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Abstract: Video classification is a challenging task in computer vision that requires analyzing the
content of a video to assign it to one or more predefined categories. However, due to the vast amount
of visual data contained in videos, the classification process is often computationally expensive and
requires a significant amount of annotated data. Because of these reasons, the low-data-based video
classification area, which consists of few-shot and zero-shot tasks, is proposed as a potential solution
to overcome traditional video classification-oriented challenges. However, existing low-data area
datasets, which are either not diverse or have no additional modality context, which is a mandatory
requirement for the zero-shot task, do not fulfill the requirements for few-shot and zero-shot tasks
completely. To address this gap, in this paper, we propose a large-scale, general-purpose dataset for
the problem of multi-modal low-data-based video classification. The dataset contains pairs of videos
and attributes that capture multiple facets of the video content. Thus, the new proposed dataset will
both enable the study of low-data-based video classification tasks and provide consistency in terms
of comparing the evaluations of future studies in this field. Furthermore, to evaluate and provide a
baseline for future works on our new proposed dataset, we present a variational autoencoder-based
model that leverages the inherent correlation among different modalities to learn more informative
representations. In addition, we introduce a regularization technique to improve the baseline model’s
generalization performance in low-data scenarios. Our experimental results reveal that our proposed
baseline model, with the aid of this regularization technique, achieves over 12% improvement in
classification accuracy compared to the pure baseline model with only a single labeled sample.

Keywords: multi-modal dataset; few-shot learning; zero-shot learning; video classification;
multi-modal learning; deep variational autoencoder

1. Introduction

Video classification has received a lot of attention due to its promising real-world
practical applications such as human activity classification [1], medical examination [2],
autonomous vehicles [3], or video recommendation [4,5]. Despite outstanding results
and applications, the video classification field requires a large amount of labeled data
in the training stage. Even though existing semi-supervised labeling mechanisms [6] or
data augmentation techniques are proposed in the literature, label acquisition is still a
time-consuming and expensive stage. Due to this reason, low-data-based deep learning
models have attracted a lot of attention, especially in the video classification field.

In the low-data-based learning scenario, learning models correspond to the situation
where only a scarce number of samples are available during the training stage, which is
a very common situation in the real world. In addition to this scarcity, there is another
scenario without the training sample, which forces learning models to acquire the skills
of comparison and the cause–effect relationship between different modalities. These two
different low-data-based learning scenarios define key subdivisions: few-shot learning and
zero-shot learning.

More precisely, in a few-step learning scenario, learning models are expected to learn
new concepts from a few examples, which may lead the state-of-the-art deep learning
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models to face generalization problems. In addition, in the zero-shot learning scenario,
which is a more challenging task, no examples are presented for new concepts to the
learning models during the training stage and the concepts without samples are expected
to be predicted using additional context from other modalities.

According to these limitations, it is a vital requirement whether a dataset exists that
will enable multi-modal low-data video classification. This dataset must have the auxiliary
context to help analyze the video from different perspectives, as in the still image domain,
for video classification problems based on multi-modal and zero-shot learning. In this
context, the existing video classification datasets [7–9] only have class labels and do not
provide auxiliary context about the videos. However, multi-modal low-data-based video
classification research requires a dataset that contains both videos and additional modality
context that identifies videos (e.g., natural language-based text content that semantically
describes videos), which is a key contribution of this paper.

In the light of all these requirements and deficiencies in the field of research, the con-
tributions of this study are listed below:

• First, we propose a dataset, due to the fact that current video classification datasets
are highly biased towards specific actions, which provides low diversity, and lack
auxiliary context beyond class labels to enable proper zero-shot learning and multi-
modal learning. Our dataset is based on the Holistic Video Understanding dataset [10],
which we have adopted for meta-learning-oriented low-data-based video classifi-
cation problems. To accomplish this, we propose a dataset called Holistic Video
Understanding over Low Data (HVU-LD), which utilizes the meta-learning paradigm
to enable episodic learning. The dataset is divided into three sets—meta-training,
meta-validation, and meta-testing—each with unique classes that do not appear in the
other sets. Training, validation, and testing stages are applied to the meta-training,
meta-validation, and meta-testing sets, respectively. As shown in Figure 1, each set is
composed of multiple episodes, each of which includes n-way k-shot support–query
pairs. In the meta-learning paradigm, the support set is called the reference set, and the
query set is called the evaluation set. The n refers to the number of classes in the
episode, and k refers to the number of samples per class in the support set.

• Second, in addition to proposing a multi-modal low-data-based video classification
dataset, we have analyzed our proposed dataset and existing video classification
datasets, which are proposed for video classification and then adapted to low-data-
based learning even if they do not have enough contextual information, in terms of
semantic distance. Using this semantic distance, we aimed to create a low-data-based
dataset that closely reflects real-world conditions. Our goal was to ensure not only
that the meta-sets contain different classes, but also that the classes in the meta-sets
are semantically distant from each other.

• Third, we prefer to choose a supervised variational autoencoder model that is applica-
ble to both few-shot learning and zero-shot learning scenarios as a baseline method to
evaluate this new dataset. This baseline model uses the CADA-VAE [11], which was
introduced for generalized few-shot and zero-shot learning in the image classification
domain. Since the baseline model was developed for the still-image domain, minor
changes have been made to make it available for the video domain. This model
comprises two variational autoencoder networks for each modality, incorporating
cross-alignment and distribution alignment objectives.

• Lastly, we extend this baseline CADA-VAE model by a distribution-based regular-
ization technique to enhance the generative capability of the variational autoen-
coders while increasing the inter-class distance and decreasing the intra-class distance.
The proposed modification to the baseline model architecture enables supervised
training while maintaining its efficacy for few-shot and zero-shot learning. This modi-
fication incorporates meta-learning techniques that allow the model to learn how to
quickly adapt to new tasks with limited examples. By training the model through
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episodic training, it learns to generalize better from limited examples, resulting in
improved performance for few-shot and zero-shot learning scenarios.

Figure 1. The meta-learning paradigm-based multi-modal low-data-based video classification setting.
Meta-training and Meta-testing sets follow the n-way k-shot setup. The intersection of these sets is
empty, and the learning model is trained with Meta-training episodes and tested with meta-testing
episodes. Also, each episode both in training and testing sets has support and query sets where the
support set refers to training examples, and the query set refers to testing samples. (Best view colored
and zoomed in).

2. Background and Related Work

Low-data-based supervised learning models differentiate from conventional super-
vised learning models in terms of the number of available samples in the training stage.
To address this challenge, low-data-based learning algorithms have been developed with
three different primary perspectives [12]. The most intuitive strategy is data augmentation,
which aims to increase the number of samples either using hand-crafted techniques like
flipping, color changes, rotation changes [13], or novel learning model-based data halluci-
nation models [14,15]. Another strategy to alleviate the low-data-oriented overfitting issue
is using external data and a more sophisticated fine-tuning strategy [16,17] which tries to
revisit the fine-tuning pipeline for low-data problem adaptation. Finally, a comparison-
based approach known as learning to compare [18–20] has shown promising results. This
approach uses comparisons to enhance learning by defining prototype representations and
comparing test samples to these prototypes.

2.1. Few-Shot and Zero-Shot Learning in Still-Image Domain

In the context of few-shot learning and zero-shot learning, the sets of classes used
for training and testing the model are distinct. This differs from the standard supervised
learning pipeline, where the same set of classes is used for both training and testing. As a
result, models used in few-shot and zero-shot learning scenarios must be able to generalize
to new classes that were not seen during training. This presents a unique challenge for
machine learning algorithms, as they need to learn and generalize from a limited number
of examples or textual descriptions of new classes.

In the few-shot meta-learning setting, each episode consists of k samples from n
distinct classes, and the learning process utilizes these samples during the training phase.
One approach proposed in [19] involves combining the visual features of the given samples
for each class to construct class prototype representations. These prototypes are then used
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in distance metric-based classification. In addition to the uni-model approach, some works
have incorporated auxiliary context during the training stage, such as in [20,21]. Auxiliary
context typically provides a multi-faceted description of the still image and has been used to
improve the quality of class representations or to enhance the visual representation capacity
of the model. Ref. [22] uses supervised contrastive loss with the video transformer [23] to
handle the few-shot image classification problem.

In zero-shot learning, unlike few-shot learning, model evaluation is operated over the
cross-modalities. More precisely, in zero-shot learning, no samples are given at testing time,
and the model is expected to infer similar class-oriented information between different
modalities for each sample. This constraint implies that learning models have a shared
feature space between different modalities. By this shared feature space, different modalities
are enforced to have joint representation for zero-shot evaluation. In this manner [24], the
model generates visual and textual features with the help of autoencoders, which have two
branches for each modality for classification purposes, and then it minimizes the maximum
mean discrepancy between visual and textual modality feature space distributions to obtain
joint latent space feature. Alongside the latent distribution alignment, ref. [11] implements a
cross-reconstruction loss which follows the fact that each encoded feature for all modalities
is decoded in all modality decoders. Ref. [25] implements the attribute-guided transformer
mechanism for the visual modality, then in the decoding stage of this transformer, language
model-based textual features are embedded into visual features to obtain visual–semantic
joint latent space.

2.2. Few-Shot and Zero-Shot Learning in Video Domain

In the domain of video, ref. [26] proposed a dataset for few-shot learning to close the
gap in this research area using the Kinetics dataset [9]. This dataset consists of meta-training,
meta-validation, and meta-testing sets with 64, 12, and 24 classes, respectively. And each
class is randomly selected from the Kinetics dataset, with 100 videos in each class. Ref. [26]
implements a two-stage architecture where the first stage is a visual descriptor with multi-
specificity support, and the second stage is a key-value-driven memory network for few-
shot learning. While using this newly created dataset and the Something-V2 [27] dataset,
Tam [28] proposed a novel long-term temporal ordering information-based comparison
module with the help of the DTW algorithm [29] on top of embedded visual features of both
support and query set videos. Through temporal alignment distance, ref. [28] accomplishes
the classification purpose of the few-shot learning scenario. Ref. [30] follows the embedding
network architecture and proposes an instance normalization to improve the discriminative
power of the feature. On the other hand, ref. [31] employs the pre-trained [32] model,
which is trained to connect text and images into a shared space, to extract multi-modal
features. Then, the study includes prototype modulation with those features to solve
the few-shot action recognition problem. Ref. [33] generates synthetic video captions
with a foundation model, by ref. [34], for the datasets that have no auxiliary content, like
captions. Then, in light of these video captions, they propose a multi-modal few-shot action
recognition solution.

In zero-shot learning, the video domain has taken limited attention and requires a
dataset that has a video–video description pair-based dataset. Until this time, the existing
datasets belong to specific and mostly human-based actions: UCF101 [8], HMDB51 [7],
ActivityNet [35]. They also do not contain a detailed description of the video, such as scene,
object, action, event, or attributes that are crucial for the real-world use cases. Nevertheless,
ref. [36] proposed an end-2-end architecture that uses Fasttext word embeddings [37] to
extract continuous embedding from the action class label, and unlike the previous works
in zero-shot video classification, it implements a trainable 3D-CNN for the visual feature
extraction. And the mean square error is used to project these two modality features into
the shared feature space. Besides the 3D-CNN, ref. [38] proposes a cross-modal transformer
network that is able to extract visual–semantic joint space representation simultaneously.
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3. A New Multi-Modal Video Classification Dataset

The topic of few-shot learning and zero-shot learning using still images has gathered
significant attention and has resulted in the creation of large-scale and high-variation
benchmark datasets such as CUB [39], SUN [40], AWA1 [41], and AWA2 [42]. In the
video domain, there are some datasets for conventional video classification problems, like
HMDB-51 [7], UCF-101 [8], and Kinetics-400 [9]. Even if these datasets have proven to
be excellent candidates for the conventional video classification problem, which does not
take the low-data situation into consideration, such datasets are not suitable for video-
based low-data learning since they only provide class labels of videos as auxiliary context.
The deficiency caused by the absence of auxiliary information prevents low-data-based
multi-modal video classification studies. Because the existence of video-oriented and
detailed auxiliary context is a necessity for both multi-modal classification and zero-shot
video classification problems, to address this gap, we propose the HVU-LD dataset based
on the Holistic Video Understanding (HVU) dataset [10] to ensure the consistency of future
learning algorithms’ performances. In this regard, we analyze the HVU dataset, discuss
why the HVU-LD dataset is proposed for low-data-based video classification, and provide
a detailed description of the dataset construction process, including class selection and
pre-processing operations applied to the auxiliary context.

3.1. HVU Dataset

The HVU dataset is a significant contribution to the field of video understanding,
as it addresses the limitations of existing video classification datasets that mainly focus
on human actions or sports recognition without providing detailed information on the
entire video. With approximately 572 k videos and 9 million annotations covering 3142 la-
bels across six semantic categories, including scenes, objects, actions, events, attributes,
and concepts, HVU offers a large-scale and diverse dataset for video classification research.

To label the six semantic categories, a two-stage framework was employed that in-
volved both machine-generated automatic labeling and human-based validation processes.
The Google Vision API [43] and Sensifai Video Tagging API [44] were used for the machine-
generated labeling stage, and a human validation stage was performed to eliminate any
erroneous labels. This framework allowed for the combination of both processes, resulting
in accurate labeling. After that two-stage labeling process, the statistics, including the
number of labels and videos for each category, are presented in Table 1. Each row indicates
the category name, the number of distinct labels per category, and the number of videos
that have that category-oriented label.

Table 1. The overall distribution per category number of labels and the number of videos.

Category # of Labels # of Videos

Scene 419 366,941
Object 2651 480,821
Action 877 481,418
Event 149 320,428
Attribute 160 369,668
Concept 122 375,664

3.2. Why Do We Need the HVU-LD Dataset?

The main objective of few-shot learning and zero-shot learning video classification
paradigms is to facilitate the training of a learning model using the meta-training set while
iteratively refining learning model parameters and hyper-parameters, such as learning
rates, weight decay coefficients, and batch sizes, through validation on the meta-validation
set. Upon completion of the meta-training and meta-validation phases, the model’s perfor-
mance in generalizing to unseen classes is assessed on the meta-testing set, which comprises
novel classes. At this juncture, according to the meta-learning philosophy, the dataset must
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be split into three groups for meta-training, meta-validation, and meta-testing stages, while
taking into account that each group’s intersection must be disjoint.

From this main objective, in the zero-shot video classification task, the model is
expected to classify the visual modality samples—videos—in the query set using the
auxiliary context—video-level semantic labels—in the support set. The task definition
of ZSL is expressed as follows. Let Ds = {(x, y, a(y)) | x ∈ Xs, y ∈ Ys, a(y) ∈ As} is the
meta-training set consisting of visual features x, class labels y, and auxiliary context a(y),
where s denotes the seen classes. At the same time, the meta-testing dataset can be defined
as follows: Du = {(x, y, a(y)) | x ∈ Xu, y ∈ Yu, a(y) ∈ Au}, where u denotes the unseen
classes and the intersection of Ys, and Yu is a null set. In the inference stage, the learning
model aims to obtain good relations between Au → Yu for the query set visual modality
samples, Xu.

Similar to the zero-shot setting, few-shot learning includes the Ds and Du meta-sets,
but these sets do not have any auxiliary context, and in the meta-testing phase, the learning
model is expected to learn the relationship between Xu → Yu using visual samples in the
support and query sets. An example for a meta-learning episode is given in Appendix A.

At this point, the first zero-shot learning and few-shot learning settings need a large-
scale and high-variation dataset that can mimic real-world scenarios. However, existing
datasets [7,8,35] in low-data-based video classification are highly biased towards human-
oriented actions or specific sports actions and do not cover many other actions in real-world
cases. Additionally, as presented above, the zero-shot learning setting requires rich auxiliary
context, As and Au, since in the inference stage, it is expected to have the Au → Yu relation.
However, existing datasets only have class labels that refer to actions in the video and
unfortunately do not have the additional context to describe the video from different
perspectives. For example, the CUB [39] dataset, in the domain of still images, offers
312 binary attributes and 15 part locations, as well as class labels, while the previously
existing datasets for the video domain only have class labels. Due to the necessity of such
a dataset for the low-data-based video classification problem, we present the HVU-LD
dataset for the gap in this research domain.

3.3. HVU-LD Building Steps

This subsection outlines the methodology used to construct the HVU-LD dataset,
focusing on two key aspects. Firstly, the importance of including a variety of classes in each
meta-set is discussed. Secondly, the process of selecting the appropriate classes for each
meta-set is described. The HVU-LD dataset is a crucial resource for the low-data-based
video classification domain, and understanding its construction is essential for interpreting
and utilizing its results.

The first rule stipulates that the classes in the meta-training, meta-validation, and meta-
testing sets have to be disjoint. To satisfy this requirement, one approach is to randomly
select a set of unique classes from all possible classes, ensuring that the classes in the meta-
training, meta-validation, and meta-testing sets are disjoint. As stated in [26], 100 classes
for meta-training, meta-validation, and meta-testing were selected from the Kinetics [9]
dataset randomly. However, this randomness can cause some classes in different meta-sets
to be close to each other semantically. Although semantically similar classes do not violate
the disjointness rule, they do not help to build challenging real-world situations and may
compromise the goal of learning completely novel classes for low-data-based learning.
For this reason, we have developed the meta-set class selection algorithm, presented in
Algorithm 1. The algorithm is designed to prevent the intersection of classes across different
meta-sets and maximize the semantic distance between classes in separate meta-sets.

Our proposed meta-set class selection algorithm extracts semantic features of all
possible classes over their videos’ detailed attributes using Fasttext [37]. Then, according
to the semantic features, the K-Means clustering algorithm is applied. Since the aim is
building a semantically distant group of three meta-sets, we set the K number as three. This
clustering operation helps to identify which classes are close to each other and which are
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not. Then, according to the clustering result, the classes to be selected for each meta-set
are taken from different clusters. Thus, we first verify that the meta-training set has 64,
the meta-validation set has 12, and the meta-test set has 24 video classes; here, there are
100 videos for each class, regardless of the set. Second, each meta-set has unique video
classes, and the selected classes are as far away as possible in terms of semantic distance,
which is highly desirable in a low-data-based learning problem. Ultimately, both the
classes in each meta-set are chosen differently from each other, and the classes that are as
semantically distant as possible are chosen among the meta-sets.

Algorithm 1 Meta-set Class Selection Algorithm

CLASS_SELECTOR(classNames)

classFeatures← empty list

Extract semantic feature from each className using Fasttext method

for all className ∈ classNames do
classFeature← Fasttext(className)
classFeatures.add(classFeature)

end for

Apply K-means over classFeatures when K is 3 then obtain 3 cluster centers

C1, C2, C3 K-Means←−−−− classFeatures

For each meta-set, random classes are sampled from different clusters

Meta-Train Classes
select randomly←−−−−−−−−− C1

Meta-Val Classes
select randomly←−−−−−−−−− C2

Meta-Test Classes
select randomly←−−−−−−−−− C3

return [Train, Val, and Test Classes]

According to the clustering-based algorithm, we analyzed the semantic distances
between classes in the meta-sets of both our proposed dataset and existing ones, and we
compared the results obtained using our meta-set class selection algorithm (Algorithm 1)
with those obtained by randomly shuffling classes and constructing meta-sets without
using the algorithm. We repeated this process 10 times and present the scores in Table 2.
In addition, the intra-class and inter-class distances of other existing datasets [7,8] were
also calculated, even if they are not suitable for the field of low-data-based multi-modal
video classification. Our final findings indicate that our dataset exhibits a better inter-class
and intra-class distance ratio compared to the existing dataset since, while the inter-class
distance increases, the semantic similarity of the meta-sets decreases, which is a desirable
setting in low-data-based learning to mimic real-world conditions.

Table 2. Distance analysis of the meta-training, meta-validation, and meta-testing classes in terms of
Euclidean distance.

Dataset Intra-Class
Distance

Inter-Class
Distance

Overall
Ratio

UCF-101 [45] 1.284 0.2977 4.313
HMDB-51 [45] 1.796 0.564 3.184
Kinetics-100 [26] 1.144 1.145 0.999
Sm2Sm-100 [26] 0.729 0.732 0.995
HVU-LD (Ours Random) 1.305 1.316 0.991
HVU-LD (Ours) 1.208 1.263 0.956
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4. SS-CADA-VAE Model

Low-data metric learning has received significant attention in various computer vision
research areas, such as image classification [18,19] and object detection [46,47]. In this study,
we propose a model named SS-CADA-VAE, which includes two single-layer variational
autoencoder networks for visual and textual modalities. The model estimates a distribution
for each class using these networks, based on the support samples, and conducts classi-
fication by comparing the query set samples with the estimated class distributions. Our
model employs class distribution to build class representation, which differs from point
estimation-based strategies [18,19,48], to mitigate overfitting concerns [49].

4.1. Variational Inference and Autoencoder

Variational inference aims to approximate intractable true posterior distribution,
pϕ(z|x), using a parameterized tractable proxy posterior distribution, qθ(z|x), while trying
to maximize evidence lower bound (ELBO), or in other words, minimize the Kullback–
Leibler divergence [50]. In particular, the posterior distribution of a latent variable model is
obtained by the Bayes rule, which is given in Equation (1):

pϕ(z|x) =
pϕ(x|z) · pϕ(z)

pϕ(x)
, (1)

where z is a latent variable, and under these circumstances, the evidence term, pϕ(x),
is intractable, and variational inference aims to approximate the posterior with another
distribution in Equation (2):

pϕ(z|x) ≈ qθ(z|x) , (2)

Within the scope of this equation, the approximation can be formulated as an opti-
mization problem where θ refers to learnable parameters, and the objective function, which
is a variational bound on the marginal likelihood, is presented in Equation (3):

ELBO = Eqϕ(z|x)[log pθ(x|z)]− DKL(qϕ(z|x)||pθ(z)) , (3)

The objective function in Equation (3) consists of two terms. The first one refers to
reconstruction loss that is based on the latent variable and the second one refers to KL
divergence between a learnable parameter-based approximated distribution and prior
distribution. In our proposed method, a multivariate normal Gaussian distribution is used
as a prior distribution.

4.2. Our Method

Our method, SS-CADA-VAE, uses CADA-VAE [11] as a baseline study. While our
method shares the same network architecture and cross- and distribution alignment pro-
cedures with the baseline study, it proposes a semi-supervision module that has a non-
parametric classifier and a class distribution enhancement mechanism that helps to improve
the non-parametric classifier’s performance. More specifically, that non-parametric metric-
learning-based classifier estimates and then aggregates the posterior distribution of support
set samples for each class and calculates the similarity between the query set samples’
posterior distributions with the aggregated distributions, which are calculated from the
support set samples, using KL-divergence. Besides that, the distribution enhancement
mechanism continuously enhances the estimated posterior distribution during the training
stage to obtain more separable aggregated posterior distributions, thereby reducing the
inter-class distance.

4.3. Cross- and Distribution Alignment

In a classical variational autoencoder network, there are three main components:
encoder, decoder, and reparameterization module. However, in the case of multi-modal
low-data-based problems, the main objective is to learn representations from multiple



Appl. Sci. 2024, 14, 4272 9 of 21

modalities and project them into a jointly shared space. Therefore, to achieve this, the stan-
dard variational autoencoder network is extended for each modality, and an additional
mechanism is used to ensure that the output of each modality network is close to each other.

In the context of multi-modal low-data-based problems, a joint representation can be
learned by training separate encoder and decoder networks for each modality. Specifically,
the networks for the visual and textual modalities are denoted as Encvisual , Enctextual ,
Decvisual , and Dectextual , respectively. These networks enable the creation of separate latent
representations for each modality, which are hvisual and htextual . By training these networks
to be as close as possible to each other in the latent space, the goal is to learn a common
representation that captures the underlying relationships between the modalities. This
approach allows for the effective fusion of information from multiple modalities, which
can lead to improved performance. To achieve this, the cross-alignment loss is proposed
by [11], where the latent representation of each modality is decoded by the other modality’s
decoder. This approach allows for the creation of a joint representation that can better
capture the underlying relationships between the visual and textual modalities.

Here, the cross-alignment loss is defined as follows:

LCA1 =
N

∑
i
| x(i)visual − Decvisual(htextual) |

LCA2 =
N

∑
i
| x(i)textual − Dectextual(hvisual) |

LCA = LCA1+LCA2 ,

(4)

where LCA aims to minimize the reconstruction loss over the (N) mini-batches when latent
variables of each modality are decoded with the other modalities’ decoders.

On the other hand, even though the prior distributions of each modality network
are standard multivariate Gaussian distributions, the distributions of visual and textual
networks may differ and, more importantly, since the two modalities’ latent variables need
to be projected onto the same joint shared space, approximated posterior distributions of
the two modalities’ networks need to be as close as possible in 2-Wasserstein distance [51].
The Wasserstein distance-based distribution alignment loss can be given as:

LDA =
N

∑
i
(|| µvisual − µtextual ||22 + || Σ1/2

visual − Σ1/2
textual ||

2
Frobenius)

1/2 , (5)

where LDA aims to minimize the distance between the approximated posterior distribution
of the visual network and the approximated posterior distribution of the textual network,
over the (N) mini-batches. Equation (5) uses µ and Σ parameters, which are estimated from
Encvisual and Enctextual .

4.4. NMC: Non-Parametric Metric-Learning Classifier Module

Metric-learning-based low-data learning algorithms [18,19,48] typically learn a fea-
ture set from both support set samples ( fsupport) and query set samples ( fquery), and then
compare fsupport and fquery by element-wise comparison using predefined distance func-
tions such as Euclidean distance or Cosine distance. However, neither the class-based
representations that are aggregated from fsupport, nor the fquery representations that are
estimated by Enc networks, take the distribution of the classes into consideration. This can
lead to overfitting problems or introduce weak class-based representations that harm the
classification performance.

To overcome these limitations, we propose the Non-Parametric Class Module (NMC),
which estimates the class distribution for each class from fsupport instead of relying on point
estimation. Specifically, NMC uses two single-layer variational autoencoder networks for
visual and textual modalities and estimates a distribution for each class from the support



Appl. Sci. 2024, 14, 4272 10 of 21

samples of the classes. It then performs classification by comparing the query set samples
with these estimated class distributions.

By using class distribution instead of point estimation-based strategies [18,19,48], our
proposed approach creates class representations that are less susceptible to overfitting
and are better suited to handle low-data scenarios. This results in improved classification
performance, as demonstrated by our experimental results.

4.4.1. Class-Based Distribution Estimation

In metric-learning-based algorithms, the primary goal is to learn a function F(.) that
takes the input data which can be an image or attribute in any form, then extracts a
representation regarding the input data. Then, based on the representations extracted
from both the support and query set samples, class representations are built using an
aggregation technique, e.g. averaging, on the representations of the support set samples.
In the classification stage, the class representations and query set samples’ representations
are compared under some distance metrics, like Euclidean, Cosine, etc. Query set samples
are classified at the end using distance values or distance values-based probabilities.

From the aforementioned perspective of the existing metric-learning-based algorithms,
we propose a distribution-based class representation instead of element-wise averaging of
support set sample representations. In our work, Encvisual and Enctextual represent the input
data xvisual and xtextual in [µvisual , σ2

visual] and [µtextual , σ2
textual] forms, respectively. Using

the posterior distribution of a single sample, we estimate the aggregated class distribution
parameters from support set samples as follows:

µ = (
1
N
)

N

∑
i
(µ(i)), σ2 =

N

∑
i
((

1
N2 ) · σ

(i)2
) , (6)

According to Equation (6), class distribution parameters are estimated from support
set samples for each class in each episode. More precisely, there are n classes in the support
set, where each has k samples. Then from the k samples for the class j in the episode, that
class distribution is as follows. N|(µj, σ2

j ) is expanded from a single class j = [1,k] to all n
classes in the current episode.

Furthermore, apart from estimating the class distribution from the support set samples,
each sample in the query set is transformed into [µ, σ2] form by utilizing either Encvisual or
Enctextual . To prevent any bias resulting from a low number of tests, we used 15 samples
per class in the query set for the n-way k-shot setting.

4.4.2. DDC: Distribution Distance-Based Classification

After estimating the class distributions as described in Section 4.4.1, the query set
samples are classified using a distribution similarity approach. Each query sample can
be represented as Dquery = {(µvisualij , σ2

visualij
, µtextualij , σ2

textualij
) : | : i ∈ [1..15], ; j ∈ [1..n]}.

Then, according to the scenario, the KL divergence is calculated between the aggregated
class distributions and the distributions of the corresponding query set samples. Then,
the probability that each query sample belongs to a class is determined by performing
logarithmic normalization with the softmax function of those deviation scores.

The general form of KL divergence between two continuous random variables is
as follows:

DKL(p||q) =
∫

x
p(x) · log(

p(x)
q(x)

) . (7)

Then, according to the probability density function of multivariate normal distribution,
the finalized version of KL divergence is as follows:

DKL(p||q) = 1
2
[log(

|Σq|
|Σq|

)− 1+ (µp − µq)
T Σ−q 1 (µp − µq) + trΣ−q 1Σp] , (8)
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And the probability calculation between a query set sample i and the class m in the
n-way k-shot setting is calculated using Equation (8) as follows:

Prθ(y = m | Ni(µi, σ2
i )) =

exp(DKL(Ni||Nm))

exp(∑n
j=1DKL(Ni||Nj))

, (9)

In this context, the normalized probability of a query set sample over n classes is calculated.
Then, the classification label is calculated as follows:

ŷ = arg max
m∈n

Prθ(y = m|Ni(µi, σ2
i )) , (10)

4.5. SDEM: Supervision-Based Distribution Enhancement Module

Variational autoencoder (VAE) models are included in the class of unsupervised
generative models [50]. As the size of existing datasets has grown enormously, labeling and
performing analysis have become major hurdles. In this context, a semi-supervised learning
strategy helps to understand the entire dataset by using a limited number of labeled data
samples. More precisely, by using the limited labeled data, its leveraging power is used
in many problems [52,53]. At the same time, a semi-supervised learning strategy under
variational Bayesian methods has been investigated and has promising results [54].

Estimating the class distributions from support set samples from the low numbers of
data or query set sample-based distribution estimation has some drawbacks and needs
to be refined. The most obvious drawback is the lack of representation power and bias
problem [55].

To alleviate this problem, we use the classification result, which is described in
Section 4.4.2, to update the baseline model. As presented in Figure 2, we modify the
base variational autoencoder architecture to the semi-supervised variational autoencoder
type. In this context, after yielding a latent feature vector, z, in the training section, our
model minimizes the negative log-probability LSS = − log(Prθ(y = m | Ni(µi, σ2

i ))) for
the ground truth class m using the Adam optimizer. By using that supervision objective,
estimated class distributions are regularized and forced to more precise estimations.

Vencoder

μ1

Σ1

Z1

Vd
ec

od
erXv

Tencoder

μ2

Σ2

Z2

Td
ec

od
erXt

Sp�ndle 

Thread 

Purl 

F�ngler 

Wool

Textual Ep�sod�c Batch

Cross�ng R�ver 

Adventure 

Plant 

Watercraft 

Re�n 

Tra�l R�d�ng 

Tree 

Hunt Seat 

V�sual Ep�sod�c Batch

Sem�-
Superv�s�on

Module

Figure 2. SS-CADA-VAE model with semi-supervision module (SSM). SSM includes two regulariza-
tion terms to enhance visual distribution parameters in terms of decreasing intra-class distance and
increasing inter-class distance. In addition to regularization, SSM includes distribution similarity-
based classification operation, which is used in both the few-shot setting and zero-shot setting.
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4.6. SS-CADA-VAE Loss

The semi-supervised cross- and distribution-aligned VAEs consist of multiple objec-
tives to enable low-data-based video classification. And the overall objective is as follows:

LSS−CADA−VAE = LVAE + αLCA + βLDA + γLSS , (11)

In Equation (11), α, β, and γ refer the weights of the corresponding objective functions.

4.7. Implementation Details

CADA-VAE consists of two encoders and two decoders for each modality and each
has one hidden layer. Owing to what the CADA-VAE study proposed for the still-image do-
main, the input for that model required some adaptations for the video-domain adaptation.
In this context, since the video domain has more than one image, unlike the still-image
domain in a single sample, input images, also known as frames, are extracted from the
video, and then using different feature extractors, visual feature vectors are computed. As a
last step, all these visual feature vectors are averaged to create a video-level feature vector.
Thus, without a substantial change in the CADA-VAE architecture, it is made applicable to
video-domain usage. The overall architecture of our model is illustrated in Figure 2.

In order to analyze the effect of different visual backbones on the low-data-based
video classification problem, two different neural network architectures have been used to
obtain videos for frames’ visual-level features: Densenet201 [56] and visual transformer
[57]. These architectures are pre-trained on ImageNet. And they are completely frozen
during the low-data learning process. Regardless of the feature extraction methodology,
16 frames were selected for each video in uniform order and then resized to 224× 224. Then,
to obtain the video-level visual feature vector, each of the selected frames is fed into the
feature extraction method and their output is averaged. Similarly, regardless of the feature
extraction method, the visual hidden layer has 960 neurons in the case of Densenet201 and
384 neurons in the case of ViT usage. Hereby, while the network that uses the Densenet201
feature extraction method has nearly 4 M learning model parameters, the network that
uses ViT has nearly 3 M learning model parameters.

At the same time, with the same intention, two different pre-trained neural network
architectures have been used to obtain videos for frames’ textual-level features: ELMO [58]
and Bert [59]. While in ELMO, the videos’ textual-level feature is constructed by averaging
each token’s ELMO features, we only use the classification head feature vector in the Bert
method. Furthermore, without depending on the textual neural network architecture,
the textual hidden layer has 512 neurons to analyze videos’ textual-level features. And
the latent hidden size for both modalities was set to 64. The result of the number of learning
parameters of the textual network has nearly 1.5 M learning model parameters due to both
ELMO and Bert models being frozen during the low-data learning process.

On the other hand, L2 loss is chosen as a reconstruction and a cross-reconstruction
objective. While the reconstruction objective’s coefficient is set to 1.0 during the training,
the coefficient of the cross-reconstruction, α, increases up to 1.5 between the 20th and 75th
epochs. And the coefficient of KL-divergence in the ELBO objective is set to 0.25, while
the coefficient of the distribution alignment objective, β, increases up to 3 between the
10th and 30th epochs. Also, the semi-supervision part of the SS-CADA-VAE consists of
the γ coefficient. Different combinations and thresholds have been examined and detailed
experiments are presented for both the few-shot and the zero-shot classification tasks.

All components in the SS-CADA-VAE are trained for 100 epochs by the first-order
derivative-based Adam optimizer, while the learning rate is 1 × 10−3. And episodic
learning is selected throughout the entire model. In this manner, each episode has n classes,
where each class has k samples in the support set. These parameters depend on the learning
scenario, for example, while 3-way 5-shot is one of the few-shot learning options, 3-way
0-shot is the zero-shot learning option. In each learning scenario and setting, 15 samples
are preferred in the query set, since a low number of test samples may produce biased
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observations. Also, during the testing stage, we randomly construct 300 episodes for one
trial and repeat this trial 10 times to obtain confident test scores.

Finally, all evaluations, model weights, complete code, and detailed information of
the HVU-LD dataset are publicly available. Also, the model and all other components were
implemented in the PyTorch framework.

5. Experiments

We evaluate the SS-CADA-VAE approach on the newly proposed HVU-LD dataset,
which includes additional modalities beyond class labels not present in existing video
classification datasets, we conducted experiments in both few-shot learning and zero-
learning settings for 0-shot, 1-shot, 3-shot, 4-shot, 5-shot, and 10-shot scenarios with
varying numbers of support set samples, as well as in 3-way (3 classes), 5-way (5 classes),
and 10-way (10 classes) scenarios. In the evaluation stage, we repeat each test result 10 times
and report the average accuracy as the final result.

Also, we compare several different SS-CADA-VAE hyper-parameters to perform a
comprehensive ablation study, testing various combinations of α, β, and γ parameters to
analyze their impact on low-data-based video classification. We set the baseline model as
a CADA-VAE [11] with the same hyper-parameters as the original model, excluding the
γ parameter, which is the semi-supervision enhancement module in the SS-CADA-VAE.
Additionally, we use the Distribution Distance-Based Classification (DDC) method, as shown
in Section 4.4.2, to compare the improvements made by the SS-CADA-VAE more sharply.
Behind all those combinations, we also compare the visual and textual feature extraction
methods to investigate their impacts on low-data-based video classification.

On the other hand, we also evaluated our SS-CADA-VAE model with the previously
existing uni-modal dataset in the few-shot learning scenario to verify whether our proposed
model is competitive with state-of-the-art few-shot video classification models. Since our
model is proposed to provide a baseline for the newly proposed low-data-based multimodal
dataset, it should have competitive results with state-of-the-art models, which are proposed
for uni-modal-oriented low-data-based studies, so that it can be characterized as a solid
starting point for future studies.

5.1. Impact of Visual Feature Methodologies and Distribution Enhancement Module for Few-Shot
Video Classification

In this analysis section, we present the impact of visual-level feature extraction meth-
ods and distribution enhancement module, LSS, on the low-data-based video classification
problem. To produce a fair comparison, textual-level features are set as fixed with ELMO
features. In this manner, experiments are divided into two groups in terms of the selected
hyper-parameters. The first model type, BL, refers to the baseline model where γ is declined,
and the second model type, I-BL, is the improved baseline model that includes the LSS
where γ = 1. The results for 5-way few-shot learning are presented in Table 3.

Table 3. Results of 5-way few-shot video classification on the meta-test set. (Results are presented
in percentage).

Model Type 1-Shot 3-Shot 5-Shot 10-Shot

BL CNN 51.42 71.38 77.25 82.88
I-BL CNN 57.28 76.23 81.22 85.03
BL ViT 65.59 82.30 85.97 88.51
I-BL ViT 71.05 84.89 87.81 89.85

The analysis of few-shot learning classification can be carried out in two ways: first,
the performance of visual-level feature extraction methods without using any additional
regularization, which is called the baseline study; second, the contribution of the regular-
ization method LSS. Also, the number of samples in the support-set, k, is analyzed when
making the performance comparison.
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For the first question, for each hyper-parameter group (BL, I-BL), the ViT-based visual-
level feature-oriented models outperform the Densenet201-based models’ classification
accuracy scores for each k-shot group in the few-shot learning problem. On average,
the performance gap between visual feature extractors starts at 14.17% when only one
sample is present in the support set (k = 1). In the end, the gap between the baseline models,
BL CNN and BL ViT, narrows to 5.63%. These results suggest the importance of visual-level
feature extraction methodologies in the few-shot learning problem.

When analyzing the impact of LSS on the few-shot learning problem, BL and I-BL
algorithms are compared while taking their visual-level feature extraction methodologies
into consideration. On the Densenet-201 side, BL CNN and I-BL CNN, our newly proposed
regularization mechanism, improve the classification performance overall by 4.21%. How-
ever, especially in the 1-shot setting, which is the crucial and main theme of the few-shot
learning problem, improvement is 5.86%. It is important to note that this improvement
has been achieved without using any cumbersome network changes or additional network
parameter overloading. One noteworthy detail is that using LSS regularization decreases
the performance gap of Densenet-201 and ViT for all k-shot settings, while using nearly
quadruples the efficient neural network architecture. On the ViT side, the few-shot classifi-
cation accuracy of the ViT models improved by an average of 2.81% across all k-shot settings,
and like in the Densenet-201 side analysis, the improvement is nearly 6% in the 5-way 1-shot
setting, which is a particularly important and challenging setting in real-world applications.

Another important analysis is based on the number of classes, n-way, in the support
set. A general intuition is that when the number of classes increases, the few-shot classi-
fication problem becomes more complex and challenging. To evaluate the effect of this,
Table 4 includes the results when k is fixed to 1, and n goes from 3 to 10, where k is the
number of samples in the support set and n is the number of classes.

As shown in Table 4, LSS regularization improves both the Densnet-201-based few-
shot learning classification problem by an average of 5.55% across all n-way settings and
the ViT-based few-shot learning classification problem by an average of 4.99% across all
n-way settings in the 1-shot setting.

Table 4. Results of 1-shot few-shot video classification on the meta-test set for different n-way settings.
(Results are presented in percentage).

n-Way BL
CNN

I-BL
CNN

BL
ViT

I-BL
ViT

3-way 63.91 69.26 76.43 79.43
5-way 51.42 57.28 65.59 71.05
10-way 37.68 43.11 52.38 58.91

Also, we have analyzed the impact of LSS for different levels. In this context, estimated
distributions for classes have a crucial value in performing distribution distance-based
classification (DDC), as shown in Section 4.4.2. In this manner, we analyze the LSS objective
to understand its impacts on low-data-based video classification. In this context, Table 5
shows the effect of SDEM, as shown in Section 4.5, on the estimated distribution parameters.
In this experiment, we set the other hyper-parameters as fixed to observe the impact clearly.

Table 5. Results of 5-way few-shot video classification on the meta-test set for different γ coefficient
values on CNN-based architecture with different k-shot values. (Results are presented in percentage).

1
Shot

3
Shot

5
Shot

10
Shot Average

γ = 0.0 (BL) 51.42 71.38 77.25 82.88 70.73
γ = 0.25 60.91 78.54 82.68 85.77 76.97
γ = 0.50 63.70 77.96 82.10 84.80 77.14
γ = 0.75 47.44 66.39 72.20 78.03 66.01
γ = 1.0 57.28 76.23 81.22 85.03 74.94
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As observed in Table 5, the estimated distribution parameters become more separable
and distinguishable when the LSS objective function is used. For example, in the 5-way
1-shot setting, whereas the baseline model that does not have the LSS objective function
achieves 51.42% accuracy, our model, SS-CADA-VAE, has 63.70% accuracy when the
coefficient of LSS equals 0.5. Supplementary to the 5-way setting, Figure 3 shows the
impact of SDEM, as shown in Section 4.5, for the 3-way and 5-way setting visually. In the
visualization stage, videos are encoded with Encvisual , then their latent vectors’ dimensions
are reduced to two dimensions for visualization.

As a result of this ablation study, according to both Table 5 and Figure 3, using the
LSS objective in the training stage improves the classification performance dramatically by
increasing the inter-class distance and preserving the intra-class distance.

(a) A sample from the HVU-LD meta-testing set for 3-way 5-shot setting.

(b) A sample from the HVU-LD meta-testing set for 5-way 5-shot setting.

Figure 3. The top-left and bottom-left figures show how the samples will be distributed in the 2D
reduced plain by using only the baseline model or, in other words, without using the distribution
enhancement module SDEM. The top-right and bottom-right figures are 2D projections of the samples
that are used in the left figures using the distribution enhancement module SDEM.

5.2. Impact of Visual and Textual Feature Methodologies and Distribution Enhancement Module
for Zero-Shot Video Classification

In this analysis section, we present our experiments of zero-shot video classification.
As the name implies, in the zero-shot learning setting, a class in the support set has no
example, k = 0. Under this restriction, the video is classified by the collaboration of textual-
level features and visual-level features.

In this context, we first experimented with the baseline model which does not have
the regularization method, γ, then the impact of regularization methods was investigated.
In this section, we analyzed the different textual-level feature extraction methodologies,
ELMO and Bert, with the visual-level features, which were obtained by Densenet-201.

Table 6 summarizes the results of our zero-shot learning classification experiments
using different types of textual-level features. As expected, the baseline performances for
both textual-level features show a similar trend to their contextualized power in other
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downstream tasks [60]. However, when the LSS regularization objective is applied, we
observe a significant improvement in zero-shot classification performance. Specifically,
the use of LSS leads to an increase of 8.6% in CNN and ELMO-based architecture, 6.39% in
ViT and ELMO-based architecture, 2.63% in CNN and Bert-based architecture, and 3.28%
in ViT and Bert-based architecture, respectively.

Table 6. Results of zero-shot video classification on the meta-test set for different visual and textual
architectures (results are presented in percentage).

n-Way BL
CNN

I-BL
CNN

BL
ViT

I-BL
ViT

ELMO 32.46 41.06 37.03 43.42
Bert 39.72 42.35 48.91 52.19

5.3. Few-Shot Classification with HMDB-51

Our newly proposed low-data-based multi-modal video classification dataset is the
first dataset that contains pairs of videos and attributes that capture multiple facets of the
video content. Thus, future studies in this field will benefit from this dataset and be able to
provide more real-world-compatible algorithms.

Therefore, we proposed a variational-autoencoder-based baseline study to evaluate
this dataset and serve as a starting point for future studies. However, the generalization
ability of the basic model is important and should be able to achieve a competitive result,
at least when the uni-modal low-data-based video classification, which is the closest
research subject to the proposed dataset, is compared to the most successful models in the
research area.

In this manner, we have evaluated the BL model that does not have our proposed
regularization technique and is adapted to the video domain from [11], and the I-BL
baseline, which has the regularization technique, with a very well-known dataset in that
research area. In order to make this evaluation happen, we first obtain the raw videos
of the HMDB-51 dataset. Then, according to [45], meta-train, meta-validation, and meta-
validation sets are arranged. Then, as presented in our proposed dataset construction stages,
ViT-based visual features for the meta-set videos are extracted. Finally, the classification
results of both the BL and our I-BL models and other studies in uni-modal few-shot video
classification studies are presented in Table 7.

The results of the HMDB-51 dataset, which are presented in Table 7, have similar
patterns in comparison between BL and I-BL in terms of classification performance with
our newly proposed dataset, HVU-LD. More precisely, while the BL model under-performs
for all k-shot classification settings, with the help of the regularization technique, the I-BL
model has better scores between nearly 10% and 17%. Besides the BL and I-BL compar-
ison, our proposed method, I-BL, has 2.6% better classification performance in a 5-way
5-shot classification setting. Besides that, our model has gained 3.77% better classification
performance among presented 5-way 3-shot classification results.

Table 7. Results of 5-way few-shot video classification on the HMDB-51 meta-test set on ViT-based
architecture with different k-shot values. (Results are presented in percentage.) “-” indicates that
there is no value presented in the original paper for that experiment.

1
Shot

3
Shot

5
Shot

10
Shot

OTAM [28] 54.5 65.7 68.0 -
HYRSM [45] 60.3 71.7 76.0 -
STRM [61] - - 81.30 -
FSVC-ATA [62] 65.78 - 82.27 -
BL 1 42.92 64.47 71.55 79.02
I-BL (ours) 2 60.01 75.47 84.87 89.14

1 Refers to our baseline study. 2 Refers to our improved study.
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6. Conclusions

In this paper, we address two different crucial points in the low-data-based video
classification problem. First, we have proposed a new dataset, HVU-LD, that has detailed
textual attributes. Another important role of this dataset will be to ensure consistency in
the benchmarking of low-data-based video classification studies in the future, because,
while the image domain has such a dataset, the video domain lacks this kind of dataset.
Second, we have experimented with a baseline study on this dataset and proposed a non-
parametric classifier and the class distribution enhancement mechanism to improve the
baseline study’s performance. And our new proposed class distribution enhancement
mechanism’s results surpass the baseline study’s performance both for few-shot learning
and zero-shot learning video classification settings.

Besides the tests on our newly proposed dataset, we have conducted the uni-modal
few-shot learning-based video classification test on the previously existing benchmark
dataset and compared our methods, which are the baseline and the improved baseline
methods, between themselves and with other state-of-the-art studies. As a result of these
experiments, the boost effect of our regularization technique on the baseline method has
been revealed for both our proposed dataset and the HMDB-51 dataset.

In the future, we plan to extend our study to cover the generalized zero-shot video
classification problem, as HVU-LD is suitable for addressing this research need. Also,
end-to-end video-dedicated vision transformer-based studies will be conducted and their
usages will be analyzed.
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Appendix A

In this section, an example of a meta-learning test episode is given in Figure A1.
According to the given episode, it shows that each episode has three different pieces of
information. One is the visual support set, another is the query set, which consists of videos’
visual components, and the last one is the textual support set. There are different classes:
Battle rope training, Bodybuilding, and Push up. In the visual support set, each class has
three videos for the learning stage, and five different videos are presented for the testing
stage in the query set. Besides that, in the zero-shot learning problem, as the problem
implies, instead of the visual support set, the textual support set is used for the learning
stage; some of the textual descriptions are omitted for the sake of simplicity, but thanks
to [10], each video has detailed textual descriptions.

While the visual support set is used to construct class distributions in the few-shot
learning stage, in the zero-shot learning stage, textual support set is used to construct
class distributions. Calculated class distributions are compared with the query set samples’
distributions for any learning stages to perform low-data-based video classification.
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Figure A1. An episode of a meta-learning testing stage with support and query set components, in
addition to the visual and textual information.
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