
Citation: Jošt, G.; Taneski, V.;

Karakatič, S. The Impact of Large

Language Models on Programming

Education and Student Learning

Outcomes. Appl. Sci. 2024, 14, 4115.

https://doi.org/10.3390/

app14104115

Academic Editor: Gianluigi Ferrari

Received: 24 March 2024

Revised: 16 April 2024

Accepted: 9 May 2024

Published: 13 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

The Impact of Large Language Models on Programming
Education and Student Learning Outcomes
Gregor Jošt *, Viktor Taneski and Sašo Karakatič

Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46,
2000 Maribor, Slovenia; viktor.taneski@um.si (V.T.); saso.karakatic@um.si (S.K.)
* Correspondence: gregor.jost@um.si

Abstract: Recent advancements in Large Language Models (LLMs) like ChatGPT and Copilot have
led to their integration into various educational domains, including software development education.
Regular use of LLMs in the learning process is still not well-researched; thus, this paper intends
to fill this gap. The paper explores the nuanced impact of informal LLM usage on undergraduate
students’ learning outcomes in software development education, focusing on React applications.
We carefully designed an experiment involving thirty-two participants over ten weeks where we
examined unrestricted but not specifically encouraged LLM use and their correlation with student
performance. Our results reveal a significant negative correlation between increased LLM reliance
for critical thinking-intensive tasks such as code generation and debugging and lower final grades.
Furthermore, a downward trend in final grades is observed with increased average LLM use across
all tasks. However, the correlation between the use of LLMs for seeking additional explanations and
final grades was not as strong, indicating that LLMs may serve better as a supplementary learning
tool. These findings highlight the importance of balancing LLM integration with the cultivation of
independent problem-solving skills in programming education.

Keywords: large language models (LLMs); ChatGPT; Copilot; programming education; React; debugging

1. Introduction

In recent years, the integration of Large Language Models (LLMs) into various do-
mains has revolutionized the landscape of artificial intelligence (AI) and machine learning
(ML). Particularly in the field of natural language processing, modern, transformed-based
LLMs such as OpenAI’s ChatGPT and Microsoft’s Copilot have demonstrated remarkable
capabilities in understanding and generating human-like text. Beyond natural language
understanding, LLMs have also found applications in programming education, offering stu-
dents access to vast repositories of code snippets, explanations, and debugging assistance.

While the potential benefits of leveraging LLMs in programming education are ev-
ident, it is crucial to understand the nuanced impact of their usage on student learning
outcomes. Previous studies [1,2] have begun to explore this relationship, highlighting
both the advantages and potential pitfalls of integrating LLMs into educational settings.
However, it is essential to note that many of these studies were conducted before the
widespread availability of modern transformer-based attention mechanisms [3]. LLM ser-
vices, including ChatGPT, Claude, Mistral, and Gemini, are open to the non-expert public.
Consequently, there is a need for updated research that considers the specific functionalities
and implications of these advanced language models.

This paper seeks to contribute to the expanding body of knowledge on LLMs in
education by focusing on the impact of informal LLM usage on undergraduate students’
learning outcomes in programming education. It aims to dissect the relationship between
LLM usage patterns and student performance, providing fresh insights into the role of
LLMs in programming education and guiding pedagogical strategies in this area. To this
end, we introduce the following research questions and hypotheses that frame our research:

Appl. Sci. 2024, 14, 4115. https://doi.org/10.3390/app14104115 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14104115
https://doi.org/10.3390/app14104115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5841-9275
https://orcid.org/0000-0003-4441-9690
https://doi.org/10.3390/app14104115
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14104115?type=check_update&version=1

Appl. Sci. 2024, 14, 4115 2 of 15

RQ1. What is the overall impact of Large Language Model (LLM) usage on the final grades of
undergraduate students in programming courses?

H1. A higher average usage of LLMs for studying is negatively correlated with the final grades of
undergraduate programming students.

RQ2. How does the use of LLMs for generating code, seeking additional explanations, and
debugging specifically impact the final grades of undergraduate students in programming courses?

H2a. The use of LLMs for generating code is negatively correlated with student final grades.

H2b. The use of LLMs for seeking additional explanations does not significantly impact student
final grades.

H2c. The use of LLMs for debugging is negatively correlated with student final grades.

These research questions and hypotheses steered our exploration into how ChatGPT
and similar LLMs impact programming education. Our goal is to provide detailed insights
to help shape teaching strategies that effectively integrate LLMs, ensuring they support
and promote student learning and skill development in programming.

The demand for empirical research assessing the impact of these advanced LLMs
on programming education is essential. Previous papers, reviewed in the next chapter,
largely conducted before these high-capability models were widely accessible, offer lim-
ited insights into the effects of LLMs integrated with the latest AI advancements. Thus,
the main contribution of this study lies in its empirical analysis of how different usage
patterns of modern LLMs—ranging from code generation to seeking explanations and
debugging—impact learning programming. This examination not only expands our un-
derstanding of the educational implications of LLMs but also provides targeted insights
that can guide educators in designing instructional strategies that leverage these tools
effectively while nurturing essential problem-solving skills. By backing-up our findings
with robust statistical analysis and a controlled experimental setup, this research offers
important findings in the integration of AI technologies in programming education.

2. Research Background

Recent years have witnessed a surge in studies exploring the integration of LLMs
in educational settings. These investigations have delved into the potential benefits and
challenges of utilizing LLMs, such as ChatGPT, across various domains of learning. In
this subsection, we provide an overview of existing research to contextualize the cur-
rent study’s focus on the impact of informal LLM usage on programming education and
student learning outcomes. As this paper explores the use of modern LLMs accessible
to the public without specialized hardware or ML knowledge, the research background
specifically examines the use of modern LLMs, excluding any reference to self-hosted
pre-ChatGPT models.

In a 2023 study [4], the transformative potential of LLMs in higher education was
examined, emphasizing opportunities and challenges. The authors concluded that while
LLMs offer personalized learning and on-demand support through customized learning
plans, reduced human interaction, bias, and ethical considerations were observed. To
mitigate these challenges, universities should integrate such models as supplements rather
than replacements for human interaction, establish ethical guidelines, involve students in
model development, and provide faculty training and student support. Hence, universities
must balance leveraging LLMs for enhanced education quality with addressing associated
challenges to ensure a high standard of education delivery.

With a focus on ChatGPT [5], 50 articles published in 2023 were analyzed, focusing
on the original version based on GPT-3.5. While recognizing the potential of ChatGPT to
enhance teaching and learning, the study highlighted shortcomings in knowledge and

Appl. Sci. 2024, 14, 4115 3 of 15

performance across subject domains and identified potential issues such as generating in-
correct or fake information and facilitating student plagiarism. To address these challenges,
immediate actions were recommended, including refining assessment tasks to incorporate
multimedia resources, updating institutional policies, providing instructor training on
identifying ChatGPT use, and educating students about its limitations and the importance
of academic integrity. It was noted that leveraging ChatGPT in teaching and learning could
involve creating course materials and assisting with active learning approaches, albeit with
a need for accuracy verification. However, challenges related to accuracy, bias, and student
plagiarism must be addressed through proactive measures such as incorporating digital-
free assessment components and establishing anti-plagiarism guidelines. Additionally,
instructor training and student education on ChatGPT’s limitations and academic integrity
policies were deemed essential for effective integration into education.

Grassini [6] acknowledged the increasing prevalence of AI within the educational
domain as well. Despite debates and technological limitations, AI’s presence in education
is undeniable and promises substantial transformations in teaching and learning method-
ologies. Central to ongoing discussions is the concern over AI’s potential misuse, especially
in academic assignments, leading some to advocate for bans on AI tools like ChatGPT in
educational settings. However, others argue for integrating AI technologies into educa-
tional structures, emphasizing the need to address student dependency and implement
guidelines to mitigate risks. The advancement of AI technology, exemplified by the evolu-
tion of ChatGPT, poses challenges to safeguarding against potential misuse. Rethinking
assessment strategies was deemed imperative once again. On the other hand, integrating
AI applications into education does offer students valuable hands-on experience while
preparing them for an AI-dominated future. Negotiating AI’s swift transformations entails
developing effective strategies and customized training modules for teachers and students
to maximize the benefits of AI tools in education. Failure to equip students with AI skills
may leave them at a competitive disadvantage in the job market, underscoring the need for
an educational framework that both employs and scrutinizes AI tools for students’ benefit.

Similarly, this was noted in another study [7], where the author stressed that the
emergence of ChatGPT as a tool in education makes training for faculty and students nec-
essary in order to maximize its utility. It is important that educators familiarize themselves
with ChatGPT’s functions, including evaluating accuracy and distinguishing between
text and idea generation. It is recommended that educators encourage students to use
ChatGPT, fostering equal opportunity for idea development and improving writing skills.
As ChatGPT evolves, universities may integrate it with learning management systems,
and specialized academic versions may be developed. ChatGPT is expected to enhance
creativity and critical thinking skills by contrasting generated ideas with original human
input. As education adapts to technological advancements, students will require skills
such as the critical evaluation of information and effective presentation, which will be
assessed through methods like presentations and defending work in collaboration with
ChatGPT. The paper provides practical examples for utilizing ChatGPT in academic writing
and suggests adopting its techniques for academic research and publication. Universi-
ties and educators are encouraged to adapt these suggestions to suit their specific needs
and courses.

As stated in another systematic literature review that focuses on using ChatGPT in
education [8], ChatGPT has the potential to enhance the teaching and learning process by
offering personalized learning experiences, improving student motivation and engagement,
facilitating collaboration, and providing quick access to information. However, challenges
such as teacher training, ethical considerations, accuracy of responses, and data privacy
need to be further addressed.

Similarly to our research, article [9] focuses on the role of debugging in software devel-
opment and explores the potential of ChatGPT as a tool in this process. ChatGPT, primarily
known for its proficiency in generating high-quality text and engaging in natural language
conversations, possesses lesser-known capabilities that are equally remarkable. It can

Appl. Sci. 2024, 14, 4115 4 of 15

identify errors in code by analyzing it against its training data. However, caution is advised
in its use for debugging, as it should be part of a comprehensive software development
strategy. While ChatGPT’s ability to learn from past debugging sessions and offer natural
language suggestions can enhance code quality, it has limitations in domain knowledge or
context awareness. Although ChatGPT can automate aspects of debugging and bug fixing,
human review and testing remain crucial. Developers should view ChatGPT as a tool to
complement their skills rather than replace them, using its suggestions as a starting point
for further consideration and testing. Integrating ChatGPT with other debugging tech-
niques can enhance the efficiency and effectiveness of the software development process,
ultimately leading to higher-quality software delivery.

Comparable statements about the use of LLMs as an aid in the process of debugging
software solutions can also be made for LLM tools other than ChatGPT, like GitHub’s
Copilot. Authors in [10] investigate Copilot’s capability in code generation, comparing
its outputs with those crafted by humans. Their findings demonstrate that Copilot can
produce accurate and efficient solutions for certain fundamental algorithmic problems.
However, the quality of its generated code heavily relies on the clarity and specificity of the
provided prompt by the developer. Moreover, the results of this study suggest that Copilot
requires further refinement in comprehending natural language inputs to effectively act
as a pair programmer. While Copilot may occasionally fail to meet all prompt criteria,
the generated code can often be seamlessly integrated with minor adjustments to either
the prompt or the code itself, as demonstrated by studies [11,12]. Although Copilot is the
most advanced AI-driven code completion tool [13] that has a very high percentage of
correctly generated programs [14], and it proposes solutions that surpass those offered by
junior developers and are comparable to human-generated solutions in terms of correctness,
efficiency, reproducibility, and debugging efforts, the discernment of flawed or suboptimal
solutions still necessitates the expertise of a seasoned developer [10]. Consequently, while
Copilot can significantly aid software projects when utilized by proficient developers as a
collaborative coding tool, its effectiveness diminishes if employed by individuals lacking
familiarity with problem contexts and proper coding techniques.

Other authors also conclude that if not used properly, Copilot may not reduce the task
completion time or may not increase the success rate of solving programming tasks in a
real-world setting [15]. However, Copilot is strongly preferred for integrating programming
workflow since Copilot often provides a good starting point to approach the programming
task [11,16].

To summarize, most existing research in the field tends to focus on the pros and cons
of LLM integration in education or software development. On the other hand, the study
represented in this paper stands out by conducting empirical investigations into how the
use of LLMs directly impacts learning processes. By shifting the focus towards empirical
research, we aim to provide valuable insights into the practical implications of incorporating
LLMs into educational settings. The emphasis on empirical investigation fills a crucial gap
in the current literature and contributes to a more comprehensive understanding of the
relationship between LLM usage and learning outcomes.

3. Materials and Methods

Thirty-two second-year undergraduate students participated in our study designed
to explore the impact of informal LLM usage on learning outcomes in programming
education. The selection of second-year undergraduate students as participants in this
study was carefully considered and aligned with the research objectives. They were chosen
based on their foundational knowledge in web development using HTML, CSS, and vanilla
JavaScript, acquired through coursework undertaken in the first year of their undergraduate
studies. Despite possessing this foundational understanding, they had not been formally
introduced to React, a prominent JavaScript library widely utilized for building dynamic
user interfaces [17]. This made them ideal candidates for examining the efficacy of utilizing
LLMs in facilitating the learning of new technology.

Appl. Sci. 2024, 14, 4115 5 of 15

This experiment, conducted over a period of ten weeks, was organized into distinct
phases, as depicted in Figure 1.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 16

3. Materials and Methods
Thirty-two second-year undergraduate students participated in our study designed

to explore the impact of informal LLM usage on learning outcomes in programming edu-
cation. The selection of second-year undergraduate students as participants in this study
was carefully considered and aligned with the research objectives. They were chosen
based on their foundational knowledge in web development using HTML, CSS, and va-
nilla JavaScript, acquired through coursework undertaken in the first year of their under-
graduate studies. Despite possessing this foundational understanding, they had not been
formally introduced to React, a prominent JavaScript library widely utilized for building
dynamic user interfaces [17]. This made them ideal candidates for examining the efficacy
of utilizing LLMs in facilitating the learning of new technology.

This experiment, conducted over a period of ten weeks, was organized into distinct
phases, as depicted in Figure 1.

Figure 1. Overview of the whole experiment.

Given the increasing prevalence of LLMs in the programming domain, we provided
students with the freedom to employ any LLM tool they deemed suitable for completing
their programming assignments in the initial phase. By adopting this approach, we sought
to mimic authentic programming environments where developers frequently leverage
such tools to enhance their productivity and problem-solving capabilities.

To assess the influence of LLM utilization on students’ learning experiences, we im-
plemented a controlled phase where the usage of LLMs was prohibited. This phase was
designed to isolate the effects of LLMs on learning outcomes by eliminating their presence
during specific learning tasks. By comparing the performance and perceptions of students
across the unrestricted and controlled phases, we aimed to observe the extent to which
LLMs contribute to educational effectiveness.

3.1. Initial Phase
In the initial phase, spanning nine weeks, students were tasked with completing four

assignments related to the development of React applications with Typescript. The assign-
ments delved into various aspects of React development, covering topics such as compo-
nent-based architecture, state management, and routing. Students were challenged to ap-
ply TypeScript’s typing features to enhance code quality and maintainability throughout
their assignments.

Each assignment presented unique challenges, progressively building upon the con-
cepts introduced in the preceding tasks. So, the first assignment focused on building a
basic React component hierarchy, while subsequent tasks explored more advanced topics
like routing, state management, and lifting the state up, respectively. Furthermore, the
assignments incorporated real-world scenarios to simulate industry-relevant experiences,

Figure 1. Overview of the whole experiment.

Given the increasing prevalence of LLMs in the programming domain, we provided
students with the freedom to employ any LLM tool they deemed suitable for completing
their programming assignments in the initial phase. By adopting this approach, we sought
to mimic authentic programming environments where developers frequently leverage such
tools to enhance their productivity and problem-solving capabilities.

To assess the influence of LLM utilization on students’ learning experiences, we
implemented a controlled phase where the usage of LLMs was prohibited. This phase was
designed to isolate the effects of LLMs on learning outcomes by eliminating their presence
during specific learning tasks. By comparing the performance and perceptions of students
across the unrestricted and controlled phases, we aimed to observe the extent to which
LLMs contribute to educational effectiveness.

3.1. Initial Phase

In the initial phase, spanning nine weeks, students were tasked with completing
four assignments related to the development of React applications with Typescript. The
assignments delved into various aspects of React development, covering topics such as
component-based architecture, state management, and routing. Students were challenged
to apply TypeScript’s typing features to enhance code quality and maintainability through-
out their assignments.

Each assignment presented unique challenges, progressively building upon the con-
cepts introduced in the preceding tasks. So, the first assignment focused on building a
basic React component hierarchy, while subsequent tasks explored more advanced topics
like routing, state management, and lifting the state up, respectively. Furthermore, the
assignments incorporated real-world scenarios to simulate industry-relevant experiences,
encouraging students to develop problem-solving skills within the context of modern web
development practices.

Throughout these assignments, participants were allowed to use LLMs informally
for various purposes, such as bug identification, seeking additional explanations, or any
other tasks that students deemed to be useful. Additionally, they received assistance from
two experienced assistants (10+ years of programming experience) who provided support
and guidance as needed. This informal usage, combined with the help from the assistants,
mirrored real-world scenarios where students might employ AI-powered tools alongside
human support as part of their learning process.

3.2. Controlled Phase

Following the completion of the four assignments spanning nine weeks, the study
transitioned into its controlled phase in week ten. Participants were presented with a
carefully crafted assignment where the use of LLMs was strictly prohibited. Conversely,

Appl. Sci. 2024, 14, 4115 6 of 15

given the nature of the course (introduction to developing web applications using React),
participants were allowed to use Google and official React documentation as supplementary
resources to aid in solving the assignment. Within a two-hour time frame, participants were
tasked with implementing an application using React. The assignment was intentionally
designed to ensure that participants possessed all the necessary knowledge and skills to
successfully complete the task. It mirrored the concepts and challenges they had previously
encountered and mastered during the study. Importantly, the assignment did not introduce
any new challenges or concepts; rather, it served as a practical application of their existing
knowledge and skills. This approach aimed to create a fair and controlled environment for
evaluating the impact of LLM’s usage on participants’ ability to independently implement
a familiar task within a specified time frame.

Throughout the assignment, the two assistants closely monitored the process to ensure
strict adherence to the no-LLM rule. Their presence helped maintain the integrity of the
experiment by preventing any unauthorized usage of LLMs during the task.

Upon finishing the controlled assignment, participants were given a questionnaire
to provide feedback on their study habits and implementation strategies throughout the
experiment. This questionnaire included specific inquiries regarding their usage of LLMs,
such as whether they utilized it for code generation, bug identification, or seeking additional
explanations. Responses were measured on a five-point Likert scale to capture the extent
and effectiveness of LLM usage in different aspects of their learning process. To mitigate
any apprehensions about potential repercussions on their grades, it was ensured that
students had already received their grades prior to the distribution of the questionnaire.
This precaution aimed to alleviate concerns and encourage candid responses regarding
their experiences with the LLMs.

Furthermore, participation in the questionnaire was voluntary; however, it was empha-
sized that non-participation would result in exclusion from the subsequent data analysis.
This approach ensured a comprehensive dataset while respecting the autonomy of individ-
ual participants.

The questionnaire was designed in the Slovenian language to cater to the linguistic
preferences of the participants. A translated version of the part of the questionnaire that is
related to ChatGPT and its usage in the learning process is provided in Appendix A for
reference. Additionally, Appendix B provides the instructions for the assignment used in
the controlled phase.

To conclude, Appendix C breaks down the methods used in the experiment with the
help of two detailed flowcharts. The first flowchart outlines procedures for the uncontrolled
phase, while the second explains steps taken during the controlled phase of the experiment.

3.3. Alignment with Research Questions and Hypotheses

This methodology was thoroughly designed to address the research questions and
hypotheses outlined in the introduction. By observing and analyzing the informal use of
LLMs across various tasks and contrasting this with performance in a controlled, LLM-free
environment, this study aims to explain the nuanced impact of LLM usage on undergradu-
ate programming students’ ability to independently solve programming tasks (RQ1 and
RQ2). The structured approach of alternating between unrestricted and restricted use
phases allows for a comprehensive examination of the potential benefits and drawbacks of
LLM integration in programming education.

4. Results
4.1. Data Overview

To provide context for the results outlined in this section, we offer an overview of
the code size associated with the tasks completed by participants during the experiment.
The estimation of the approximate lines of code (LOC) for each task was derived from
solutions prepared in alignment with the curriculum. The approximation of the LOC for
each assignment is as follows: assignment 1 has 137 LOC, assignment 2 has 461 LOC,

Appl. Sci. 2024, 14, 4115 7 of 15

assignment 3 has 427 LOC, assignment 4 has 921 LOC, and the final assignment (controlled
phase) has 915 LOC. These values illustrate the approximate code size participants were
required to write for each assignment, highlighting the variation in complexity and scope
across the tasks.

Further on, an overview of the descriptive statistics of the measured variables used in
the analysis is provided. Table 1 and the histograms in Figure 2 below offer a comprehensive
overview of the extent to which the LLMs were utilized for various aspects of studying
and the final grades given.

Table 1. Descriptive statistics of measurement.

Mean Median SD Min Max

LLM use

Generating code 2.59 2.50 1.10 1.00 5.00
Additional explanations 3.75 4.00 1.24 1.00 5.00

Debugging 3.78 4.00 1.16 1.00 5.00
Average 3.38 3.67 0.94 1.00 5.00

Final grade 6.72 8.00 3.10 0.50 10.00
Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 16

Figure 2. Histograms of the measurements about LLM use and the final grade.

The scatterplots provided in Figure 3 visualize the relationship between the final
grades and their reported usage of the LLMs for different study activities.

There appears to be a spread of points that tends downward as the frequency of using
LLM for generating code increases. This could suggest that students who used LLMs more
frequently for code generation tended to receive lower final grades, in line with
Spearman’s rho value, which will be discussed in subsequent subchapters. For the use of
LLMs for additional explanations, the distribution of points shows a less clear pattern,
suggesting a weaker or potentially non-significant correlation between the use of LLM for
additional explanations and the final grades, which corresponds with the non-significant
p-value found in the Spearman’s correlation analysis. Next, for the use of LLMs for
debugging purposes, the scatterplot shows a trend where the higher usage of LLMs for
debugging corresponds to lower final grades, which aligns with the significant negative
correlation identified in the statistical analysis. Looking at the overall use of LLMs, there
is a visible trend of decreasing final grades with increased average LLM use. This
generalized trend encompasses all types of LLM usage and suggests that greater reliance
on LLMs might be associated with poorer performance in the controlled assignment,
supporting the idea that while LLMs are helpful, they may also impede the development
of independent problem-solving skills.

Figure 2. Histograms of the measurements about LLM use and the final grade.

Students reported a mean frequency of LLM usage for generating code at 2.59, with a
median of 2.50. This is slightly above the lower midpoint of the scale, indicating that while
some students did use LLMs to assist with generating code, it was not the most frequently
utilized function. The standard deviation (SD) of 1.103 shows moderate variability in the
use of LLMs for this purpose. The mean for seeking additional explanations is higher at
3.75, with a median of 4, suggesting that students were more inclined to use LLMs to gain
further understanding of the material. The SD of 1.244 indicates a slightly higher variability

Appl. Sci. 2024, 14, 4115 8 of 15

in response, with some students relying heavily on LLMs for explanations while others did
not. The usage for debugging has a similar mean of 3.78 and median of 4, which indicates
a comparable pattern of reliance on LLMs for this activity as for additional explanations.
The SD of 1.157 denotes moderate variability among the students’ responses. Overall, the
average use of LLM across all activities has a mean of 3.38 and a median of 3.67. This points
to a generally moderate use of LLM across the board, with the SD of 0.94 suggesting that
the extent of LLM usage did not greatly differ among students.

The scatterplots provided in Figure 3 visualize the relationship between the final
grades and their reported usage of the LLMs for different study activities.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 16

Figure 3. Scatterplots (with added jitter) of LLM use during learning process and the final grade.

The observed correlations present in these scatterplots provide a visual
representation of the potential impact of LLM usage on student performance. However,
to determine whether these correlations are due to chance or reflect a genuine
relationship, a comprehensive statistical analysis is required. The subsequent section will
delve into this analysis, employing appropriate statistical tests to assess the significance
and strength of these correlations, ensuring that the findings presented are robust and
reflective of the true effects of LLM usage on learning outcomes.

4.2. Methodological Framework of the Statistical Analysis
The analysis of data collected from the experiment was conducted using R 4.3.3 in

RStudio, focusing on the relationship between the final grade of the final assignment and
the extent of LLM usage by students during their study process. Given the results of
Shapiro–Wilk’s test of normality, which indicated that all variables deviated from a
normal distribution (p < 0.05 for all variables), a non-parametric method was deemed
necessary for correlation analysis. Non-parametric methods, such as Spearman’s
correlation test, are preferable in these situations because they do not assume a normal
distribution of the data. This approach is particularly useful when dealing with non-
normally distributed data, as it allows for the identification of patterns and relationships

0

2

4

6

8

10

12

0 2 4 6

Fi
na

l g
ra

de

Generating code
0 2 4 6

Additional explanations

0

2

4

6

8

10

12

0 2 4 6

Fi
na

l g
ra

de

Debugging
0 2 4 6

Average LLM use

Figure 3. Scatterplots (with added jitter) of LLM use during learning process and the final grade.

There appears to be a spread of points that tends downward as the frequency of using
LLM for generating code increases. This could suggest that students who used LLMs more
frequently for code generation tended to receive lower final grades, in line with Spearman’s
rho value, which will be discussed in subsequent subchapters. For the use of LLMs for
additional explanations, the distribution of points shows a less clear pattern, suggesting a
weaker or potentially non-significant correlation between the use of LLM for additional
explanations and the final grades, which corresponds with the non-significant p-value
found in the Spearman’s correlation analysis. Next, for the use of LLMs for debugging
purposes, the scatterplot shows a trend where the higher usage of LLMs for debugging
corresponds to lower final grades, which aligns with the significant negative correlation
identified in the statistical analysis. Looking at the overall use of LLMs, there is a visible
trend of decreasing final grades with increased average LLM use. This generalized trend
encompasses all types of LLM usage and suggests that greater reliance on LLMs might
be associated with poorer performance in the controlled assignment, supporting the idea

Appl. Sci. 2024, 14, 4115 9 of 15

that while LLMs are helpful, they may also impede the development of independent
problem-solving skills.

The observed correlations present in these scatterplots provide a visual representation
of the potential impact of LLM usage on student performance. However, to determine
whether these correlations are due to chance or reflect a genuine relationship, a compre-
hensive statistical analysis is required. The subsequent section will delve into this analysis,
employing appropriate statistical tests to assess the significance and strength of these corre-
lations, ensuring that the findings presented are robust and reflective of the true effects of
LLM usage on learning outcomes.

4.2. Methodological Framework of the Statistical Analysis

The analysis of data collected from the experiment was conducted using R 4.3.3 in
RStudio, focusing on the relationship between the final grade of the final assignment and
the extent of LLM usage by students during their study process. Given the results of
Shapiro–Wilk’s test of normality, which indicated that all variables deviated from a normal
distribution (p < 0.05 for all variables), a non-parametric method was deemed necessary
for correlation analysis. Non-parametric methods, such as Spearman’s correlation test,
are preferable in these situations because they do not assume a normal distribution of the
data. This approach is particularly useful when dealing with non-normally distributed
data, as it allows for the identification of patterns and relationships without the need for
the data to meet the assumptions of parametric tests. Spearman’s correlation test, being a
non-parametric method, is robust to non-normal data, making it suitable for our analysis.

Our research hypotheses were designed to explore the impact of LLM usage on aca-
demic performance, with H1 focusing on the general impact and H2a–c examining specific
uses of LLMs. We hypothesized one-sided negative correlations based on the premise
that while LLMs might offer immediate assistance, overreliance could potentially hinder
the development of independent problem-solving skills. These skills are crucial for exe-
cuting programming tasks without external aids. The choice of Spearman’s correlation
test aligns with our hypotheses by allowing us to test for these directional relationships.
Spearman’s rho, a measure of rank correlation, is particularly adept at identifying mono-
tonic relationships between variables, which is essential for assessing the direction of the
impact of LLM usage on academic performance. This methodological setup facilitated an
in-depth examination of the directional impact of LLM usage on academic performance,
particularly within the controlled environment of the final assignment where LLMs were
explicitly prohibited.

4.3. Results and Interpretations

From a statistical standpoint, the analysis revealed varying degrees of correlation
between LLM usage for different purposes (generating code, seeking additional explana-
tions, and debugging) and the final grades of the participants. The Spearman’s rho values
indicated the strength and direction of these relationships, with negative values pointing
towards an inverse relationship between LLM usage and final grades. The significance of
these correlations was determined by the p-values, with values less than 0.05 considered
statistically significant.

To further substantiate the robustness and reliability of these correlations, bootstrap
confidence intervals were calculated for each correlation coefficient. Bootstrap analysis
provides a non-parametric way to estimate the sample distribution of statistics based on
random sampling with replacement. This method is particularly important in studies like
ours, where the sample size is relatively modest. It allows us to estimate how Spearman’s
rho might vary due to sampling variability and, thus, provides a more comprehensive
understanding of the reliability and stability of our results. The inclusion of bootstrap
confidence intervals helps demonstrate the precision of the resulting estimates and high-
lights that the observed relationships are not artifacts of the random sample of students.
Moreover, generating these intervals contributes significantly to validating the statistical

Appl. Sci. 2024, 14, 4115 10 of 15

inference made in our study, presenting a clear picture of how certain we are about the ex-
istence and magnitude of the described correlations. The results of Spearman’s correlation
test and its bootstrap results are presented in Table 2.

Table 2. Results of Spearman’s correlation analysis with bootstrap between LLM use and final grade.

LLM Use Spearman’s Rho 95% Bootstrap CI p

Generating code −0.305 (−0.595, −0.058) 0.045
Additional explanations −0.201 (−0.523, 0.220) 0.135

Debugging −0.360 (−0.628, −0.011) 0.021
Average −0.347 (−0.626, −0.044) 0.026

Note: one-sided Spearman’s correlation test was used, testing the negative correlations.

The results provided empirical support for H1, indicating a significant, though modest,
inverse correlation between average LLM use and final grades (Spearman’s rho = −0.347,
p = 0.026), suggesting that overall, higher engagement with LLMs may detract from the
desired learning outcomes in programming education. This firm finding suggests that
extensive engagement with LLMs might detract from the educational outcomes desired
in programming education. The bootstrap confidence interval for this correlation (−0.626,
−0.044) excludes zero, cementing the reliability of this result.

For H2a, the analysis revealed a significant inverse relationship between the use of
LLMs for generating code and final grades (Spearman’s rho = −0.305, p = 0.045), support-
ing the concern that reliance on LLMs for code generation can undermine independent
coding skills. The confidence interval (−0.595, −0.058) again excludes zero, confirming
the reliability of these implications. Conversely, H2b’s exploration of LLMs for seeking
additional explanations did not yield a statistically significant impact on grades (Spear-
man’s rho = −0.201, p = 0.135), implying this form of LLM use might not hinder, and could
potentially aid, student performance. The broad confidence interval (−0.523, 0.220) encom-
passes zero, reflecting this non-significance and corroborating the nuanced role LLMs play
in educational settings. H2c was strongly supported by a significant inverse correlation
between debugging with LLMs and final grades (Spearman’s rho = −0.360, p = 0.021),
underscoring the importance of fostering independent debugging skills in programming
education. The entirely negative confidence interval (−0.628, −0.011) robustly supports
this outcome.

These results indicate a significant impact of LLM usage on learning outcomes in
the context of programming education. The significant inverse correlation associated
with code generation and debugging suggests that reliance on LLMs for these critical
thinking-intensive activities could be detrimental to students’ ability to independently
solve programming tasks. This might imply that while LLMs can be a valuable resource
for learning and problem-solving, their use needs to be balanced with the development of
independent coding skills, especially in an educational setting where the ultimate goal is to
foster self-sufficiency in problem-solving. On the other hand, the non-significant correlation
for seeking additional explanations suggests that this type of LLM usage does not have a
clear negative impact on student performance, potentially indicating that it serves more as
a supplementary learning tool rather than a crutch that impedes skill development.

5. Discussion

The findings of this study shed light on the nuanced relationship between the use
of LLMs in programming education and its impact on learning outcomes. Our analysis
revealed distinct patterns regarding the frequency and way LLMs are utilized, particularly
concerning code generation, seeking additional explanations, and debugging.

5.1. The Impact of LLMs on Code Generation and Debugging

Notably, our results demonstrate a concerning trend regarding the reliance on LLMs
for code generation and debugging purposes. A significant negative relationship was found

Appl. Sci. 2024, 14, 4115 11 of 15

between increased reliance on LLMs for tasks demanding critical thinking and decreased
final grades, indicating a potential hindrance to students’ ability to independently tackle
programming challenges. This aligns with the assertion made by Haque and Li [9] regarding
the importance of cultivating expertise in debugging to maintain the reliability and integrity
of software systems.

Even though debugging and dealing with errors can be particularly difficult for
programming novices and can often be a major source of frustration, it is still an essential
skill in the context of programming since systematically examining programs for bugs,
finding and fixing them is a core competence of professional developers [18]. Furthermore,
the significance of debugging skills extends beyond the programming realm. Such skills are
also common in our daily lives, and studies suggest that instructing debugging techniques
can facilitate the transfer of these skills to non-programming contexts [19].

Our findings suggest that excessive reliance on LLMs for these tasks may hinder
the development of essential troubleshooting skills, which are fundamental in software
development. This is aligned with Pudari and Ernst [20], who stated that building software
systems entails more than mere development and coding; it requires complex design and
engineering efforts. While LLMs have made efforts to support coding syntax and error
warnings, addressing abstract concerns like code smells, language idioms, and design
principles remains challenging.

Moreover, the observed downward trend in final grades with increased average LLM
use across all types of LLM usage further emphasizes the need for a balanced approach to
integrating LLMs into programming education. While LLMs undoubtedly offer valuable
support and facilitate learning, our results suggest that it is important to balance their
use with the development of independent problem-solving skills. This resonates with
the broader educational objective of fostering self-sufficiency in students, particularly in
domains like programming, where autonomous problem-solving is crucial since it facilitates
the process of learning to program [18].

5.2. Supplementary Learning through LLMs

Interestingly, our analysis also reveals a less pronounced correlation between the use
of LLMs for seeking additional explanations and final grades. Unlike code generation and
debugging, this type of LLM usage does not exhibit a significant negative impact on student
performance. This suggests that leveraging LLMs for supplementary learning purposes
may not impede skill development to the same extent as reliance on LLMs for critical
thinking-intensive tasks. However, caution is warranted in interpreting these findings, as
further research is needed to explain the nuanced role of LLMs in facilitating learning in
programming education.

5.3. Educational Implications and Future Directions

The impact of LLM usage on programming education outcomes emphasizes the need
for educators to carefully consider how these tools are integrated into learning experiences.
Our study supports the implementation of LLMs as supplementary aids that can enhance
understanding and engagement without undermining the development of critical thinking
and problem-solving skills essential for programming.

However, it is crucial to approach the interpretation of these findings with caution.
The less pronounced impact of LLMs on seeking additional explanations invites further
investigation into how such tools can be optimally leveraged to support learning without
compromising the cultivation of independent skills. Future research should explore the
mechanisms through which LLMs influence learning processes and outcomes, identifying
strategies that maximize their benefits while minimizing potential drawbacks. Another
notable aspect that warrants further investigation is the correlation between students’
previous grades and their utilization of LLMs. Exploring whether students who previously
had lower grades tended to use LLMs more frequently could provide valuable insights into
the dynamics between academic performance and LLM adoption.

Appl. Sci. 2024, 14, 4115 12 of 15

In conclusion, this study underscores the importance of a balanced, thoughtful ap-
proach to incorporating LLMs into programming education. By carefully calibrating the
use of these tools, educators can harness their potential to support student learning while
ensuring the development of essential programming competencies. Continued exploration
into the optimal integration of LLMs in educational settings remains a vital area of research.

5.4. Addressing the Balance between Productivity and Learning with LLMs

As discussed in Section 2 (Research Background), it is essential to acknowledge that
LLMs can significantly enhance the productivity of software engineers, particularly in
professional environments where routine tasks are streamlined. However, our study
focuses on the implications of these tools in educational settings, where the primary aim is
to build foundational programming skills.

Our findings suggest that while LLMs can improve efficiency in specific tasks such as
syntax checking and understanding complex algorithms, their premature use can diminish
essential problem-solving experiences. This can potentially hinder the development of the
deep programming knowledge necessary for professional growth. Therefore, we advocate
for a balanced approach to integrating LLMs into educational curriculums. By introducing
these tools at later stages of programming education, after students have acquired basic
coding principles, we ensure they benefit from both the productivity enhancements of LLMs
and the critical problem-solving skills developed through traditional learning methods.

While LLMs are invaluable in increasing productivity in the professional setting, it
is crucial to ensure their integration into educational programs does not compromise the
development of fundamental programming competencies. This strategy prepares students
to use these tools effectively in their future careers by having a robust skillset.

6. Conclusions

This study embarked on an exploration of the nuanced roles that informal usage of
Large Language Models (LLMs) like ChatGPT plays in the learning outcomes of under-
graduate students within programming education. Focused on a ten-week experimental
framework involving thirty-two participants, this research specifically addressed how LLM
usage impacts students’ capacities for independent task implementation and knowledge
acquisition in software development, with a particular emphasis on React applications.
More specifically, our research shows the following.

RQ1: The analysis directly answered the primary question concerning the overall
impact of LLM usage on programming education outcomes. We identified a significant
negative correlation between the average use of LLMs and students’ final grades (Spear-
man’s rho = −0.347, p = 0.026), clearly suggesting that an increased general reliance on
LLMs correlates with diminished academic performance in programming assignments.

RQ2: The study further dissected the impact of LLMs based on their specific uses—code
generation, seeking additional explanations, and debugging. We found significant negative
correlations for code generation (Spearman’s rho = −0.305, p = 0.045) and debugging
(Spearman’s rho = −0.360, p = 0.021), supporting the hypotheses that these forms of LLM
usage negatively affect students’ ability to independently solve programming tasks. Con-
versely, the use of LLMs for seeking additional explanations did not significantly impact
final grades (Spearman’s rho = −0.201, p = 0.135), indicating its potential viability as a
supplementary educational resource.

Our study highlights the need for the balance necessary in leveraging LLMs within
programming education. While LLMs can undoubtedly serve as powerful tools for enhanc-
ing learning through supplementary explanations, their role in critical thinking-intensive
tasks like code generation and debugging appears to negatively influence student out-
comes. This separation underscores the imperative for educators to integrate LLMs into
their pedagogical strategies thoughtfully, ensuring they augment rather than undermine
the development of core programming skills.

Appl. Sci. 2024, 14, 4115 13 of 15

While our findings provide valuable insights into the impact of LLMs on programming
education, we acknowledge that our study is limited by the scale of the dataset. The
relatively small sample size of thirty-two participants may not fully capture the broad
spectrum of educational outcomes associated with LLM use in diverse educational settings.
Additionally, the ten-week duration of our experimental framework may not adequately
reflect long-term learning trajectories and the sustained impact of LLM usage on student
capabilities. These limitations suggest the need for caution in generalizing our results
across all programming education contexts. Further research involving larger sample sizes
and extended study periods is essential to validate and refine our findings.

In the future, it is important that further investigations delve into the specific dynamics
through which LLMs influence learning processes and outcomes. Such research should
aim to refine strategies for integrating these technologies into educational frameworks,
maximizing their benefits while mitigating potential drawbacks. Exploring the differential
impacts of LLM usage across various learning styles and educational contexts will also be
crucial for tailoring AI-enhanced learning experiences to diverse student needs.

Ultimately, a balanced approach that combines AI assistance with human guidance
holds promise for optimizing learning experiences in the realm of software development
and beyond.

Author Contributions: Conceptualization, G.J. and V.T.; methodology, G.J. and S.K.; validation, G.J.
and S.K.; formal analysis, G.J. and S.K.; investigation, G.J., V.T. and S.K.; resources, G.J. and V.T.; data
curation, G.J. and S.K.; writing—original draft preparation, G.J., V.T. and S.K.; writing—review and
editing, G.J., V.T. and S.K.; visualization, S.K. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors acknowledge the financial support from the Slovenian Research and Innovation
Agency (ARIS) (Research Core Funding No. P2-0057).

Institutional Review Board Statement: The study was conducted in accordance with the Dec-
laration of Helsinki. Ethical review and approval were waived for this study due to the nature
of the study, ethical review and approval were not required in accordance with the national and
institutional guidelines.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Questionnaire of LLM Usage during the Initial Phase

In this appendix, we provide a subset of questions extracted from the larger question-
naire specifically related to the implementation and learning process involving LLMs:

1. I used LLMs (ChatGPT, Copilot, Bing Chat, Gemini, or others) for code generation.
2. I used LLMs (ChatGPT, Copilot, Bing Chat, Gemini, or others) for providing additional

explanation regarding coding challenges.
3. I used LLMs (ChatGPT, Copilot, Bing Chat, Gemini, or others) for debugging code.

These questions were essential for comprehensively understanding the diverse appli-
cations of LLMs within our study, illustrating their versatility in supporting various aspects
of our research efforts. It should be noted that these questions constitute only a portion of a
broader questionnaire designed to capture participants’ experiences with LLMs throughout
the implementation phase.

Appendix B. Instructions for Assignment that Was Used in the Controlled Phase

The final assignment served as a comprehensive practical exercise that consolidated
the skills acquired in the previous tasks during the initial phase of the study. The following

Appl. Sci. 2024, 14, 4115 14 of 15

were the instructions used as a description for the assignment in the controlled phase, and
its quality presented the final grade measurement:

Implement an application for tracking TV shows using React. The application should
allow users to track the TV shows they have watched and add new shows to their list.

Requirements:

• The application must have a home page displaying a list of TV shows. Each item on
the list should include the show’s name and status (watched or not watched). Use
conditional rendering to display the appropriate state.

• Clicking on an individual show in the list should open details below the list, including
the show’s name and description.

• The application must have a form for adding new TV shows to the watchlist. The form
should have fields for the show’s name and description, with the status defaulting to
“false”. Use state to manage form data.

• Use props and state lifting to pass data between components.

Tips:

• Divide the application into smaller components and use composition to assemble the
user interface.

• Test your components as you build them to ensure they work as expected. Plan the
architecture of the application before starting coding to avoid getting stuck later on.

• React-router is not required for implementation.
• The structure of interfaces is your choice.

Appendix C

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 16

• Use props and state lifting to pass data between components.
Tips:

• Divide the application into smaller components and use composition to assemble the
user interface.

• Test your components as you build them to ensure they work as expected. Plan the
architecture of the application before starting coding to avoid getting stuck later on.

• React-router is not required for implementation.
• The structure of interfaces is your choice.

Appendix C

Figure A1. Flowcharts of the Method Used.

References
1. Cambaz, D.; Zhang, X. Use of AI-driven Code Generation Models in Teaching and Learning Programming: A Systematic

Literature Review. In Proceedings of the 55th ACM Technical Symposium on Computer Science Education V.1, Portland, OR,
USA, 20–23 March 2024.

2. Tan, K.; Pang, T.; Fan, C.; Yu, S. Towards applying powerful large ai models in classroom teaching: Opportunities, challenges
and prospects. arXiv 2023, arXiv:2305.03433.

3. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.
Adv. Neural Inf. Process. Syst. 2017, 30. https://doi.org/10.48550/arXiv.1706.03762.

4. Fuchs, K. Exploring the opportunities and challenges of NLP models in higher education: Is Chat GPT a blessing or a curse?
Front. Educ. 2023, 8, 1166682.

5. Lo, C.K. What Is the Impact of ChatGPT on Education? A Rapid Review of the Literature. Educ. Sci. 2023, 13, 410.
6. Grassini, S. Shaping the Future of Education: Exploring the Potential and Consequences of AI and ChatGPT in Educational

Settings. Educ. Sci. 2023, 13, 692.
7. Halaweh, M. ChatGPT in education: Strategies for responsible. Contemp. Educ. Technol. 2023, 15, ep421.
8. Montenegro-Rueda, M.; Fernández-Cerero, J.; Fernández-Batanero, J.M.; López-Meneses, E. Impact of the Implementation of

ChatGPT in Education: A Systematic Review. Computers 2023, 12, 153.

Figure A1. Flowcharts of the Method Used.

Appl. Sci. 2024, 14, 4115 15 of 15

References
1. Cambaz, D.; Zhang, X. Use of AI-driven Code Generation Models in Teaching and Learning Programming: A Systematic

Literature Review. In Proceedings of the 55th ACM Technical Symposium on Computer Science Education V.1, Portland, OR,
USA, 20–23 March 2024.

2. Tan, K.; Pang, T.; Fan, C.; Yu, S. Towards applying powerful large ai models in classroom teaching: Opportunities, challenges and
prospects. arXiv 2023, arXiv:2305.03433.

3. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.
Adv. Neural Inf. Process. Syst. 2017, 30. [CrossRef]

4. Fuchs, K. Exploring the opportunities and challenges of NLP models in higher education: Is Chat GPT a blessing or a curse?
Front. Educ. 2023, 8, 1166682. [CrossRef]

5. Lo, C.K. What Is the Impact of ChatGPT on Education? A Rapid Review of the Literature. Educ. Sci. 2023, 13, 410.
6. Grassini, S. Shaping the Future of Education: Exploring the Potential and Consequences of AI and ChatGPT in Educational

Settings. Educ. Sci. 2023, 13, 692. [CrossRef]
7. Halaweh, M. ChatGPT in education: Strategies for responsible. Contemp. Educ. Technol. 2023, 15, ep421. [CrossRef]
8. Montenegro-Rueda, M.; Fernández-Cerero, J.; Fernández-Batanero, J.M.; López-Meneses, E. Impact of the Implementation of

ChatGPT in Education: A Systematic Review. Computers 2023, 12, 153. [CrossRef]
9. Haque, M.A.; Li, S. The Potential Use of ChatGPT for Debugging and Bug Fixing. EAI Endorsed Trans. AI Robot. 2023. [CrossRef]
10. Dakhel, A.M.; Majdinasab, V.; Nikanjam, A.; Khomh, F.; Desmarais, M.C.; Jiang, Z.M.J. GitHub Copilot AI pair programmer:

Asset or Liability? J. Syst. Softw. 2023, 203, 111734. [CrossRef]
11. Denny, P.; Kumar, V.; Giacaman, N. Conversing with copilot: Exploring prompt engineering for solving cs1 problems using

natural languag. In Proceedings of the 54th ACM Technical Symposium on Computer Science Education V.1, Toronto, ON,
Canada, 15–18 March 2023.

12. Puryear, B.; Sprint, G. Github copilot in the classroom: Learning to code with AI assistance. J. Comput. Sci. Coll. 2022, 38, 37–47.
13. Hliš, T.; Četina, L.; Beranič, T.; Pavlič, L. Evaluating the Usability and Functionality of Intelligent Source Code Completion

Assistants: A Comprehensive Review. Appl. Sci. 2023, 13, 13061. [CrossRef]
14. Idrisov, B.; Schlippe, T. Program Code Generation with Generative AIs. Algorithms 2024, 17, 62. [CrossRef]
15. Vaithilingam, P.; Zhang, T.; Glassman, E.L. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools

Powered by Large Language Models. In Proceedings of the Extended Abstracts of the 2022 CHI Conference on Human Factors in
Computing Systems, New Orleans, LA, USA, 29 April 2022–5 May 2022; Association for Computing Machinery: New Orleans,
LA, USA, 2022; p. 332.

16. Wermelinger, M. Using github copilot to solve simple programming problems. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V.1, Toronto, ON, Canada, 15–18 March 2023.

17. Lazuardy, M.F.S.; Anggraini, D. Modern front end web architectures with react.js and next.js. Int. Res. J. Adv. Eng. Sci. 2022, 7,
132–141.

18. Michaeli, T.; Romeike, R. Improving Debugging Skills in the Classroom: The Effects of Teaching a Systematic Debugging Process.
In Proceedings of the 14th Workshop in Primary and Secondary Computing Education, Glasgow, UK, 23–25 October 2019.

19. Carver, M.S.; Risinger, S.C. Improving children’s debugging skills. In Empirical Studies of Programmers: Second Workshop; Ablex
Publishing Corp: New York, NY, USA, 1987; pp. 147–171.

20. Pudari, R.; Ernst, N.A. From Copilot to Pilot: Towards AI Supported Software Development. arXiv 2023, arXiv:2303.04142.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.3389/feduc.2023.1166682
https://doi.org/10.3390/educsci13070692
https://doi.org/10.30935/cedtech/13036
https://doi.org/10.3390/computers12080153
https://doi.org/10.4108/airo.v2i1.3276
https://doi.org/10.1016/j.jss.2023.111734
https://doi.org/10.3390/app132413061
https://doi.org/10.3390/a17020062

	Introduction
	Research Background
	Materials and Methods
	Initial Phase
	Controlled Phase
	Alignment with Research Questions and Hypotheses

	Results
	Data Overview
	Methodological Framework of the Statistical Analysis
	Results and Interpretations

	Discussion
	The Impact of LLMs on Code Generation and Debugging
	Supplementary Learning through LLMs
	Educational Implications and Future Directions
	Addressing the Balance between Productivity and Learning with LLMs

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

