
GPL =

gGPL
gGPL + ρGPL(1 − gGPL)/ρm

(3)

using the GPL mass fraction g∗GPL, and the two densities ρGPL and ρm of the GPL and
matrix material.
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Figure 1. A cylindrical panel reinforced with graphene platelets: (a) geometry and dimensions, and
(b) GPL distribution patterns.

GPLs are modeled as a rectangular solid with length lGPL, width wGPL, and thickness
tGPL, and their distribution is assumed to be uniform within the underlying matrix in the
local sense. So, the graphene-reinforced composites are usually considered isotropic and
their effective Young’s modulus EC is evaluated using the Halphin-Tsai approach [20]:

EC =
3
8
· 1 + ξLηL fGPL

1 − ηL fGPL
Em +

5
8
· 1 + ξTηT fGPL

1 − ηT fGPL
Em (4)

with
ηL =

EGPL − Em

EGPL + ξLEm
, ηT =

EGPL − Em

EGPL + ξTEm
(5)

in which EGPL and Em are the elastic moduli of GPLs and matrix material, and the relative
geometry ratios ξL and ξT are defined by

ξL =
2lGPL
tGPL

, ξT =
2wGPL
tGPL

(6)

In a similar manner, the effective values of mass density ρC and Poisson’s ratio νC of
GPLRC are determined by

ρC = VGPLρGPL + Vmρm (7)

νC = VGPLνGPL + Vmνm (8)

using the simplest linear rule of mixture.
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The porosity within GPLRC is generally characterized by size, shape, orientation,
and dispersion structure of pores. In this study, the former three factors are assumed to
be uniform in space, but only the relative volume of pore and the dispersion structure
are considered for the parametric investigation of pores. Figure 2 shows three different
porosity distributions considered in this study, center-biased (PD_1), outer-biased (PD_2),
and uniform (PD_3), which are expressed as

PD_1 : χ(z) = e0 · cos
(πz

h

)
(9)

PD_2 : χ(z) = e0 ·
(

cos
∣∣∣π z

h

∣∣∣− π

2

)
(10)

PD_3 : χ(z) = e0 (11)

where e0(0 ≤ e0 ≤ 1) denotes the porosity coefficient, which is related to the relative vol-
umes of pores within GPLRC.
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Figure 2. Three porosity distributions (PD_1: center-biased, PD_2: outer-biased, and PD_3: uniform).

The porosity affects the effective material properties of GPLRC so that the above elastic
modulus EC, shear modulus GC = EC/2(1 + νC), and mass density ρC should be corrected.
Denoting the effective material properties before and after modification by ℘C(z) and ℘(z),
the modification is made through

℘(z) = ℘C(z) · [1 − χ(z)] (12)

except for the mass density. For the effective mass density, the porosity coefficient e0 should
be corrected using the relationship given by[

ρ(z)
ρC(z)

]2
=

E(z)
EC(z)

(13)

between the mass density and elastic property [43]. Then, the corrected porosity coefficient
em for the mass density is determined by

1 − em · cos
(πz

h

)
=
√

1 − e0 · cos(πz/h) (14)

for porosity distribution PD_1, for example.
Figure 3 represents a central crack within a cylindrical panel, which is characterized

by the inclination angle α and the length a. The crack center coincides with the center of
the cylindrical panel, and these two parameters are taken as variables for the parametric
experiment. The polar coordinates are added to two crack tips in order to express the
singular functions the are needed to capture the singularity at the crack tips. The existence
of a crack can be determined by either creating a crack line or employing the phase field
concept [35] without creating a crack line. The former is usually implemented by separating
the nodes sitting on the crack line in FEM or NEM grids [2]. But, the node separation in
the former approach not only is painstaking but also produces a non-uniform distorted
grid, which may deteriorate the numerical accuracy or even lead to numerical failure. This
difficulty becomes more severe in the crack propagation simulation for which tedious crack
tracking is essential [35].
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On the other hand, the latter approach employs an additional state variable called
phase field ϕ(x) (0 ≤ ϕ ≤ 1). The value of ϕ(x) indicates the damage state at point x within
the structure such that ϕ = 1 indicates fully damaged while ϕ = 0 denotes completely
undamaged. This method does not need the painstaking crack mesh generation, which can
significantly reduce the troublesome mesh adaptation job in crack propagation simulation
to track the crack. In addition, there is no need to assume material homogeneity and
isotropy regions away from the crack. Thus, there exist no limitations in the material type
for the phase field formulation. But, it needs an extra approximation of the phase field to
represent the existence of a crack within the material domain. The crack line is modeled by
connecting the points with ϕ = 1, and the transition region [35] between the fully damage
crack line and the completely undamaged region has the value of 0 < ϕ < 1. The size
of the transient region is denoted by the length scale [44,45], which is controlled by the
grid density near the crack line when the phase field is approximated using the same grid
constructed for the displacement field approximation.

According to this concept, the total strain energy U and the total kinetic energy T of
cracked structure are expressed as

U =
∫

Ω
(1 − ϕ)2Û dV (15)

T =
∫

Ω
(1 − ϕ)2T̂ dV (16)

where Û and T̂ denote the total strain and total kinetic energies when the structure is
completely undamaged.
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Letting d =
(
u0, v0, w0, βx, βy

)T be the displacement vector, the displacement field
u = {u, v, w}T of FG-GPLRC cylindrical panel is expressed as

u
v
w


(x,y,z)

=


u0
v0
w0


(x,y)

+ z ·


βx
βy
0


(x,y)

(17)

according to the FSDT. The large defection of a cylindrical panel is represented by the von
Kármán nonlinearity, which leads to the strain-displacement relations given by

ε =


w0
r + ∂u0

∂x + 1
2 w̃,x

∂w
∂x

∂v0
∂y + 1

2 w̃,y
∂w
∂y

∂v0
∂x + ∂u0

∂y + 1
2

(
w̃,x

∂w
∂x + w̃,y

∂w
∂y

)
+ z ·


∂βx
∂x

∂βy
∂y

∂βx
∂y +

∂βy
∂x

 = (HL + HNL)d (18)
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γ =

{
βy +

∂w0
∂y

βx +
∂w0
∂x − u0

r

}
= Hsd (19)

with ε =
{

εxx, εyy, 2εxy
}T , γ =

{
γyz, γzx

}T , and r = R + z ≈ R, where HL, HNL, and Hs
denote the (3 × 5) and (2 × 5) partial derivative matrices defined by

HL =

Hx 0 1/r z · Hx 0

0 Hy 0 0 z · Hy

Hy Hx 0 z · Hy z · Hx

 (20)

HNL =

0 0 w̃,x Hx/2 0 0

0 0 w̃,y Hy/2 0 0

0 0
(
w̃,x Hy + w̃,y Hx

)
/2 0 0

 (21)

Hs =

[
0 0 Hy 0 1

−1/r 0 Hx 1 0

]
(22)

with Hx = ∂/∂x and Hy = ∂/∂y. Here, w̃,x and w̃,y are the deflection derivatives of a
panel, which are assumed to be known a priori, as described later. Then, the strain–stress
constitutive relations become

σ =
EC

1 − ν2
C

 1 νC 0

νC 1 0

0 0 (1 − νC)/2




εxx

εyy

2εxy

 = D(HL + HNL)d (23)

τ =

[
GC 0

0 GC

]{
γyz

γzx

}
= DsHsd (24)

with σ =
{

σxx, σyy, σxy
}T and τ =

{
τyz, τzx

}T .

3. NE Approximation of Nonlinear Natural Vibration Using Phase-Field Crack Model

Referring to Figure 4, the panel neutral surface ϖ is uniformly divided into a finite
number of three-node Delaunay triangles. As mentioned above, the crack line is modeled
using the phase field ϕ(x) and the crack-induced singular field is represented by adding
the crack-tip singular functions without refining the local NEM grid in the vicinity of crack
tip. Thus, in an extended NEM, the displacement u(x, y, z) is approximated as

uh(x) =
N

∑
J=1

(
rJ + z dJ

)
ΨJ(x, y) +

2

∑
I=1

4

∑
k=1

(
r̂k

I + z d̂k
I

)
Qk

I (r, θ)

Qk
I (r, θ)

Rk
I (r, θ)

 (25)

using the L/I functions ψJ(x, y) [46,47] and the crack-tip singular functions Qk(r, θ) and
Rk(r, θ) [38].{

Qk
I (r, θ)

}
=

{√
rsin

(
θ

2

)
,
√

rcos
(

θ

2

)
,
√

rsin
(

θ

2

)
sin(θ),

√
rcos

(
θ

2

)
sin(θ)

}
(26)

{
Rk

I (r, θ)
}
=

{√
rsin

(
θ

2

)
, 0, 0, 0

}
(27)

The singular functions are defined using two distinct crack-tip polar coordinates
(r, θ)I(I = 1, 2), as depicted in Figure 3. Here, bJ =

(
rJ , dJ

)
are the non-singular nodal

displacement vectors at node J within the NEM grid ℑC generated with N nodes and M
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Delaunay triangles. And, sk
I =

(
r̂k

I , d̂k
I

)
indicates the singular vector corresponding to the

k-th singular function.
The derivation and manipulation of L/I functions on the curved cylindrical sur-

faces are troublesome, so the physical NEM grid ℑC = [0, S]× [0, L] on the panel neutral
surface is transformed into 2-D rectangular NEM grid ℑR = [0, θ0]× [0, L] for the computa-
tion. Then, according to the geometry transformation TC and the chain rule summarized
in Appendix A, the enriched NE approximation of the bending-membrane strain ε in
Equation (18) and the transverse shear (T/S) strain γ in Equation (19) ends up with

εh =
N

∑
J=1

~
LϕJbJ +

2

∑
I=1

4

∑
k=1

L Φk
I sk

I =
N

∑
J=1

BJbJ +
2

∑
I=1

4

∑
k=1

Hk
Isk

I (28)

γh =
N

∑
J=1

~
LsϕJbJ +

2

∑
I=1

4

∑
k=1

LsΦk
I sk

I =
N

∑
J=1

BJ
sbJ +

2

∑
I=1

4

∑
k=1

Hk
sIs

k
I (29)

with Φk
I =

{
Qk

I , Qk
I , Rk

I

}
. Here, BJ =

~
LϕJ is computed on the 2-D rectangular NEM grid

while Hk
I = LΦk

I is computed directly on the panel neutral surface (Similarly for BJ
s and Hk

sI).
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Note that the first term on the right-hand side in Equation (29), which is approximated
with C0-L/I functions ϕJ , may suffer from numerical locking when the deformation is
bending-dominated [39,40]. This problem can be effectively suppressed by indirectly inter-
polating this non-singular term of T/S strain according to the MITC3+ shell approach [41],
as addressed in Appendix B. The analytical calculation of Equations (A5) and (A6) in
Appendix B using Equations (19) and (22), together with the chain rule between two
coordinates (x, y) and (ξ, η) in Figure 4, results in

γh
e = B̂ebe (30)

Here, B̂e is the (2 × 15) triangle-wise matrices in function of ξ, η, z, and R, and be =
{be

1, be
2, be

3} are the (15 × 1) non-singular triangle-wise nodal vectors.
Next, the nonlinear vibration of the FG-GPLRC cylindrical panel is governed by the

dynamic form of the energy principle given by

δU + δ T = 0 (31)
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In accordance with the phase field concept, the virtual strain energy δU and the virtual
kinetic energy δT of cracked cylindrical panel are defined by

δ U =
∫ h/2−e

−h/2+e

∫
ϖ
(1 − ϕ)2δεTσ dAdz (32)

δ T =
∫ h/2−e

−h/2+e

∫
ϖ
(1 − ϕ)2δdTm

..
d dAdz (33)

where e denotes the radial distance of the neutral surface from the panel mid-surface and
m is a (5 × 5) symmetric matrix given by

m = ρ

[
I mT

1
m1 m2

]
, m1 =

[
z 0 0
0 z 0

]
(34)

with m2 = diag
(
z2, z2) and the identity matrix I.

Figure 5 represents a NEM grid composed of Delaunay triangles and grid points,
which will be described later in detail. In the present study, the phase field ϕ(x) introduced
in Figure 4 is approximated using L/I functions defined on the NEM grid. So, the crack line
in red may not have lied on the vertical, inclined, or horizontal lines within the NEM grid,
as depicted in Figure 5. In such a situation, an additional numerical technique is needed
to effectively approximate the phase field. In this study, the crack coordinates x ∈ ℜ2

C
including the crack line transforms the virtual phase field coordinates x ∈ ℜ2

P such that the
crack line lies on the inclined line within the NEM grid.

x ∈ ℜ2
C → x ∈ ℜ2

P (35){
x
y

}
=

{
xo
yo

}
+ R ·

{
cos
(
θ
)

sin
(
θ
)}, θ = tan−1

( y
x

)
− (α + θG) (36)

with R2
= (x − x0)

2 + (y − y0)
2.
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Next, substituting Equations (32) and (33) into Equation (31) through the constitutive
relations (23) and (24), under the assumption harmonic motion d = d · ejωt, one obtains the
nonlinear modal equation given by[(

KL,σ +
M

∑
e=1

Ke
L,s

)
+ KNL

]
d − ω2Md = 0 (37)
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where ωI and dI = [d1, d2, · · ·, dN ]I denote the nonlinear natural frequencies and natu-
ral modes, and two linear and one nonlinear stiffness matrix and the mass matrix are
calculated as

KL,σ =
∫ h/2−e

−h/2+e

∫
ϖ
(1 − ϕ)2BT

LDBL dϖdz (38)

Ke
L,s =

∫ h/2−e

−h/2+e

∫
ϖe

(1 − ϕ)2B̂T
e D̂sB̂e dϖdz (39)

KNL =
∫ h/2−e

−h/2+e

∫
ϖ
(1 − ϕ)2

[
BT

LDBNL + BT
NLDBL + BT

NLDBNL

]
dϖdz (40)

M =
∫ h/2−e

−h/2+e

∫
ϖ
(1 − ϕ)2ΦTmΦ dϖdz (41)

where B = [B1, B2, · · ·, BN ], Φ = [Φ1, Φ2, · · ·, ΦN ] and Φw = [Φw1, Φw2, · · ·, ΦwN ] with
ΦI = diag[ϕI , ϕI , ϕI , ϕI , ϕI ] and ΦwJ = diag

[
0, 0, ϕJ , 0, 0

]
. Meanwhile, D̂s is the modified

shear modulus matrix defined by (κ = 5/6)

D̂s =
κ

1 + ϑ · (Le/h)2

[
GC 0
0 GC

]
(42)

with the largest side length Le of the Delaunay triangle. And, ϑ(ϑ > 0) is a shear stabiliza-
tion parameter, which was determined through a preliminary experiment, as addressed in
the next section.

The nonlinear modal Equation (37) was solved using the three-step direct iterative
method [48]. At step 1, the linear natural frequencies and natural modes were computed
by excluding KNL from Equation (37). At step 2, the computed target natural mode d Was
scaled up using the desired amplitude–thickness ratio wmax/h, and then, the values of w̃,x
and w̃,y in Equations (18) and (19) were calculated and the nonlinear stiffness matrix KNL
Was constructed. At step 3, the nonlinear natural frequencies and natural modes were
computed. Steps 2 and 3 were repeated until the relative difference between the nonlinear
natural frequencies computed at two consecutive iterations was less than 0.1%.

4. Numerical Results

The nonlinear free vibration formulae given in Section 3 for cracked porous cylindrical
panels using the phase field theory and the crack rotation concept were coded in the frame-
work of 2-D XNEM [19]. All the stiffness and mass matrices given in Equations (38)–(41)
were numerically integrated using 7 Gauss integration points. First, the sensitivity of the
present method to the density of 2-D NEM grid was investigated using a clamped intact
(i.e., without an internal crack) aluminum cylindrical panel with the geometry dimensions
of L/R = 2, S/L = 1, R/h = 20. In this study, two kinds of boundary conditions, simply
supported (S) and clamped (C), were used, and which were implemented as

S : v0 = ϑy = 0 (43)

C : u0 = v0 = ω0 = ϑx = ϑy = 0 (44)

at θ = 0 or θ0. The component v0 in Equation (44) was excluded when the clamped
condition was specified for the side with y = 0 or L. The isotropic material properties
were Em = 70 GPa, νm = 0.3 and ρm = 2707 kg/m3, and the first natural frequency was
calibrated as ω̂1 = ω1L2

√
ρm/Dm with the flexural rigidity Dm = Emh3/12

(
1 − ν2

m
)
. The

non-dimensional first frequencies ω̂1 were computed and are presented in Table 1, where
ω̂rel

1 indicates the relative percentage difference with respect to the fundamental frequency
computed with a grid density of 25× 25. It was found that the relative difference uniformly
decreases in proportion to the grid density such that it becomes less than 3.0% when the
grid density goes up to 21 × 21. So, according to this convergence result, the grid density
was set to 21 × 21 for the whole numerical experiment in this paper.
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Table 1. Dependence of non-dimensional first frequency of an isotropic intact cylindrical panel on
the grid density (L/R = 2, S/L = 1, R/h = 20, CCCC).

Items
Grid Density

13×13 15×15 17×17 19×19 21×21 23×23 25×25

ω̂1(Hz) 296.501 288.927 282.838 277.882 273.829 270.491 267.708
ω̂rel

1 (%) 9.70 7.93 5.65 3.80 2.27 1.04 -

Next, the accuracy of the present method was verified by comparing it with the phase
field formulation of Torabi and Ansari [36]. A metal–ceramic functionally graded cylindrical
panel with an internal crack, shown in Figure 3, is taken. The geometric dimensions and
the boundary condition are the same as those from the above convergence test problem,
and also, the previous aluminum is taken for the metal while alumina with Ec = 380 GPa
and νc = 0.26 is chosen for the ceramic. The power-law function of Vc(z) = (0.5 − z/h)r is
adopted to identify the thickness-wise volume fractions of the ceramic and also the metal
using the relation Vm(z) = 1 − Vc(z). The relative crack length a/S is set at 0.3, while
the crack angle and the ceramic power-law index are taken as variables. By comparing
with the reference solutions, the shear stabilization factor ϑ in Equation (42) was set at
ϑ = 0.3× [1 − 0.1 × (1 − α/90)] to reflect the influence of crack angle on the stiffness matrix
KL,σ in Equation (38). The phase field ϕ(x) in the mass matrix M in Equation (41) was set to
0 in order to prevent the over-reduction of mass due to an internal crack in the coarse NEM
grid. The comparison in Table 2 reveals that the present results show good agreement with
the reference solutions, with the maximum relative difference equal to 4.838%. Except for
the case of α = 0, all the present results lead to the relative differences being less than 1.0%.
Meanwhile, the fundamental frequency uniformly decreases proportional to the ceramic
power-law index r because the relative region occupied by a stiffer ceramic reduces in
proportion to the value of r. It is found that the first frequency uniformly increases with
increasing crack inclination angle because the reduction in the circumferential stiffness of a
panel shows that the circumferentially dominated free vibration becomes smaller as the
crack inclination angle increases.

Table 2. Comparison of first frequencies of ceramic–metal FG cracked cylindrical panels (L/R =

2, S/L = 1, R/h = 20, a/S = 0.3, CCCC).

Method α (deg)
r

0 0.2 0.5 1 5

PFF [36]

0 269.69 243.42 215.53 187.67 144.15
30 274.85 249.43 223.17 196.01 146.73
60 275.50 250.00 223.67 196.95 147.04
90 275.73 250.20 223.84 197.09 147.16

Present

0 271.35 247.84 222.83 196.75 145.44
30 273.25 249.38 223.79 196.96 146.03
60 275.67 251.18 224.48 196.32 147.09
90 277.14 251.87 224.69 196.74 148.02

Figure 6a,b comparatively represent the effect of crack inclination angle on the second
natural modes for a/S = 0.3 and 0.6, respectively, when the ceramic power-law index r
is 0. The reason for showing the second mode is because the fundamental mode does not
produce any apparent change with respect to the crack angle. It is seen that the mode shape
becomes separated from the left and right as α goes to zero, while it becomes similar to the
non-separated single plate vibration mode as α increases.
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Figure 6. Variation in the second-mode shapes of a clamped FG-GPLRC cylindrical panel to the crack
inclination angle (α = 0◦, 30◦, 60◦ and 90◦) for r = 0 (a) at a/S = 0.3 and (b) at a/S = 0.6.

The present method is also verified through two nonlinear free vibration analyses.
One is an isotropic intact cylindrical panel under the simply-supported boundary con-
dition with the geometry and material data given by S/L = 1, S/h = 10, R/h = 0,
Em = 68.95 GPa, νm = 0.3, and ρm = 1150 kg/m3. The nonlinear-to-linear frequencies
ωNL/ωL were computed for six different values of amplitude–thickness ratio wmax/h, and
the frequency–amplitude plot is compared in Figure 7a. The reference solution by Shin [49]
was solved by applying the fourth-order Runge–Kutta method to the FSDT. Meanwhile,
the other reference solution by Shen and Xiang [50] was analytically solved by applying a
two-step perturbation method to the HSDT. The von Kármán-type geometric nonlinearity
was adopted to both solutions, as for the present study. One can clearly see that the three
methods are in excellent agreement such that the maximum relative difference in ωNL/ωL
between the present method and that of Shin [49] is 1.149% at wmax/h = 1.0.
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The other nonlinear example is an intact porous isotropic cylindrical panel with
the geometric and material data given by L = S = 1.0m, S/h = 10, R/S = 5,
Em = 200 GPa, νm = 0.3, and ρm = 7850 kg/m3. The porosity distribution is PD_1
shown in Figure 2 with the porosity coefficient e0 = 0.6, and the four sides of panel are
clamped. The computed frequency–amplitude plot is compared with those of Keleshteri
and Jelovica [51] in Figure 7b, where two reference solutions were numerically obtained by
applying the generalized DQM to FSDT and HSDT. The comparison reveals that the plot of
the present method is positioned between HSDT and FSDT, but it is closer to FSDT because
the present method is based on FSDT.

Next, the sensitivity of the present phase-field crack model to the grid density was
examined using the isotropic cylindrical panel taken from Table 1 in which an inclined
central crack is included. The relative length a/S and the inclination angle α of a crack were
chosen as 0.7 and 45◦. The non-dimensional first frequency ω̂1 and its linear-nonlinear ratio
ωNL/ωL at wmax/h = 1.0 were computed for five grid densities and recorded in Table 3. It
is clearly observed that the relative difference of ω̂1 uniformly decreases proportional to
the grid density. Also, the relative fluctuation in ωNL/ωL becomes smaller in proportion
to the grid density.

Table 3. Sensitivity of ω̂1 and ωNL/ωL of a cracked isotropic cylindrical panel to the grid density
(L/R = 2, S/L = 1, R/h = 20, a/S = 0.7, α = 45◦, CCCC).

Items
Grid Density

9×9 13×13 17×17 21×21 25×25

Linear
ω̂1(Hz) 37.945 33.505 31.679 31.250 31.191
ω̂rel

1 (%) 21.65 7.42 1.56 0.19 -

Nonlinear
ωNL/ωL (wmax/h = 1.0) 1.157 1.145 1.166 1.160 1.163

(ωNL/ωL)
rel(%) −1.81 −1.55 0.26 −0.26 -

The present method was also applied to non-porous FG-GPLRC cylindrical panels with
a central crack to examine the influence of crack angle and length, and GPL distribution
pattern on the fundamental frequency. The geometric dimensions and the aluminum
material properties are the same as those of the first example given in Table 1, where
the first frequencies are calibrated as ω̂1 = ω1S2

√
ρm/Em. Meanwhile, the geometric

dimensions and the material properties of GPLs are as follows: EGPL = 1.01 TPa, νGPL =
0.186, lGPL = 2.5µm, wGPL = tGPL = 1.5µm, and ρGPL = 10600 kg/m3, respectively.
It is observed from Table 4 that the non-dimensional fundamental frequency decreases
proportionally to the crack length because the panel stiffness decreases as the crack length
increases. Meanwhile, regarding the GPL distribution pattern, FG-X leads to the highest
level while FG-O shows the lowest level. This relative order among the GPL distribution
patterns is attributed to the fact that the panel stiffness becomes higher as GPLs become
biased towards the top and bottom of the panel; see Figure 1b.

Next, the nonlinear natural vibration of the clamped FG-GPLRC cylindrical panel with
a central crack was profoundly examined by changing the major parameters. Figure 8a
represents the effect of crack inclination angle on the variation in nonlinear-to-linear fre-
quency ratio ωNL/ωL to the amplitude–thickness ratio wmax

c /h. The mass fraction g∗GPL
and distribution pattern of GPLs are 0.4% and FG-U, and the relative crack length a/S is set
at 0.3. It is seen that the frequency ratio ωNL/ωL becomes uniformly smaller in proportion
to the crack inclination angle, but the decrease trend becomes smaller proportional to the
crack angle. Thus, this trend reveals that the nonlinearity in free vibration decreases with
increasing crack inclination angle. Figure 8b represents the effect of crack relative length
on the nonlinear natural vibration of the FG-U GPLRC cylindrical panel when the crack
inclination angle α is zero. It is seen that the frequency ratio ωNL/ωL becomes slightly
smaller with increasing crack relative length because the panel stiffness drops proportional
to the crack relative length.
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Table 4. Non-dimensional first frequencies ω̂1 of non-porous FG-GPLRC cylindrical panels with a
central crack (L/R = 2, S/L = 1, R/h = 20, g∗GPL = 0.4%, CCCC).

Crack Length
a/S

Crack Angle
α(deg)

GPL Distribution

FG-U FG-O FG-X FG-Λ

0.3

0 50.0201 45.2187 51.9930 48.3275
30 50.1616 45.8623 52.2722 48.9641
60 50.2431 46.8017 52.3461 49.4227
90 50.3914 46.8707 52.4892 49.5481

0.6

0 47.8834 44.4466 49.7297 47.1588
30 48.2756 44.8122 50.2369 47.7287
60 48.3421 45.0171 50.4532 47.8063
90 49.0014 45.8415 50.9793 48.2326
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Figure 9a represents the variation in frequency ratio ωNL/ωL to the GPL mass fraction
g∗GPL for the FG-O GPLRC cylindrical panel with a central crack. The inclination angle
and relative length of a crack are set at 300 and 0.3. Each nonlinear free vibration analysis
for five values of wmax

c /h was completed within five minutes on an Intel Pentium PC with
a dual core CPU (1.86 GHz). It is observed that the frequency ratio uniformly increases
in proportion to the GPL mass fraction because the mass fraction increase in GPLs with
a higher elastic modulus leads to an increase in panel stiffness. Figure 9b represents the
influence of the GPL distribution pattern on the frequency ratio ωNL/ωL, for which the
GPL mass g∗GPL was set to 0.4%, while three different GPL distribution patterns were
additionally considered. It is found that the magnitude order of frequency ratio ωNL/ωL is
FG-X, FG-O, FG-U, and FG-Λ. This trend is slightly different from the magnitude order of
linear fundamental frequency ω̂1 given in Table 3, where FG-O shows the lowest level. In
the frequency ratio ωNL/ωL, FG-O shows the second highest level, which is caused by the
fact that the magnitude of ωNL/ωL is not determined by the magnitudes of ωNL and ωL
but the relative value of these two. This trend was also observed from Figure 8a, where
larger inclination crack angles showed lower frequency ratios ωNL/ωL even though the
linear fundamental frequency was higher at larger inclination crack angles.



Appl. Sci. 2024, 14, 4281 15 of 22

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 23 
 

  

(a) (b) 

Figure 8. Variation in nonlinear-to-linear frequency ratio LNL /  (FG-U, %,.g*

GPL 40=  

30.S/a = ) (a) to the crack angle   and (b) to the crack relative length S/a  ( o0= ). 

Figure 9a represents the variation in frequency ratio LNL /   to the GPL mass frac-

tion *

GPLg  for the FG-O GPLRC cylindrical panel with a central crack. The inclination 

angle and relative length of a crack are set at 030  and 0.3. Each nonlinear free vibration 

analysis for five values of h/wmax

c  was completed within five minutes on an Intel Pen-

tium PC with a dual core CPU (1.86 GHz). It is observed that the frequency ratio uni-

formly increases in proportion to the GPL mass fraction because the mass fraction in-

crease in GPLs with a higher elastic modulus leads to an increase in panel stiffness. Fig-

ure 9b represents the influence of the GPL distribution pattern on the frequency ratio 

LNL /  , for which the GPL mass *

GPLg  was set to 0.4%, while three different GPL dis-

tribution patterns were additionally considered. It is found that the magnitude order of 

frequency ratio LNL /   is FG-X, FG-O, FG-U, and FG-Λ. This trend is slightly different 

from the magnitude order of linear fundamental frequency 1̂  given in Table 3, where 

FG-O shows the lowest level. In the frequency ratio LNL /  , FG-O shows the second 

highest level, which is caused by the fact that the magnitude of LNL /   is not deter-

mined by the magnitudes of NL  and L  but the relative value of these two. This trend 

was also observed from Figure 8a, where larger inclination crack angles showed lower 

frequency ratios LNL /   even though the linear fundamental frequency was higher at 

larger inclination crack angles. 

  

(a) (b) 

Figure 9. Variation in nonlinear-to-linear frequency ratio ωNL/ωL (a/S = 0.3, α = 30◦) (a) to the
GPL mass fraction g∗GPL (FG-O) and (b) to the GPL distribution pattern (g∗GPL = 0.4%).

Next, the nonlinear free vibration of the cracked cylindrical panel between GPLRC
and CNTRC was compared by keeping the material properties of the matrix unchanged.
The (10,10) single-walled CNTs [52] were taken, and their orthotropic material properties
are presented in Table 5. The effective material properties of the CNTRC structures are
evaluated as

E1 = η1 fCNTECNT
1 + fmEm,

η2

E2
=

fCNT

ECNT
2

+
fm

Em
(45)

η3

G12
=

fCNT

GCNT
12

+
fm

Gm
, ν12 = fCNTνCNT

12 + fmνm (46)

according to the modified linear rule of mixtures (MLRMs), where the CNT efficiency
parameters ηi(i = 1, 2, 3) are dependent of the CNT total volume fraction V∗

CNT [53]. Note
that LRM accounts only for matrix-fiber deformation but does not consider nonlinearities
such as fiber–matrix adhesion that might consume a large chuck of applied energy.

Table 5. Material properties of (10,10) single-walled CNTs (1, 2, 3 = x, y, z).

Elastic Moduli (GPa) Poisson’s Ratios Shear Moduli (GPa)

Ecnt
1 Ecnt

2 Ecnt
3 νcntT

12 νcnt
23 νcnt

31 Gcnt
12 Gcnt

23 Gcnt
31

5646.6 7080.0 - 0.175 - - 1944.5 - -

Figure 10a represents the variation in ωNL/ωL to the relative central amplitude wmax
c /h

of a cracked FG-X cylindrical panel with a/S = 0.3 and α = 30◦, where the angle αCNT =
90◦ denotes that CNTs are aligned in the direction of cylinder axis. The frequency ratio
ωNL/ωL shows a noticeable change to the CNT volume fraction V∗

CNT , even though the
extent of increase is not so large when compared with that shown in Figure 9a. Figure 10b
represents the variation for different GPL volume fractions V∗

GPL, where the ratio ωNL/ωL
and its dependence on V∗

GPL are shown to be smaller than those shown in Figure 10a. Note,
from the relation in Equation (3), that V∗

GPL = 0.12 equals 10.75% of the GPL mass fraction.
Therefore, it is found that the dependence of frequency ratio ωNL/ωL on V∗

GPL and V∗
CNT

becomes insensitive in proportion to the amount of GPLs and CNTs, and this trend is more
apparent at CNTRC for the same volume fraction. This is because the nonlinearity intensity
becomes saturated as the structural stiffness reaches the critical value owing to the increase
in CNTs and GPLs, as will be seen later.
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Figure 10. Comparison of nonlinear-to-linear frequency ratios ωNL/ωL between GPLRC and CNTRC
(FG-X, a/S = 0.3, α = 30◦): (a) CNTRC; (b) GPLRC.

Before the examination of the effect of higher V∗
GPL and V∗

CNT on the variation in
ωNL/ωL, the fundamental frequencies of GPLRC and CNTRC are compared for the FG-X
cylindrical panel with a/S = 0.3 and α = 30◦. From Table 6, it is found that the first
frequencies of GPLRC are much higher than those of CNTRC, implying that GPLRC
possesses much higher structural stiffness than CNTRC for the same volume fraction.
This is because the material properties of CNTRC are axis-dependent such that the two
lateral elastic moduli are much lower than the axial one. It is clearly found that the non-
dimensional first frequency of CNTRC becomes higher when the CNTs are aligned in the
circumferential direction (i.e., αCNT = 00).

Table 6. The non-dimensional linear first frequencies ω̂1 (FG-X, a/S = 0.3, α = 30◦).

Type
Volume Fraction V*

GPL=V*
CNT (g*

GPL)

0.12 (10.75%) 0.17 (15.32%) 0.28 (25.57%)

GPLRC 216.31 258.31 335.64

CNTRC
αCNT = 900 39.19 50.64 55.55
αCNT = 00 56.03 72.20 80.32

Figure 11a represents the variation in ωNL/ωL with respect to the GPL mass fraction
g∗GPL for different GPL distribution patterns when wmax

c /h is 1.0. It is seen that the fre-
quency ratio ωNL/ωL becomes saturated such that FG-O and FG-Λ approach the upper
bounded value while FG-U and FG-X approach the lower bounded value. Thus, it has
been justified that the nonlinearity intensity in the free vibration becomes insensitive to
V∗

GPL and V∗
CNT when the amount of GPLs and CNTs reaches a critical value. Figure 11b

represents the variation in ωNL/ωL to the CNT volume fraction when CNTs are aligned
in the circumferential direction. The relative order in the magnitude of ωNL/ωL is the
same as that of αCNT = 90◦, shown in Figure 10a, but the magnitude of ωNL/ωL and its
sensitivity to V∗

CNT are shown to be relatively larger than those of CNTRC with αCNT = 90◦.
It is noticed that the ωNL/ωL of V∗

CNT = 0.17 is smaller than the ωNL/ωL of V∗
CNT = 0.12

regardless of the CNT alignment angle. It is of course attributed to the fact that both the
ωL and ωNL of V∗

CNT = 0.17 are larger those of V∗
CNT = 0.12 but their relative ratio can be

smaller than that of V∗
CNT = 0.12.
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Next, the influence of porosity on the nonlinear free vibration of a cracked FG-GPLRC
cylindrical panel was investigated. The mass fraction g∗GPL and distribution pattern are
0.4% and FG-U, and the inclination angle α and relative length a/S of the crack are 30◦.
Three different porosity distributions and the five porosity parameters were considered.

Figure 12a comparatively represents the frequency ratios ωNL/ωL of an FG-U GPLRC
cylindrical panel with the center-biased porosity distribution (PD_1). It is observed that
the frequency ratio becomes uniformly smaller with the increase in e0 until wmax

c /h = 0.2,
but thereafter, it uniformly increases in proportion to e0. However, the extent of decrease
becomes smaller as the porosity parameter e0 increases. Both ωL and ωNL decrease propor-
tionally to e0 because the increase in porosity decreases the structural stiffness [54]. But,
the frequency ratio ωNL/ωL may increase with increasing e0 because the denominator ωL
decreases in proportion to e0. Figure 12b compares the plots of ωNL/ωL for three different
porosity distributions, where the center-biased distribution (PD_1) shows the highest level
while the outer-biased distribution (PD_2) leads to the lowest level. This is because the
structural stiffness increases as the porosity becomes biased towards the mid-surface of
panel for the same amount of porosity. However, the relative difference in ωNL/ωL among
the three porosity distributions becomes different when the GPL distribution pattern is
changed, as will be seen next.

Figure 13a–d comparatively represent the differences in ωNL/ωL between three poros-
ity distributions for FG-U, G-O, FG-X, and FG-∧. First of all, it is clearly observed that the
relative order and difference in the three plots of ωNL/ωL are remarkably influenced by
the GPL distribution pattern. In FG-O, shown in Figure 13b, the center-biased PD_1 shows
the lowest level because the middle region with a high density of GPLs is mostly occupied
with pores. On the other hand, the outer-biased PD_2 shows the highest level because most
pores are concentrated in the top and bottom regions with a low density of GPLs. In FG-X,
shown in Figure 13c, the difference between three porosity distributions is negligible. It
is because the relative increase in ωNL with respect to ωL is almost similar for the three
porosity distributions as the amplitude–thickness ratio wmax

c /h increases. Meanwhile, in
FG-∧, shown in Figure 13d, the three porosity distributions show noticeable difference
because the GPLs are concentrated only in the bottom region, differing from FG-X. Thus,
it is found that the combination of GPL and porosity distributions leads to more diverse
variations in the nonlinear-to-linear frequency ratio.
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5. Conclusions

The nonlinear free vibration of a porous FG-GPLRC cylindrical panel with a central
crack has been investigated by combining a phase field formulation and a virtual geometry
rotation in the framework of 2-D XNEM. The curved neutral surface was transformed
into a rectangular plane for the easy definition and manipulation of L/I functions, and
the troublesome numerical locking was effectively suppressed by employing the MITC3+
shell concept and the stabilization factor. The developed nonlinear numerical method was
verified through a comparison with the reference solutions, and the nonlinear free vibration
characteristics of cracked porous FG-GPLRC cylindrical panels were profoundly examined.
The numerical results led to the following major findings:

• The present method shows stable convergence and good agreement with the reference
solutions, with a maximum relative difference equal to 4.838%.

• The nonlinear-to-linear frequency ratio ωNL/ωL decreases with increasing crack incli-
nation angle, but the decreasing slope becomes saturated. Meanwhile, it uniformly
decreases as the relative crack length becomes larger.

• The frequency ratio ωNL/ωL increases in proportion to the GPL mass fraction g∗GPL,
but it becomes saturated as g∗GPL increases over a critical value. And, the saturation
trend is different for different GPL distribution patterns.

• The frequency ratio ωNL/ωL increases proportionally to the porosity coefficient e0 even
though it shows a saturation trend. Also, its variation to wmax

c /h is remarkably affected
by the porosity distribution and becomes more diverse when the GPL distribution is
combined.

• Compared with FG-GPLRC, FG-CNTRC produces a remarkably lower linear funda-
mental frequency but a slightly higher frequency ratio ωNL/ωL, for the same volume
fraction. In addition, its nonlinear free vibration is affected by the CNT alignment
direction, differing from FG-CNTRC.

Funding: This work was supported by the 2024 Hongik University Research Fund.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Interpolation of T/S Strains

The geometry transformation TC from the computational NEM grid ℑR = [0, θ0]×
[0, L] to the physical NEM grid ℑC = [0, S]× [0, L] is defined by

TC : (ζ1, ζ2) ∈ ℑR → (x, y) ∈ ℑC (A1)

Then, the L/I functions ψJ(x, y) are mapped to ϕJ(ζ1, ζ2), and the two relations x =
R · ζ1 and y = ζ2 lead to the inverse Jacobi matrix J−1 given by

J−1 =

[
∂ζ1/∂x ∂ζ1/∂y
∂ζ2/∂x ∂ζ2/∂y

]
=

[
1/R 0

0 1

]
(A2)

As well, the partial derivatives Lx and Ly in Equations (18)–(20) defined on the panel
neutral surface are changed to

∂

∂x
= Lx =

1
R

∂

∂ζ1
=

1
R

L1,
∂

∂y
= Ly =

∂

∂ζ2
= L2 (A3)

defined on the 2-D rectangular NEM grid according to the chain rule.
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Introducing Equation (A3) into Equations (20)–(22) leads to L̂ and L̂s in which Lx and
Ly are replaced with L1 and L2:

T−1
C : L, Ls →

~
L,

~
Ls (A4)

Appendix B. Interpolation of T/S Strains

Each triangle ϖe in the physical NEM grid ℑC shown in Figure 4 is mapped to the
three-node master element ϖ̂ in Figure A1. And, the non-singular displacement part is

re-expressed using the computed triangle-wise nodal vectors be
K =

(
ue

0, ve
0, we

0, βe
x, βe

y

)T

K
and the Lagrange-type bilinear shape functions {NL(ξ, η)}3

L=1. Next, according to the
MITC3+ shell approach, the triangle-wise T/S strains γh

e are indirectly interpolated as(
γh

e

)
xz

=
2
3

[
γ
(B)
xz − 1

2
γ
(B)
yz

]
+

1
2

[
γ
(C)
xz + γ

(C)
yz

]
+

δ

3
(3η − 1) (A5)

(
γh

e

)
yz

=
2
3

[
γ
(A)
yz − 1

2
γ
(A)
xz

]
+

1
2

[
γ
(C)
yz + γ

(C)
xz

]
+

δ

3
(1 − 3ξ) (A6)

with δ = γ
(F)
xz − γ

(D)
xz + γ

(E)
yz − γ

(F)
yz , where A, B, C, D, E, and F indicate the six tying points,

as shown in Figure A1.
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