
Citation: Wardana, A.A.; Kołaczek, G.;

Sukarno, P. Lightweight,

Trust-Managing, and

Privacy-Preserving Collaborative

Intrusion Detection for Internet of

Things. Appl. Sci. 2024, 14, 4109.

https://doi.org/10.3390/

app14104109

Academic Editor: Christos Bouras

Received: 16 April 2024

Revised: 7 May 2024

Accepted: 8 May 2024

Published: 12 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Lightweight, Trust-Managing, and Privacy-Preserving
Collaborative Intrusion Detection for Internet of Things
Aulia Arif Wardana 1,*,† , Grzegorz Kołaczek 1,† and Parman Sukarno 2

1 Department of Computer Science and Systems Engineering, Wrocław University of Science and Technology,
50-370 Wrocław, Poland; grzegorz.kolaczek@pwr.edu.pl

2 School of Computing, Telkom University, Bandung 40257, Indonesia; psukarno@telkomuniversity.ac.id
* Correspondence: aulia.wardana@pwr.edu.pl
† These authors contributed equally to this work.

Abstract: This research introduces a comprehensive collaborative intrusion detection system (CIDS)
framework aimed at bolstering the security of Internet of Things (IoT) environments by synergisti-
cally integrating lightweight architecture, trust management, and privacy-preserving mechanisms.
The proposed hierarchical architecture spans edge, fog, and cloud layers, ensuring efficient and
scalable collaborative intrusion detection. Trustworthiness is established through the incorporation
of distributed ledger technology (DLT), leveraging blockchain frameworks to enhance the reliability
and transparency of communication among IoT devices. Furthermore, the research adopts federated
learning (FL) techniques to address privacy concerns, allowing devices to collaboratively learn from
decentralized data sources while preserving individual data privacy. Validation of the proposed
approach is conducted using the CICIoT2023 dataset, demonstrating its effectiveness in enhancing
the security posture of IoT ecosystems. This research contributes to the advancement of secure and
resilient IoT infrastructures, addressing the imperative need for lightweight, trust-managing, and
privacy-preserving solutions in the face of evolving cybersecurity challenges. According to our
experiments, the proposed model achieved an average accuracy of 97.65%, precision of 97.65%, recall
of 100%, and F1-score of 98.81% when detecting various attacks on IoT systems with heterogeneous
devices and networks. The system is a lightweight system when compared with traditional intrusion
detection that uses centralized learning in terms of network latency and memory consumption. The
proposed system shows trust and can keep private data in an IoT environment.

Keywords: intrusion detection; anomaly detection; collaborative detection; distributed ledger; FL;
blockchain; IoT

1. Introduction

The widespread use of IoT devices has brought about numerous benefits, making
our lives more convenient. However, it has also introduced significant challenges, such
as the vulnerability of these devices to cyber threats [1]. The current security measures
struggle to protect IoT systems, especially due to the limited resources of these devices [2].
Current CIDSs specifically designed for the unique constraints of IoT systems is lacking
in lightweight architecture to improve the efficiency and effectiveness of security proto-
cols [3]. As the number of IoT devices increases, the CIDS must be scalable to handle the
growing network size. Scalability challenges may arise in terms of the computational load,
communication overhead, and ability to efficiently manage a large number of devices [4].
The other problem is to ensure the trust and privacy of the CIDS in the IoT [5]. IoT systems
often collect and process sensitive data. CIDSs require the sharing of information among
the network and devices to detect and respond to security threats collectively. Balancing
the need for information sharing with privacy concerns is a significant challenge. Ensuring
that sensitive data are adequately protected during collaborative efforts is crucial to gaining

Appl. Sci. 2024, 14, 4109. https://doi.org/10.3390/app14104109 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14104109
https://doi.org/10.3390/app14104109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2201-0464
https://orcid.org/0000-0001-7125-0988
https://orcid.org/0000-0002-2565-3580
https://doi.org/10.3390/app14104109
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14104109?type=check_update&version=2

Appl. Sci. 2024, 14, 4109 2 of 35

user and regulatory trust [6]. Establishing trust among IoT systems is also crucial for CIDS.
However, building trust in a decentralized and dynamic environment, where devices may
join or leave the network frequently, poses challenges. Ensuring the reliability of commu-
nication and the integrity of information exchange is essential for effective collaborative
security [7].

Given the problems in the current CIDS method, our research tries to find a multiap-
proach method to overcome the limitations of existing CIDS methods. The lightweight
architecture, distributed across the edge, fog, and cloud layers, is intended to optimize re-
source usage, ensuring that security tasks are carried out efficiently without overburdening
the limited capabilities of IoT devices [8]. Trust management is enhanced through the use of
blockchain-based DLT, creating a decentralized and transparent trust infrastructure to im-
prove communication reliability among IoT devices [9]. Addressing privacy concerns, this
research implements FL, enabling collaborative data learning while maintaining individual
information confidentiality [10]. Finding these three methods that can be expected to solve
problem within the given problems, our study tries to combine lightweight architecture,
trust management, and privacy-preserving techniques. The combination of these methods
forms an adaptive feature of a CIDS, expected to effectively counter security threats in the
resource-constrained environments typical of the IoT.

Various studies in the IoT domain utilize combined datasets that may not represent
real-world conditions accurately [11–13]. On the other hand, some research concentrates
on creating CIDS solutions for particular scenarios [14]. Additionally, although they utilize
real-world IoT data, the data may be outdated, and a new dataset with realistic IoT traffic
may be needed [15]. In this research, our solution is validated with the CICIoT2023 dataset,
renowned for its realistic representation of IoT network traffic, allowing us to evaluate the
system’s performance and adaptability. This dataset, with diverse scenarios and attack
vectors, provides a real-world testing ground for our solution, showcasing its efficacy in
detecting and mitigating various security threats in complex IoT networks [16].

The implementation of edge–fog–cloud architecture in some research has not yet been
undertaken [13,14]. On the other hand, some researchers have implemented edge–fog–cloud
architecture, but they focus on trust and privacy preservation rather than accommodating
in-depth lightweight analysis [11,12,15]. This research addresses the analysis of lightweight
architecture, trust management, and privacy preservation. Lightweight analysis ensures that
the computational resources required for processing data remain minimal, which is crucial
in resource-constrained environments like the IoT. Addressing lightweight analysis, trust,
and privacy preservation in IoT research is crucial for optimizing resource usage, building
trust among users, and protecting sensitive.

Our research contributes to addressing the significant challenges facing current CIDSs
in IoT environments. Recognizing the vulnerability of IoT devices to cyber threats and the
limitations of existing security measures due to resource constraints, our study proposes a
multiapproach method to enhance CIDS effectiveness. By implementing a lightweight archi-
tecture distributed across edge, fog, and cloud layers, we optimize resource usage, ensuring
security tasks are performed efficiently without overburdening IoT devices. Additionally,
trust management is bolstered through blockchain-based DLT, fostering decentralized
and transparent communication among IoT devices to enhance reliability. Moreover, we
address privacy concerns by employing FL, enabling collaborative data learning while
safeguarding individual data confidentiality. Combining these methods, our adaptive CIDS
is poised to effectively counter security threats in resource-constrained IoT environments.
Validated using the realistic CICIoT2023 dataset, renowned for its diverse scenarios and
attack vectors, our solution demonstrates efficacy in detecting and mitigating various
security threats in complex IoT networks. Unlike previous research, which either lacks
implementation of edge–fog–cloud architecture or focuses solely on trust and privacy, our
study comprehensively addresses lightweight analysis, trust management, and privacy
preservation, crucial aspects for optimizing resource usage, building trust, and protecting
sensitive data in IoT environments.

Appl. Sci. 2024, 14, 4109 3 of 35

2. Related Works

This research explores the pressing challenges of enhancing security measures in the
IoT landscape, which has seen exponential growth and increasing vulnerability to cyber
attacks and exploitation. A notable concern is the proliferation of various and distributed
attacks, orchestrated by compromised IoT systems, which pose a substantial threat to
servers and network services. CIDSs have played a pivotal role in defending against
these threats, employing both signature-based and anomaly-based detection methods.
Nevertheless, these conventional CIDS solutions have demonstrated limitations that require
novel approaches when dealing with various and distributed attacks to detect them quickly
and securely.

The study conducted by [11] highlights the significance of securing IoT ecosystems
due to their increasing interconnectivity and the sensitive data they manage. It intro-
duces a hierarchical blockchain-based FL (HBFL) framework, stressing the importance
of cyber threat intelligence (CTI) sharing among organizations utilizing ML-based IDS in
IoT environments. This framework operates in an FL setting, utilizing blockchain-based
smart contracts to promote trust and cooperation among organizations. It places a strong
emphasis on safeguarding data privacy and demonstrates the practical feasibility of the
solution through implementation and assessment using two prevalent IoT datasets, namely,
NF-UNSW-NB15-v2 and NF-BoT-IoT-v2.

The study conducted by [12] introduces FIDChain IDS, a federated intrusion de-
tection system customized for blockchain-enabled IoT healthcare applications, utilizing
lightweight artificial neural networks (ANNs) within an FL framework. By leveraging
machine learning, edge computing, and blockchain technologies, the system provides
robust security measures to protect the privacy of medical data. The research demonstrates
the superiority of ANN models over eXtreme Gradient Boosting (XGBoost) models in
managing diverse IoT device data, especially in healthcare environments, using the BoT-IoT
dataset. Through experimentation with various datasets, such as CSE-CIC-IDS2018, Bot
Net IoT, and KDD Cup 99, it is observed that the BoT-IoT dataset produces consistent
and precise outcomes for assessing IoT applications in healthcare. Additionally, the paper
introduces a solution based on private and permissioned blockchain for the FL process,
ensuring efficient and secure data sharing and aggregation compared to public blockchains
that may exhibit inefficiencies in weight updates.

Research by [13] introduces a collaborative intrusion detection algorithm based on a
CGAN (conditional generative adversarial network) with blockchain-enabled distributed
FL. The algorithm utilizes FL to allow multiple MEC (mobile edge computing) nodes
to collectively train a global intrusion detection model while ensuring decentralized and
secure data management. The CGAN framework consists of a generator and a discriminator,
where the generator creates synthetic intrusion samples and the discriminator distinguishes
between real and synthetic samples. Moreover, blockchain technology is integrated into the
algorithm to maintain the integrity and transparency of the training process. The validation
of the study is conducted using the CICIDS2017 dataset.

The study by [14] presents a federated deep learning-based intrusion detection frame-
work (FED-IDS) tailored for smart transportation systems, which delegates the learning
process to distributed vehicular edge nodes. A context-aware transformer network is
integrated into the framework to analyze spatial–temporal patterns of vehicular traffic
flows to detect various types of attacks. The methodology employs blockchain-managed
federated training to support secure, distributed, and reliable training across multiple
edge nodes without a central authority. Miners in the blockchain validate decentralized
local updates from participating vehicles to prevent the inclusion of unreliable infor-
mation in the blockchain. This study’s validation is conducted using the ToN_IoT and
Car-Hacking datasets.

Research conducted by [15] presents a blockchain-coordinated edge intelligence (BoEI)
framework that integrates decentralized FL (Fed-Trust) for detecting cyber attacks in
the Industrial Internet of Things (IIoT) environment. The Fed-Trust approach utilizes a

Appl. Sci. 2024, 14, 4109 4 of 35

temporal convolutional generative network for semisupervised learning from partially
labeled data. This framework incorporates a reputation-based blockchain for decentralized
transaction recording and verification, ensuring the security and privacy of data and
gradients. Furthermore, fog computing is employed to relocate block-mining activities
from the edge, improving the computational and communication efficiency of Fed-Trust.
The validation of the study is performed using the ToN_IoT and LITNET-2020 datasets.

Based on the analysis of the previous literature, several key insights emerge. The
integration of edge, fog, and cloud computing architectures proves to be a well-suited
infrastructure for IoT applications. The utilization of blockchain-based DLT can establish
trust in CIDSs for IoT environments. Additionally, FL emerges as a promising approach to
safeguard data privacy while facilitating the sharing of CIDS training models across IoT
devices and networks. Despite these advancements, there exist notable research gaps that
warrant attention.

Certain studies employ combined datasets that may not accurately reflect real-world
IoT conditions, as evidenced by research articles such as [11–13]. Conversely, other studies
focus on developing CIDS solutions for specific use cases, as exemplified by [14]. Further-
more, while research like [15] utilizes real-world datasets from IoT environments, the data
may be outdated, highlighting the need for more current and relevant datasets to drive
advancements in the field. Moreover, it is observed that research studies like [13,14] do not
implement the edge–fog–cloud architecture, whereas research studies such as [11,12,15]
have implemented this architecture. However, the analysis of lightweight architecture is
lacking in most studies. The primary focus has been on trust and privacy preservation
rather than accommodating in-depth lightweight analysis.

Our study aims to fill that gap by employing edge–fog–cloud architecture, blockchain-
based DLT, and FL for CIDS with validation using up-to-date datasets based on real-world
realistic traffic. This research utilizes the CICIoT2023 dataset to rigorously evaluate our
proposed CIDS. The dataset’s realistic scenarios and diverse attack simulations enable a
comprehensive assessment of the proposed architecture and techniques in contexts aligned
with IoT complexities [17]. Our proposed system is designed for a global scenario of the IoT,
not limited to specific domains like those in research [12–14]. The cyber attacks analyzed in
this research are more diverse, and the devices and networks from the IoT dataset are more
heterogeneous. This research focuses not only on trust and privacy-preserving analysis but
also on lightweight architecture analysis for the CIDS.

Building upon these prior research efforts, our study adopts a distinctive approach to
analyzing diverse attacks from heterogeneous IoT system realistic traffic, combining FL
with a deep neural network (DNN), blockchain-based DLT, and edge–fog–cloud architec-
ture. We leverage the Ethereum blockchain and IPFS system as the DLT platform in this
research, utilizing the CICIoT2023 dataset that simulates multiple heterogeneous devices
and networks with realistic traffic from IoT for comprehensive analysis. The contributions
and distinctions of this study in comparison to other research are delineated as follows:

• This study proposes FL-DNN with a binary classification mode for a collaborative
anomaly detection model in CIDS to analyze diverse attacks in heterogeneous devices
and networks with realistic traffic from IoT.

• This research used the combination of the Ethereum blockchain and interplanetary
file system (IPFS) for trust management to distribute a training model for real-time
traffic analysis in CIDS.

• The proposed model underwent testing using the CICIoT2023 dataset that simulates
multiple heterogeneous devices and networks with realistic traffic from the IoT for
comprehensive analysis.

• The proposed model uses a combination of edge–fog–cloud architecture and FL to
create a hierarchical and lightweight architecture for a CIDS in IoT systems.

Appl. Sci. 2024, 14, 4109 5 of 35

3. Methodology

To design our proposed CIDS, we initially compare the traditional CIDS architecture
with the architecture we are proposing. This comparison aims to provide a comprehensive
understanding of the differences between the two architectures. Additionally, we outline
the specifics of the FL design employed in this research and how it integrates into our
proposed CIDS architecture. We also describe the processing of the CICIoT2023 dataset
within this research. Finally, we elaborate on the test scenarios and parameters that will be
utilized in our experiments.

3.1. CIDS Architecture

A traditional CIDS has two primary functional units that work together to provide a
high-level overview of network security. The first unit is the detection unit (consisting of
a sensor and analyzer), which is responsible for monitoring subnetworks. The sensor is
responsible for collecting data from the network, while the analyzer analyzes the traffic
from the sensor and generates alerts. These detectors generate low-level intrusion alerts,
which are then passed on to the second unit. The second unit is the data correlation
unit, which takes these alerts from individual detectors and correlates them to provide a
comprehensive overview of the security state of the entire network. The traditional CIDS
system is shown in Figure 1 [18].

Figure 1. Traditional CIDS architecture.

In this research, we developed a CIDS based on collaborative anomaly detection.
CIDS effectively correlates evidence from various networks using a detector unit. In the
collaborative anomaly detection process, each detector generates a training model. The
sensor captures data from network traffic, while the analyzer analyzes the captured traffic
and generates a training model. Subsequently, a correlation unit consolidates the classifier
models from each detector. The results from this combination of training models in the
correlation unit are then updated in the detectors’ unit for traffic analysis. Through this
approach, the CIDS offers a more comprehensive strategy for network security, capable of
identifying patterns and trends that might signal larger-scale attacks. However, the CIDS
faces significant challenges related to the distribution of training models and potential
single points of failure.

Inadequate security in model distribution can expose a CIDS to unauthorized access
and tampering, potentially enabling attackers to manipulate models to evade detection
or launch attacks. Data privacy concerns may also arise if sensitive training data become
exposed. Additionally, a single point of failure, such as a critical node or server going down,
can disrupt the entire CIDS operation, leading to false positives and negatives, reduced
system resilience, and a loss of trust among users and stakeholders [19,20].

DLT offers solutions to the challenges of insecure training-model distribution and
single points of failure in CIDSs. It accomplishes this by ensuring the integrity and security
of data through immutable and tamper-proof records, making it exceedingly difficult for

Appl. Sci. 2024, 14, 4109 6 of 35

malicious nodes to manipulate information. DLT’s decentralized nature eliminates the risk
of a Single Point of Failure (SPoF) and distributes data across multiple nodes, enhancing
system resilience. The consensus mechanisms inherent in DLT provide a safeguard against
byzantine failures, allowing the system to reach agreement on accurate data even when
some nodes behave maliciously. Additionally, DLT’s transparency and accountability
features enable traceability and auditing, crucial for identifying and addressing anomalies.
Overall, DLT bolsters CIDSs by safeguarding the training model and eliminating single
points of failure [21,22].

Therefore this research used DLT-based CIDS to prevent byzantine failures and single
points of failure. The proposed architecture for a DLT-based CIDS can be seen in Figure 2.
This research used the combination of Ethereum blockchain and IPFS as a DLT platform.
Ethereum blockchain and IPFS are well suited for data sharing and distribution due to their
complementary features. Ethereum’s immutable ledger and smart contract functionality
provide secure and tamper-proof data storage, along with the ability to automate data
sharing agreements and access controls. Meanwhile, IPFS offers a decentralized and highly
available content-addressable storage system that ensures data resiliency and efficient
retrieval through cryptographic hashes. Together, they create a powerful platform for
sharing and distributing data with features like censorship resistance, cost-efficiency, and
interoperability, making them ideal for applications where secure and decentralized data
sharing is paramount [23].

Figure 2. Our view on this research about edge–fog–cloud DLT-based CIDS architecture in IoT system.

This research also used edge–fog–cloud architecture for a hierarchical CIDS based on
DLT. The architecture is a multitiered infrastructure that leverages the combined strengths
of edge, fog, and cloud computing to enhance the security and efficiency of intrusion
detection [24,25]. In this architecture, detector units in edge devices capture the network
traffic through sensor units. After that, the detector unit analyzes the captured traffic
locally through the analyzer unit. Fog computing layers, situated closer to the core network,
further refine and aggregate the model from edge devices to build the fog layer training
model. The fog computing layer averages the weight from each device training model and
another for devices. Finally, the cloud provides aggregate data from fog devices to build
the global training model. The cloud layer also provides the integration of DLT for secure
model sharing and transaction recording, ensuring data integrity and trustworthiness. The
global training model is sent back to the fog layer and edge layer to update the local model
in each layer.

This research used FL with hierarchical updates in the edge–fog–cloud architecture.
Further details of the proposed model can be seen in Figure 3. The image depicts a detailed
flowchart outlining a process for managing a dataset within the realm of hierarchical up-
dates in the FL concept. It showcases the progression from splitting the dataset into training

Appl. Sci. 2024, 14, 4109 7 of 35

and detection subsets to the final detection result. The dataset is initially divided into a
70% training set and a 30% detection dataset. The process begins with the initialization
of a global model on the cloud server, and edge devices and fog nodes are selected to
participate. Each round of FL involves selecting edge devices, distributing the global model
to them, allowing local training without sharing data, aggregating updated models at the
fog node, and sending the consolidated model back to the cloud server. This round-based
communication is repeated for multiple rounds to iteratively enhance the global model by
incorporating local knowledge from edge devices. Through this iterative process, the global
model converges to reflect the collective intelligence of all participating edge devices.

Figure 3. Collaborative anomaly detection process in CIDS based on FL-DNN and DLT.

In testing the detection performance in each layer of a produced training model, a
series of data tests can be conducted to evaluate the model’s effectiveness at different
stages. In the edge layer, data tests are used to assess the model performance in edge
devices. Moving to the fog layer, the data tests are carried out to evaluate the model’s
performance after aggregation and processing at the fog node. In the cloud layer, the data
tests are conducted on the fully trained model to assess its detection performance in a
centralized environment.

3.2. FL with DNN

FL is a decentralized machine learning approach where a global model is learned by
combining locally trained models from data-generating clients, allowing a wide array of
participants, such as smartphones and connected vehicles, to contribute to the learning
process. The FedAvg algorithm, short for federated averaging, is a fundamental component
of FL that facilitates the aggregation of these locally trained models. The process begins
with the initialization of global model parameters, denoted as w0, and proceeds iteratively.

Appl. Sci. 2024, 14, 4109 8 of 35

During each communication round, every client i trains a local model using its data and
the current global model parameters, represented as wt

i at communication round t. These
local models are then shared with the server. The server receives a set of models {wt

i} from
all clients. The aggregation step occurs at the server, where the received local models are
averaged to update the global model. The updated global model parameters are calculated
as Formula (1).

w(t+1) =
1
N

N

∑
i=1

wt
i (1)

where w(t+1) represents the updated global model parameters after communication round
t + 1, and N denotes the total number of clients participating in FL. This process repeats
for several communication rounds until the model convergence criteria are met. FedAvg
harnesses the collaborative power of decentralized data sources while ensuring the privacy
of individual clients in the FL framework [26,27].

Furthermore, this research presents a CIDS capable of monitoring heterogeneous
setups from an IoT network. The strategy involves combining a DNN with FL. Network
data are collected in each edge device. Individual DNN base classifiers, trained on these
devices, capture network-specific patterns. The weight of DNN classifiers from each
network is averaged using FedAvg in fog devices. The system continuously adapts to
changing network dynamics by updating the global DNN classifiers with new weights
from each edge and fog device.

A DNN is a type of machine-learning algorithm that takes inspiration from the human
brain. It comprises three main components: an input layer, an output layer, and one or more
hidden layers. These hidden layers process input data from the input layer to generate
output through a series of transformations. Each layer contains perceptrons, which are
units that process data using input values (xi) and weight values (wi). The inputs and
weights are combined using summation and bias addition, as shown in Formula (2) for a
hidden layer.

z =
n

∑
i=1

(xi · wi) + b (2)

a = ReLU(z) = max(0, z) (3)

ŷ = σ(z) =
1

1 + e−z (4)

The output of this summation and bias addition undergoes an activation process before
being outputted. This study employs rectified linear unit (ReLU) activation in hidden layers
and sigmoid activation in the output layer. ReLU aids in capturing intricate data patterns,
while sigmoid in the output layer offers a probabilistic view of the model’s predictions,
making it suitable for classification tasks. By combining these activation functions, the
neural network architecture becomes more robust and efficient. The ReLU activation in
the hidden layer is represented by Formula (3), while the sigmoid activation in the output
layer is shown in Formula (4).

For training, this research focuses on a binary classification task related to cyber attacks.
Stochastic gradient descent (SGD) is utilized as the optimizer during the DNN training
process. SGD is an optimization algorithm commonly used in training neural networks. It
updates model parameters iteratively based on minibatches of training data. The parameter
update step in SGD is expressed in Formula (5), where θ(t) represents the parameter vector
at iteration t, η is the learning rate, and∇J(θ(t); x(i), y(i)) is the gradient of the loss function
J with respect to the parameters θ(t) computed using a single training example (x(i), y(i)).

θ(t+1) = θ(t) − η∇J(θ(t); x(i), y(i)) (5)

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (6)

Appl. Sci. 2024, 14, 4109 9 of 35

Moreover, mean squared error (MSE) is employed as the loss function for training the
DNN. MSE is a commonly used loss function in DNNs for regression tasks. It calculates
the average squared difference between predicted and actual target values in the training
data, as shown in Formula (6). The MSE loss function evaluates the model’s performance
by penalizing larger errors more heavily than smaller ones, aiming to minimize the overall
error during training [28,29].

3.3. Dataset Preprocessing

The CICIoT2023 dataset is a collection of IoT data. This dataset is designed to support
research in the field of IoT security and includes various types of IoT network traffic data
for analysis and experimentation. This research use the CICIoT2023 dataset to develop and
evaluate the proposed CIDS tailored to IoT environments. It serves as a valuable resource
for advancing the understanding of IoT security challenges and developing effective
defense mechanisms against potential threats and attacks in IoT systems. The dataset has
47 features including labels from the traffic. The details of the dataset feature can be seen
in Table 1.

Table 1. CICIoT2023 features.

Feature

flow_duration Header_Length Protocol Type Duration Rate
Srate Drate fin_flag_number syn_flag_number rst_flag_number

psh_flag_number ack_flag_number ece_flag_number cwr_flag_number ack_count
syn_count fin_count urg_count rst_count HTTP

HTTPS DNS Telnet SMTP SSH
IRC TCP UDP DHCP ARP

ICMP IPv LLC Tot sum Min
Max AVG Std Tot size IAT

Number Magnitue Radius Covariance Variance
Weight Label

Source: https://www.unb.ca/cic/datasets/iotdataset-2023.html (accessed on 1 December 2023).

This research used a labeled CSV version of the CICIoT2023 dataset. However, the
dataset is large in size. Therefore, only 30% of the dataset was utilized in this study. Details
of the dataset traffic used in this research can be seen in Table 2.

Table 2. 30% of CICIoT2023 Traffic.

No Traffic Type Number

1 DDoS 10,197,039
2 DoS 2,426,635
3 Mirai 790,305
4 Benign 328,597
5 Spoofing 145,999
6 Recon 105,957
7 Web 7462
8 BruteForce 3980

Source: https://www.unb.ca/cic/datasets/iotdataset-2023.html (accessed on 1 December 2023).

This research used nonidentically distributed (non-IID) data splits across clients [30].
Each client receives a fraction of the data for training its local model, and these local models
are then aggregated to update the global model. By distributing the data in this manner,
FL enables data training in each edge layer that has a heterogeneous setup. The non-IID
data split design of this research can be seen in Algorithm 1. The function initiates by
setting a random seed based on the ‘client_id’, ensuring consistent randomization across
different clients. Subsequently, it generates an array of indices representing the entirety of

https://www.unb.ca/cic/datasets/iotdataset-2023.html
https://www.unb.ca/cic/datasets/iotdataset-2023.html

Appl. Sci. 2024, 14, 4109 10 of 35

the training dataset (‘X_train’) and shuffles these indices to introduce randomness into the
data selection process.

Algorithm 1: Load and Distribute CICIoT2023 Data Train
Input: client_id
Output: Xclient, yclient

Create non-IID splits based on client_id;
Set random seed using client_id;
Generate array of indices [0, 1, ..., len(Xtrain)− 1];
Shuffle the indices;

Choose a fraction of the data for this client;
Set fraction = 0.04;
Calculate client data size = int(0.04× len(Xtrain));
Select client indices from shuffled indices based on client data size;

Xclient = Xtrain[client_indices];
yclient = ytrain.iloc[client_indices];

return Xclient, yclient;

A crucial aspect of FL is the allocation of data fractions to individual clients. Here, the
function selects a predetermined fraction of the data (commonly represented as ‘fraction’,
set to 0.04 in the provided code) to be assigned to each client. The size of this allocation,
termed ‘client_data_size’, is determined based on the specified fraction and the total size
of the training data. Client-specific indices are then selected from the shuffled array,
corresponding to the subset of data allocated to each client. These indices are used to
extract the relevant data (‘X_client’ and ‘y_client’) from the training dataset (‘X_train’ and
‘y_train’). Finally, the function returns the client-specific data (‘X_client’ and ‘y_client’)
for training data in each edge device. In FL, the test dataset is typically shared among all
clients to evaluate the performance of the global model.

3.4. Performance Parameters

In this study, various parameters were utilized to assess the benchmarking analy-
sis. The algorithms’ accuracy, F1-score, precision, and recall were evaluated within the
benchmarking scenarios. These metrics are crucial for evaluating classification tasks as
they offer diverse viewpoints on the model’s performance. Each metric provides unique
insights into the model’s predictive abilities, aiding in evaluating its efficacy in addressing
classification challenges.

Furthermore, this research measured the training model’s size generated by each algo-
rithm and the duration of both training and testing procedures. These metrics are pivotal
for the practical implementation and performance of classification models, impacting re-
source allocation, costs, latency, scalability, and user experience. Striking a balance between
model size, training duration, and prediction time is essential to ensure the development of
efficient, effective, and feasible solutions for classification tasks in real-world applications.

1. Accuracy (%): The accuracy of an IDS is crucial for effectively identifying and respond-
ing to malicious activity while minimizing false positives. High accuracy indicates
correct identification of true positives and true negatives. Accuracy is computed as in
Formula (7) [31].

TP + TN
TP + FP + TN + FN

= Accuracy (7)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
2. Precision (%): Precision in IDS is the ratio of true-positive predictions to the total

positive predictions made by the model, measuring the accuracy of positive predic-

Appl. Sci. 2024, 14, 4109 11 of 35

tions. It calculates the proportion of correctly predicted positive instances out of all
instances predicted as positive. Precision is computed as in Formula (8) [31].

TP
TP + FP

= Precision (8)

3. Recall (%): The recall metric, also known as sensitivity or the true-positive rate,
is the ratio of true-positive predictions to the total actual positive instances in the
dataset. It gauges the model’s ability to correctly identify positive instances, regardless
of some instances being wrongly predicted as negative. Recall is computed as in
Formula (9) [31].

TP
TP + FN

= Recall (9)

4. F1-Score (%): The F1-score, a widely used metric in machine learning for classification
tasks, combines precision and recall into a single value to measure the model’s accuracy.
It offers a balanced evaluation of the model’s performance, especially when false posi-
tives and false negatives are equally significant. F1 is computed as in Formula (10) [31].

2 ∗ (Precision ∗ Recall)
Precision + Recall

= F1− Score(F1) (10)

5. TPS: Measuring TPS for DLT involves assessing the system’s transaction processing
rate within a one-second time frame, serving as a crucial metric for evaluating a DLT’s
performance and scalability. TPS is determined by tracking the successful recording
and confirmation of transactions on the ledger, reflecting the system’s efficiency and
capacity to accommodate a growing number of participants and transactions without
compromising speed and reliability. This metric is influenced by factors such as the
DLT’s technology, consensus mechanism, network capabilities, and data-handling
processes. In terms of hardware resources, TPS is closely tied to both CPU and RAM.
The CPU is responsible for processing and validating incoming transactions, while
RAM aids in efficient data storage and retrieval. An effective combination of CPU and
RAM resources is vital for achieving and sustaining high TPS rates in a DLT system,
as they contribute to accelerated transaction processing and reduced latency. The
formula for calculating TPS can be expressed as Formula (11) [32].

TPS =
Total Transactions

Time Period
(11)

where TPS is the transactions per second, Total Transactions represents the total
number of transactions processed during the chosen time period, and Time Period is
the duration over which the transactions are measured in seconds.

6. Latency (s): Measuring latency in an edge–fog–cloud architecture involves assessing
the time it takes for data or a computational task to travel through the various layers
of the architecture. Latency in this context refers to the delay introduced at different
stages of processing, from the edge devices to the fog nodes and ultimately to the
cloud servers. For network latency measurement, this research uses the following
Formula (12) [33]:

Latency =
Data Size

Transmission Speed
(12)

where Latency is the round-trip time it takes for data to travel from the source to the
destination and back. It is measured in seconds. DataSize is the size of the data being
transmitted, expressed in kilobytes (KB). The measurement ensures that the size is
consistent with the units used for network transmission speed. TransmissionSpeed
represents the capacity of the network to transmit data and is typically measured in
kilobits per second (Kbps) [34].

Appl. Sci. 2024, 14, 4109 12 of 35

7. CPU and memory (%): Measuring the average CPU and memory usage during a
learning process is crucial for assessing the computational demands of a machine
learning model. This research utilizes system monitoring tools like ‘psutil’ in Python
to provide real-time insights into CPU and memory usage [35].

3.5. Benchmarking Scenario

This research encompasses four categories of benchmarking scenarios. Details for each
scenario are provided below:

1. Detection performance: The first scenario involves benchmarking the performance
of the FL-DNN model to test it using testing data from all devices. The parameters
analyzed in this measurement are accuracy, precision, recall, and F1-score.

2. Transaction performance: The second scenario aims to evaluate the performance of
the DLT when handling transactions in the proposed CIDS model. The parameter
analyzed in this measurement is transactions per second (TPS).

3. Network latency performance: The third scenario is calculating network latency in an
edge–fog–cloud architecture. This scenario involves assessing the time it takes for data
to traverse the communication layers within the system. Beginning with edge latency,
the duration for data to move from edge devices to local processing units is measured,
considering local network dynamics. Moving to fog latency, the time taken for data
processing at fog nodes, which offer additional computational capabilities closer to
the edge, is evaluated. Cloud latency assessment follows, considering the round-trip
time for data to travel from the edge and fog layers to centralized cloud servers and
back. End-to-end latency encapsulates the total time for data or tasks to traverse
the entire architecture, encompassing edge, fog, and cloud layers. Network latency,
an essential component, examines the delays introduced during data transmission
between these layers.

4. Resource consumption performance: The fourth testing scenario involves measur-
ing resource consumption. The performance of resource consumption focuses on
CPU and memory consumption during the training process. In this research, we
compare the learning process between centralized learning and federated learning
when distributed in edge computing. We monitor the CPU and memory consumption
every second during the learning process, then average all the captured values from
CPU and memory consumption to calculate the CPU and memory consumption in a
single learning process. In FL based on edge–fog–cloud architecture, we monitor the
learning process in 5 rounds.

4. Results

This section assesses the proposed system using a benchmarking scenario and perfor-
mance metrics described in the previous section. It also explains the environment setup for
simulating the proposed system.

4.1. Experiment Environment and Configuration

In this research, a server with specific hardware specifications was employed for
conducting the experiments. The server was equipped with a 2.3 GHz 16-core Intel(R)
Xeon(R) CPU E5-2650 v3 and 128 GB of memory. The operating system utilized was Ubuntu
22.04.2 LTS. Machine learning experiments were conducted using Python version 3.10.6 and
Keras version 2.12 as the machine learning library. The presentation of experiment results
was facilitated through Jupyter Notebook version 6.5.3. Additionally, this research used
Truffle 5.11.5 for smart contracts and blockchain simulators, and a connection to Truffle
was established using the web3 library from Python. This research used IPFS Kubo 0.23.0
to create a private IPFS server. Detailed configurations of the DNN hyperparameters used
in this research can be found in Tables 3 and 4.

Appl. Sci. 2024, 14, 4109 13 of 35

Table 3. DNN hyperparameters.

Hyperparameter Details

Hidden layer 4
Input dimension 46
Optimization algorithm SGD
Output dimension 1 (binary)
Batch size 1000
Output layer activation function Sigmoid
Epochs 10
Metrics Accuracy, precision, and recall
Loss function Mean squared error

Table 4. Hidden layer details.

Hidden Layer Number of Node Activation Function

1 21 ReLU
2 13 ReLU
3 7 ReLU
4 5 ReLU

IPFS enables data to be stored across a network of nodes, ensuring redundancy and
accessibility. Smart contracts, running on blockchain platforms like Ethereum, can reference
IPFS file addresses, making it feasible to store large data or sensitive information off-chain
while retaining a reference to it on the blockchain. The smart contract design of this research
can be seen in Algorithm 2.

This approach mitigates the limitations of blockchains in terms of data storage and
costs. Smart contracts can trigger actions based on the content stored on IPFS, automat-
ing processes like content delivery, identity verification, or secure data exchange. This
combination provides a decentralized and tamper-resistant solution for applications that
require secure, auditable, and efficient handling of data while reducing the burden on the
blockchain itself.

Algorithm 2: Transaction in FL-DNN based on DLT

foreach iteration in iterations do
for i from 1 to 10 do

model_path← ./model_federated.h5;
cid← ipfs_api.publish(model_path);
tx_hash← contract.functions.sendHash(cid).transact({ f rom :
web3.eth.accounts[0]});

tx_receipt← web3.eth.wait_for_transaction_receipt(tx_hash);
print(Sent transaction + (i + 1) + / + (iterations ∗ 10) + with hash: +

tx_hash.hex());

4.2. Centralized Learning vs. FL Based on Edge–Fog–Cloud Architecture

In this section, an analysis of the classification performance is conducted, comparing
a traditional IDS with centralized learning and a CIDS with FL based on edge–fog–cloud
for IoT. The performance evaluation encompasses metrics such as accuracy, precision,
recall, and F1-score. Additionally, the loss parameter is examined to quantify the disparity
between predicted values of the model and the actual ground-truth values in the dataset.
Furthermore, parameters including training time, average CPU, and memory usage are
analyzed for comparison in a lightweight analysis. This study delves into these parameters
at each layer, starting from the edge layer, progressing to the fog layer, and culminating at
the cloud layer where the global model is aggregated. It compares the proposed system

Appl. Sci. 2024, 14, 4109 14 of 35

with a centralized learning mode using the same dataset and DNN machine learning
algorithm in terms of detection performance.

4.2.1. Centralized Learning Performance

The results of centralized learning are presented in Table 5. The loss value indicates the
error of the model’s predictions compared to the true labels. In this case, the loss value is
0.0045648, which suggests that the model’s predictions are relatively close to the true labels,
indicating good performance. Accuracy measures the proportion of correctly classified
samples out of the total number of samples. With an accuracy of 99.36%, the model
correctly classifies a high percentage of the samples. Precision measures the proportion of
true-positive predictions out of all positive predictions made by the model. With a precision
of 99.55%, the model has a high precision, indicating that when it predicts a positive class,
it is usually correct. Recall measures the proportion of true-positive predictions out of
all actual positive samples in the dataset. With a recall of 99.79%, the model effectively
captures a high percentage of the positive samples. The F1-score is the harmonic mean
of precision and recall, providing a balance between the two metrics. With an F1-score
of 99.67%, the model achieves a high balance between precision and recall, indicating
robust performance. Additionally, the training time for the model was substantial, totaling
4041.07 s, suggesting comprehensive training and optimization processes. Despite the
extensive training duration, the model’s resource utilization remained modest, with an
average CPU usage of 4.7% and memory consumption of 40.78 GB.

Table 5. Centralized learning detection performance.

No Parameter Result

1 Loss 0.0045648
2 Accuracy (%) 0.9936
3 Precision (%) 0.9955
4 Recall (%) 0.9979
5 F1-score (%) 0.9967
6 Training time (s) 4041.07
7 Average CPU (%) 4.7
8 Average memory (GB) 40.78
9 Model size (Kb) 46

4.2.2. FL on Edge Layer Performance

Now, we analyze the results from FL within the edge–fog–cloud architecture. In this
analysis, each graph illustrates the progression of devices over multiple rounds (on the x
axis), during which they compute the loss function value (on the y axis) associated with their
segment of the model training. The initial analysis focuses on assessing the performance
of the loss parameter. The performance outcomes of the loss parameter at the edge layer
are depicted in Figure 4. The graph comprises five line graphs labeled from A to E, each
representing the ‘loss trend’ for a different ‘fog device’ (from Device 1 to Device 5) across
several rounds of an FL process within an edge–fog–cloud architecture. Each ‘fog device’
oversees five ‘edge devices’ involved in the learning process, with the colors in the curves
corresponding to different edge devices contributing to the learning process.

Appl. Sci. 2024, 14, 4109 15 of 35

Figure 4. The loss value trend across the edge layer. Figures (a–e) present the trend of loss values in
edge devices grouped by fog devices.

The loss function serves as a metric for evaluating the model’s predictive accuracy
against the actual data, with lower values indicating superior performance. The graphs
illustrate fluctuations in loss values across rounds, reflecting the iterative process towards
improved performance. Among the fog devices, variations in average loss across their
respective edge devices are observed. Notably, for Fog Device 1, Edge Device 1 stands out
with the lowest average loss of 0.0067, indicating effective learning, while Edge Device 4
exhibits the highest average loss of 0.0102, suggesting potential challenges in model training
or data quality. Fog Device 2 generally demonstrates lower average losses, with Edge
Device 1 displaying the lowest average loss at 0.0064, though Edge Device 4 shows a
slightly higher average loss of 0.0087, indicating varying levels of learning effectiveness.
Fog Device 3 consistently maintains efficient learning across its edge devices, all exhibiting
low average losses, with Edge Device 5 showcasing the lowest average loss of 0.0063,
suggesting slightly better performance. On the other hand, Fog Device 4 displays significant
variance in average loss among its edge devices, with Edge Device 2 recording the highest
average loss of 0.0118, possibly indicating specific learning challenges or data processing
issues, while Edge Device 3 demonstrates a notably lower average loss of 0.0066, implying
more effective learning. Lastly, Fog Device 5 and Fog Device 3 demonstrate consistent
performance with low average losses across edge devices, with Edge Device 4 leading with
the lowest average loss of 0.0061, indicating superior learning efficiency.

Appl. Sci. 2024, 14, 4109 16 of 35

This analysis indicates that while most edge devices perform consistently with low
average losses, certain devices (e.g., Edge Device 4 from Fog Device 1 and Edge Device 2
from Fog Device 4) exhibit higher losses, which may highlight areas for potential improve-
ment or investigation into the training data or model parameters. Overall, the FL system
appears to perform well, with most devices demonstrating efficient learning capabilities.

The subsequent analysis focuses on the accuracy of the proposed system. The per-
formance outcomes concerning the accuracy parameter at the edge layer are depicted
in Figure 5.

Figure 5. The accuracy value trend across the edge layer. Figures (a–e) present the trend of accuracy
values in edge devices grouped by fog devices.

Among the edge devices under each fog device, variations in average accuracy are
observed. In Fog Device 1, the edge devices display closely grouped average accuracy
values, with Edge Device 1 achieving the highest average accuracy of 99.07%, while
Edge Device 4 exhibits the lowest at 98.76%, indicating marginal performance differences.
Similarly, Fog Device 2 demonstrates closely aligned performance across its edge devices,
with Edge Device 1 leading slightly with an average accuracy of 99.09%, and Edge Device 4
recording the lowest at 98.88%. Notably, Fog Device 3 stands out for its exceptional and
consistent performance across edge devices, with Edge Device 4 attaining the highest
average accuracy of 99.12%, showcasing effective coordination. Conversely, Fog Device 4
presents a broader range of average accuracies among its edge devices, with Edge Device 3
performing well at 99.06%, while Edge Device 2 lags behind at 98.60%, indicating significant

Appl. Sci. 2024, 14, 4109 17 of 35

performance variance. Lastly, Fog Device 5 demonstrates robust and consistent accuracy
across its edge devices, with Edge Device 4 leading with an average accuracy of 99.12%,
reflecting effective learning and model optimization strategies. These insights suggest that
while most edge devices across the fog devices perform consistently well, there are notable
exceptions (e.g., Edge Device 4 from Fog Device 1 and Edge Device 2 from Fog Device 4)
that highlight areas for potential improvement. Overall, the FL system shows a promising
capacity for maintaining high accuracy levels across a diverse set of edge devices.

The subsequent analysis pertains to the precision of the proposed system. The per-
formance outcomes related to the precision parameter at the edge layer are illustrated
in Figure 6.

Figure 6. The precision value trend across the edge layer. Figures (a–e) present the trend of precision
values in edge devices grouped by fog devices.

Precision levels across edge devices under each fog device vary in their predictive
accuracy. In Fog Device 1, the edge devices demonstrate high precision, with Edge Device 1
leading with an average precision of 99.68%, while Edge Device 4 exhibits the lowest
average precision at 99.29%, still indicating a high level of predictive accuracy. Fog Device 2
maintains consistent high precision across its edge devices, with Edge Device 5 standing
out with the highest average precision of 99.73%, showcasing exceptional performance in
predicting positive classes. Similarly, Fog Device 3 also exhibits high precision across all
edge devices, with Edge Device 5 slightly leading with an average precision of 99.72%,
indicating very accurate model predictions. In contrast, Fog Device 4 shows more variance

Appl. Sci. 2024, 14, 4109 18 of 35

in precision among its edge devices, with Edge Device 2 having the lowest average precision
of 98.98%, suggesting room for improvement, while Edge Device 3 displays a strong average
precision of 99.67%. Fog Device 5, like the other fog devices, demonstrates high precision
across its edge devices, with Edge Device 4 achieving the highest average precision of
99.68%, indicating very accurate identification of positive cases.

Overall, the FL system under study showcases impressive precision across most edge
devices and fog devices, indicating a strong ability to accurately predict positive outcomes.
The slight variances observed suggest targeted opportunities for model optimization,
especially for the devices with relatively lower precision scores. This analysis underscores
the system’s effectiveness in precision-oriented tasks, with specific areas identified for
further enhancement.

The subsequent analysis pertains to the recall of the proposed system. The performance
outcomes related to the recall parameter at the edge layer are depicted in Figure 7.

Figure 7. The recall value trend across the edge layer. Figures (a–e) present the trend of recall values
in edge devices grouped by fog devices.

The performance of edge devices under each fog device in terms of recall varies in their
ability to identify true positives accurately. Fog Device 1 showcases high recall rates, with
Edge Device 4 leading with the highest average recall of 99.45%. The differences among
the devices are minimal, indicating consistent performance in detecting true positives.
Fog Device 2 follows a similar trend with high recall rates across its edge devices. Edge
Device 3 exhibits a slightly higher average recall of 99.43%, while Edge Device 5 shows the

Appl. Sci. 2024, 14, 4109 19 of 35

lowest at 99.24%, suggesting a small variance in minimizing false negatives. Fog Device 3
demonstrates a uniform performance in recall across its edge devices, with Edge Device 4
leading with an average recall of 99.39%, indicating a balanced detection rate of positive
instances. Fog Device 4 presents a notable trend, with Edge Device 2 achieving the highest
average recall of 99.60% and Edge Device 3 slightly lower at 99.36%, highlighting a robust
ability to capture true positives, especially in Edge Device 2. Fog Device 5 maintains
strong recall rates, with Edge Device 1 displaying the highest average recall of 99.50%. The
performance across edge devices is closely matched, reflecting the effective identification
of positive instances.

These insights suggest that the FL system, across most edge devices and fog devices,
achieves a commendable level of recall, efficiently identifying true positives. The minor
variances observed among some devices provide focal points for further optimization to
enhance the system’s overall sensitivity. This analysis confirms the system’s effectiveness
in scenarios where missing a positive detection is critical.

The next analysis regards the F1-score of the proposed system. The performance
results of the F1-score parameter in the edge layer can be seen in Figure 8.

Figure 8. The F1-score value trend across the edge layer. Figures (a–e) present the trend of F1-score
values in edge devices grouped by fog devices.

The F1-scores of the edge devices under each fog device reflect their ability to strike a
balance between precision and recall in model performance. Fog Device 1 demonstrates
high and consistent F1-scores across its edge devices, with Edge Device 1 leading slightly

Appl. Sci. 2024, 14, 4109 20 of 35

with an average F1-score of 99.52%. The variance among the devices is minimal, indicating a
stable performance in achieving the desired balance. Similarly, Fog Device 2 exhibits strong
and consistent F1-scores, with Edge Device 1 having the highest average F1-score of 99.53%
and Edge Device 4 showing the lowest at 99.43%, suggesting slight differences in model
optimization. Fog Device 3 showcases exceptional balance, with Edge Device 4 achieving
the highest average F1-score of 99.55% and all edge devices performing consistently well.
In contrast, Fog Device 4 displays a wider range of average F1-scores, with Edge Device 3
scoring high at 99.52% and Edge Device 2 the lowest at 99.29%, indicating variability in
balancing precision and recall effectively. Fog Device 5 maintains strong performance
across its edge devices, with Edge Device 4 leading with the highest average F1-score of
99.55%. The performance consistency among the devices suggests a uniformly effective
approach to minimizing both false positives and false negatives.

These findings suggest that the FL system, on average, achieves a commendable
balance between precision and recall across most edge devices and fog devices. The slight
variances observed among some devices provide opportunities for targeted improvements
to further enhance the models’ effectiveness. Overall, the system demonstrates a strong
capability in achieving high F1-scores, which is indicative of well-balanced and effective
model performance.

4.2.3. FL on Fog Layer Performance

After analyzing the detection performance at the edge layer, we proceed to examine
the detection performance at the fog layer. The results of the detection performance at the
fog layer are illustrated in Figure 9.

Figure 9. Loss, accuracy, precision, recall, and F1-score across fog layer; Figure (a) represents the trend
of loss value in Fog Devices 1–5; Figure (b) represents the trend of accuracy value in Fog Devices 1–5;
Figure (c) represents the trend of precision value in Fog Devices 1–5; Figure (d) represents the trend of
recall value in Fog Devices 1–5; Figure (e) represents the trend of F1-score value in Fog Devices 1–5.

Appl. Sci. 2024, 14, 4109 21 of 35

We begin by observing the loss values in the fog layers, which exhibit significant varia-
tions across fog devices, indicating a heterogeneous performance landscape. Subsequently,
we delve into the analysis of accuracy performance in the proposed system. The analysis
of fog devices’ performance across rounds unveils intriguing trends regarding accuracy.
Initially, in the first round, each device demonstrates stable starting accuracies exceeding
90%. Fog Device 2 displays a unique pattern, commencing and concluding with high
accuracy but encountering a notable drop to nearly 0% accuracy in round 4. This sharp
decline suggests a potential failure or misconfiguration that was subsequently rectified,
leading to a swift recovery in accuracy. The rapid rebound of Device 2 hints at a robust
error correction or recalibration process employed to efficiently restore its performance
levels. Similar patterns are observed in precision, recall, and F1-score metrics. Notably,
there is a slight deviation in the precision pattern when Fog Device 3 achieves a recall value
of 1.0 in round 4.

4.2.4. FL on Cloud Layer Performance

After analyzing the detection performance in the fog layer, we proceed to examine
the detection performance in the cloud layer or global model. The results of the detection
performance in the cloud layer or global model are illustrated in Figure 10. The aggregation
of the model in the cloud is also influenced by conditions in the fog layer. Notably, the
accuracy of the global model drops to near 0% in round 4, while the other parameters
remain relatively stable at over 90% in each round. After five rounds of training, the final
results for accuracy, precision, recall, and F1-score consistently stand at 97.65%, 97.65%,
100%, and 98.81%, respectively.

Figure 10. Loss, accuracy, precision, recall, and F1-score across cloud layer or global model.

4.2.5. FL Based on Edge–Fog–Cloud Architecture (Training Time)

This next analysis focuses on the length of training times across the FL system, as
depicted in Figure 11. Upon examining the training times across the fog and edge devices,
notable variations and patterns emerge. Fog Device 1 exhibits a range in training times, with
Edge Device 4 recording the highest average training time (159.00 s) and Edge Device 1
the lowest (150.22 s), suggesting efficiency discrepancies in the learning process. Fog
Device 2, conversely, demonstrates relatively consistent training times, with Edge Device 5
exhibiting slightly lower averages (151.67 s), indicating a well-distributed computational
load. Fog Device 3 showcases consistent training times among its devices, with Edge
Device 4 having a marginally higher average (155.84 s), suggesting minor variations in
processing efficiency. In contrast, Fog Device 4 highlights Edge Device 1 as having the
highest average training time (158.64 s), potentially indicating more intricate computations
or data processing requirements. Fog Device 5 illustrates closely aligned training times,

Appl. Sci. 2024, 14, 4109 22 of 35

with Edge Device 5 recording the highest average (157.03 s), reflecting a balanced workload
distribution among the devices.

Figure 11. The training time result across the edge layer. Figures (a–e) present the trend of training
time results in edge devices grouped by fog devices.

The analysis of training times across the fog and edge devices reveals intriguing in-
sights into the efficiency and workload distribution within the system. While Fog Device 1
shows variability in training times, suggesting differing efficiencies in the learning process
among its edge devices, Fog Device 2 demonstrates a more uniform distribution of compu-
tational load. Fog Device 3 maintains consistency in training times with minor variations,
indicating stable processing efficiency. In contrast, Fog Device 4 exhibits disparities, with
Edge Device 1 requiring more time, potentially due to complex computations. Fog Device 5
showcases balanced training times, implying an even workload distribution. These findings
underscore the importance of optimizing computational resources and workload allocation
to enhance overall system performance and efficiency.

4.2.6. FL Based on Edge–Fog–Cloud Architecture (Resource Consumption)

The next analysis is on CPU and memory consumption. Each fog devices coordinate
five edge devices to undertake the learning process. The learning process is undertaken in
five rounds in each edge device. The analysis explains the result by averaging CPU and
memory consumption values in five rounds of the learning process from each edge device.

Appl. Sci. 2024, 14, 4109 23 of 35

The CPU usage of the learning process in the FL process can be seen in Figure 12.
Examining the CPU usage of the learning process in edge devices provides valuable insights
into the computational demands and workload distribution within the system. Fog Device 1
demonstrates relatively consistent CPU usage levels, with Edge Device 1 exhibiting slightly
higher usage (4.87%). In contrast, Fog Device 2 presents a uniform CPU usage profile, with
Edge Device 3 recording the highest average (4.88%). Fog Device 3 shows minimal variance
in CPU usage. On the other hand, Fog Device 4 displays a range in CPU usage, with Edge
Device 1 having the lowest usage (4.68%). Lastly, Fog Device 5 maintains relatively uniform
CPU usage, with minor fluctuations implying a balanced utilization of computational
resources across the devices. These observations emphasize the importance of optimizing
CPU usage and workload distribution to enhance system performance and efficiency.

Figure 12. The CPU usage from the training process across the edge layer. Figures (a–e) present the
trend of CPU usage from the training process in edge devices grouped by fog devices.

The analysis of CPU usage across fog and edge devices unveils crucial patterns re-
garding computational demands and workload distribution within the system. While Fog
Device 1 and Fog Device 2 show consistent and uniform CPU usage profiles, respectively,
indicating potential correlations with training efficiency and balanced computational de-
mands, Fog Device 3 demonstrates an even distribution of computational workload. In
contrast, the varying CPU usage in Fog Device 4 and the balanced usage in Fog Device 5
reflect potential implications on training times and resource utilization. These findings
underscore the significance of optimizing CPU usage and workload allocation to maximize

Appl. Sci. 2024, 14, 4109 24 of 35

system performance and efficiency while ensuring a balanced distribution of computational
resources across devices.

The next analysis highlights the memory usage across the FL system, as illustrated
in Figure 13. The examination of the memory usage of the FL process in each edge device
reveals intriguing insights into memory utilization and workload distribution within the
system. Across the edge devices coordinated by Fog Device 1, memory usage ranges from
29.706 GB (Edge Device 2) to 30.692 GB (Edge Device 1). For Fog Device 2, memory usage
shows a broader range, from 31.668 GB (Edge Device 1) to 33.584 GB (Edge Device 4).
Similarly, for Fog Device 3, memory usage is varied, with 30.878 GB (Edge Device 4) being
the lowest and 32.708 GB (Edge Device 2) being the highest. Moving to Fog Device 4,
memory usage increases progressively from 31.112 GB (Edge Device 1) to 33.600 GB (Edge
Device 5). Lastly, Fog Device 5 exhibits the highest memory usage, with Edge Device 2
reaching up to 35.254 GB, indicating a significant memory load. The analysis of memory
usage across the edge devices coordinated by different fog devices offers valuable insights
into memory utilization patterns and workload distribution within the system. Interestingly,
the examination reveals varying degrees of memory usage among the edge devices, with
each fog device overseeing a distinct range of memory consumption. The variation in
memory usage across fog devices shows the importance of efficient workload distribution
and resource allocation strategies to optimize system performance and ensure balanced
resource utilization. Additionally, the observed variations in memory usage highlight the
complexity of managing resources in distributed computing environments and emphasize
the need for tailored optimization techniques to enhance system scalability and efficiency.

Figure 13. The memory usage from the training process across the edge layer. Figures (a–e) present
the trend of memory usage from the training process in edge devices grouped by fog devices.

Appl. Sci. 2024, 14, 4109 25 of 35

Overall, while most fog devices demonstrate a balanced approach to memory utiliza-
tion, certain edge devices exhibit higher average memory usage, indicating potential areas
for optimization. Ensuring that memory usage is managed efficiently across all devices
is crucial for maintaining the performance and scalability of the FL system, especially in
resource-constrained environments. These findings may guide targeted improvements to
memory management practices within the system.

4.2.7. Latency Performance

The next analysis compares network latency between edge–fog–cloud architecture
and cloud-centric architecture. This comparison helps assess the performance of FL in both
architectures. The data size of the training model in FL matches that of centralized learning,
at 46 Kb, due to identical DNN architecture. However, the data size variable is not enough
to estimate latency; we need to make some assumptions about the network’s transmission
speed. Therefore, once the model data size is determined, simulating network transmission
speed becomes necessary.

In networking, transmission speed refers to the rate at which data are transferred
from one location to another. Transmission speed helps in understanding the consistency
and stability of the network’s performance by indicating how long the network sustains
a certain level of the actual rate at which data are being transmitted. Transmission speed
is a metric used in networking to describe the duration for which a certain amount of the
data transmission rate is available or utilized within a given time frame. It measures how
long a particular data transmission rate level is sustained or maintained over a period
of time. Understanding transmission speed is important for network administrators and
engineers to ensure that network performance meets the requirements of applications and
users. Transmission speed is also important to identify any issues or bottlenecks that may
affect network performance over time [36,37]. This research used Formula (13) to calculate
transmission speed.

Transmission Speed =
Total size

Flow duration
(13)

where Total size is the total size of packets in the flow and Flow duration is the duration of
the flow of packets. This formula calculates the transmission speed using the flow duration
as the time frame over which the total size of packets is transmitted. This equation gives
the result of the average transmission speed for each flow [38,39].

In this study, the training model was executed over five rounds of training, providing
a preliminary insight into FL dynamics. However, in practical scenarios, FL operates in
a continuous fashion as edge devices, such as smartphones and IoT devices, perpetually
generate new data. This continuous training process aligns with the dynamic nature of data
production at the edge. To capture the realism of this ongoing learning paradigm, this study
utilized transmission speed data derived from actual network traffic to simulate latency. By
integrating traffic data from a comprehensive dataset comprising 140 million samples, this
research aimed to extend the analysis beyond the initial five training rounds. The endeavor
sought to meticulously model the training model data latency within the edge–fog–cloud
architecture across the extensive dataset, ensuring a comprehensive exploration of FL
dynamics under realistic conditions.

In this study, transmission speed measurement is conducted using data from the
CICIoT2023 dataset. The dataset includes features such as ‘flow_duration’, which represents
the duration of the packet’s flow, and ‘Tot size’, which represents the packet’s length. By
utilizing these two features, this research calculates the transmission speed simulation
using Formula (13) for each traffic scenario. The simulation results of the transmission
speed measurement using the CICIoT2023 dataset are illustrated in Figure 14. The scenario
compares communication latency among edge, fog, and cloud architectures with cloud-
centric architectures, starting by taking the data from Figure 14 and processing them in the
simulation. This research sets the data size of the model at 46 kilobytes, likely representing

Appl. Sci. 2024, 14, 4109 26 of 35

the data size of the model to be transmitted. The simulation uses Formula (10) to simulate
latency for each instance of traffic in the CICIoT2023 dataset. The latency simulation
scenario in this research can be seen in Algorithm 3.

Figure 14. Transmission speed in the CICIoT2023 dataset.

Algorithm 3: Latency Simulation
Data: CSV CICIoT2023 dataset
Result: latency_edge_to_fog, latency_fog_to_cloud, and latency_edge_to_cloud

Load the CSV dataset;

Calculate the average speed of data transfer for each task;
BFD← df[’Tot size’] / df[’flow_duration’];

Determine the size of a model;
model_size← 46 KB;

Divide the devices into different groups;
num_edge_devices← 5;
num_fog_devices← 5;
num_total_edge_devices_cloud_centric← 25;

Assign data transfer speed to each group;
trnsSPD_edge_to_fog← BFD / num_edge_devices;
trnsSPD_fog_to_cloud← BFD / num_fog_devices;
trnsSPD_edge_to_cloud← BFD / num_total_edge_devices_cloud_centric;

Calculate the time taken for data transfer between different groups;
latency_edge_to_fog←model_size / trnsSPD_edge_to_fog;
latency_fog_to_cloud←model_size / trnsSPD_fog_to_cloud;
latency_edge_to_cloud←model_size / trnsSPD_edge_to_cloud;

The algorithm is designed to model the latency, or delay, involved in communication
within an IoT system. It starts by ingesting a dataset named CSV CICIoT2023, likely
containing information about IoT devices and their communication patterns. The goal of
the algorithm is to calculate and provide three types of latencies: latency from edge to fog,
latency from fog to cloud, and latency from edge to cloud (cloud-centric). To begin the
process, the algorithm loads the dataset from the CSV file. It then calculates the average

Appl. Sci. 2024, 14, 4109 27 of 35

data transfer speed for each task, a crucial metric for understanding the speed at which
data move between devices. This is achieved by dividing the total size of data transferred
by the duration of the flow.

Next, the algorithm determines the size of a model, set at 46 Kb. This model size likely
represents the amount of data processed or transferred by the IoT devices. The devices
are categorized into different groups based on their roles or locations, with parameters
indicating the number of edge devices, fog devices, and total edge devices in a cloud-centric
architecture. Once the groups are established, the algorithm assigns data transfer speeds
to each group. It computes the transmission speed for data transfer from edge devices to
fog devices, from fog devices to the cloud, and from edge devices directly to the cloud,
using previously calculated values and the number of devices in each group. Finally, the
algorithm calculates the latency for data transfer between these groups. It determines the
time taken for data transfer from edge devices to fog devices, from fog devices to the cloud,
and from edge devices directly to the cloud using the model size and the transmission
speed values for each group.

With the available transmission speed, the simulation proceeds to distribute it among
the devices in the architecture. It calculates the transmission speed allocated for com-
munication links from edge to fog, fog to cloud, and edge to cloud. Subsequently, the
simulation computes the time taken for communication between different layers of the
architecture. These calculations are based on the model size and the allocated transmission
speed for each communication link. The plots visualize the communication latency for
communication from edge to fog, fog to cloud, and edge to cloud, as seen in Figure 15,
Figure 16, and Figure 17, respectively.

The result from the cloud-centric architecture in Figure 17 has bigger latency than
edge to fog in Figure 15 and fog to cloud in Figure 16. The latency can be reduced by more
than 50% when the fog–edge–cloud architecture is employed in the CIDS architecture. In
edge–fog–cloud architecture, model updates are processed and aggregated locally at fog
devices before being sent to the cloud server. Latency reduction is achieved by minimizing
the distance data need to travel for processing and aggregation. Local aggregation at fog
devices can reduce the latency associated with transmitting data to a centralized cloud
server. In cloud-centric architecture, all model updates are sent directly to the centralized
cloud server for aggregation. Latency is determined by the network speed between edge
devices and the cloud server, as well as the processing time for model aggregation at the
cloud server. Latency can be higher in cloud-centric architecture compared to edge–fog–
cloud architecture due to the longer distance data need to travel to reach the cloud server
and the potential network congestion.

Figure 15. Latency in edge–fog architecture.

Appl. Sci. 2024, 14, 4109 28 of 35

Figure 16. Latency in fog–cloud architecture.

Figure 17. Latency in cloud-centric architecture.

In FL, a process utilized in distributed machine learning systems, we implement an
averaging training model approach. This method is particularly relevant in the context
of the edge–fog–cloud architecture, where computational resources are distributed across
various tiers. Specifically, within this architecture, there exist 5 edge devices linked to each
fog device, while 5 fog devices are connected to the cloud server, amounting to a total
of 5 fog devices and 25 edge devices. Upon completion of the training process on each
edge device, a training model with a data size of 46 Kb is generated. Subsequently, these
trained models are transmitted to the fog devices. Here, an averaging process takes place,
wherein the training models received from the edge devices are combined to produce a
unified training model, still maintaining a data size of 46 Kb. This averaging mechanism
significantly reduces the amount of data that needs to be transmitted to the cloud. With
the presence of fog devices, only 46 Kb of data needs to be sent to the cloud from five fog
devices. However, in the absence of fog devices, all 25 edge devices would have to directly
transmit their training models to the cloud server. This illustrates the efficiency gained
by utilizing fog devices as intermediate computational processors in the edge–fog–cloud
architecture, as it minimizes the burden on the cloud server by reducing the amount of
data transmission required directly to it.

Appl. Sci. 2024, 14, 4109 29 of 35

4.2.8. Performance Comparison

Based on the analysis conducted for FL and centralized learning, a comparative
examination provides valuable insights across various parameters. Regarding loss, the
FL approach displays fluctuations in loss values across rounds and devices, indicating an
iterative process toward enhancing model performance. In contrast, the centralized learning
model consistently maintains low loss values, suggesting robust predictive capabilities.
Across fog devices and their respective edge devices, accuracy, precision, recall, and
F1-score metrics demonstrate consistent and efficient learning, albeit with slight variations
among devices. Meanwhile, in centralized learning, these metrics notably remain high,
all surpassing 99%, indicating a strong and uniform detection performance across the
entire dataset.

The accuracy, precision, recall, and F1-score parameters measured in percentages
reflect high-performance levels in centralized learning. Specifically, accuracy, precision,
recall, and F1-score values reach 99.36%, 99.55%, 99.79%, and 99.67%, respectively. In
contrast, the parameters obtained from FL, utilizing an edge–fog–cloud architecture after
five rounds of training, exhibit slightly lower performance levels compared to centralized
learning. These include accuracy, precision, recall, and F1-score values at 97.65%, 97.65%,
100%, and 98.81%, respectively.

In centralized learning, training time tends to be higher, averaging 4041.07 s, as data
processing occurs sequentially on a single server. This sequential processing may result
in longer training times, especially with large datasets. However, in FL, the average
training time across edge devices is significantly lower at 155 s. This reduction is attributed
to distributed learning across edge devices, allowing for parallel processing capabilities.
Simultaneous model training on multiple devices leads to faster convergence and ultimately
reduces the overall training time.

The average CPU usage across edge devices in both FL and centralized learning re-
mains consistent, with an average value of 4.7%. However, a notable difference emerges
in memory consumption between the two approaches. In centralized learning, the aver-
age memory usage is notably higher, at 40.78 GB, compared to the FL scenario, where
the average memory usage across edge devices is 32.15 GB. FL demonstrates efficient
CPU usage, distributing computational demands across edge devices, thereby optimizing
CPU resources and enhancing system performance. Conversely, centralized learning may
experience CPU spikes due to the sequential processing of data on a single server, poten-
tially leading to performance bottlenecks. Additionally, FL typically incurs lower memory
consumption compared to centralized learning. The distributed data storage across edge
devices ensures efficient memory utilization, with each device only requiring resources
for processing its local data portion. In contrast, centralized learning’s centralized data
storage necessitates larger memory capacity on the server, resulting in higher memory
consumption compared to FL.

The edge–fog–cloud architecture proved to reduce latency compared to cloud-centric
architecture by performing local aggregation at fog devices. High volumes of data being
transmitted to and from the cloud server can lead to network bottlenecks in cloud-centric
architecture, increasing latency and potentially affecting the overall training process. There-
fore, this research proposed model aggregation performed at the fog nodes to reduce the
need to send data to a centralized cloud server. By aggregating models in the fog layer,
latency is further reduced compared to cloud-centric architectures. The proximity of edge
and fog nodes to the devices minimizes the distance data need to travel, resulting in lower
latency for model aggregation and updating.

4.3. DLT Performance

This section analyzes the transaction time process in the DLT system. The first analysis
is related to the DLT transaction process, which can be seen in Table 6. The transaction
performance from Table 6 demonstrates that the system consistently maintains a TPS of
approximately 166.67 except when processing 4000 transactions, where the TPS slightly

Appl. Sci. 2024, 14, 4109 30 of 35

drops to 160. Despite variations in transaction volume, the TPS remains relatively stable.
In contrast, the latency exhibits a gradual increase as the number of transactions grows,
going from 6 milliseconds for 1000 transactions to 62 milliseconds for 10,000 transactions.
This implies that as the system handles more transactions, it experiences a modest increase
in latency.

Table 6. Latency and TPS from DLT.

Number of Transactions Latency (s) Transactions per Second

1000 6 166.67
2000 12 166.67
3000 18 166.67
4000 25 160
5000 30 166.67
6000 36 166.67
7000 42 166.67
8000 49 163.26
9000 56 160.71

10,000 62 161.29

Average 33.6 164.52

The average TPS of 164.53 suggests that the system exhibits consistent performance in
terms of transaction processing speed. Additionally, the system effectively manages CPU
and memory resources. An interesting finding is the stability of the TPS, indicating that
the system can handle transaction volumes ranging from 1000 to 10,000 with relatively
little impact on TPS. However, the gradual increase in latency with a higher number of
transactions is noteworthy and should be considered when optimizing the system for lower
latency requirements. Overall, the system demonstrates robust and efficient performance,
which is crucial for applications requiring predictable and stable TPS.

The next analysis measures the resource cost of the DLT system and the training
process in the proposed system. The first analysis is related to resource costs from the DLT
system. The results in Tables 7 and 8 show CPU and memory consumption from Truffle
and IPFS.

Table 7. CPU and memory from Truffle.

Number of Transactions CPU (%) RAM (Mb)

1000 3.26 217.39
2000 3.42 217.42
3000 2.98 217.39
4000 2.84 217.37
5000 2.82 217.36
6000 3.75 217.71
7000 2.9 217.38
8000 2.85 217.4
9000 3.43 217.57

10,000 2.85 217.18

Average 3.11 217.41

The result reveals that both Truffle and IPFS consume CPU resources efficiently. CPU
utilization for Truffle remains below 4% throughout the experiments, suggesting that the
system efficiently handles transaction processing without significant strain on the CPU. The
memory consumption for Truffle remains consistently around 217 MB, indicating stable
memory usage. In the case of IPFS, the CPU consumption is higher, reaching approximately
19% when processing 10,000 transactions. This could be attributed to the resource-intensive

Appl. Sci. 2024, 14, 4109 31 of 35

nature of IPFS. Memory consumption for IPFS hovers around 145 MB, showcasing relatively
stable memory usage throughout the experiments.

Table 8. CPU and memory from IPFS.

Number of Transactions CPU (%) RAM (Mb)

1000 15.42 138.17
2000 17.55 140.27
3000 15.13 144.24
4000 15.34 144.52
5000 15.48 144.62
6000 15.64 144.09
7000 17.36 144.39
8000 17.1 144.66
9000 17.86 145.11

10,000 19.223 147.43

Average 16.61 143.75

4.4. CIDS Trust and Privacy-Preserving Analysis

In the CIDS, implemented within an edge–fog–cloud architecture and utilizing blockchain
with a proof-of-work (PoW) consensus mechanism, preventing Sybil attacks is crucial for
maintaining network integrity and trustworthiness. Each participating edge device and fog
node maintains a copy of the blockchain ledger, serving as a decentralized and immutable
record of all transactions, including model updates and node interactions. The PoW consensus
mechanism ensures that transactions are validated and added to the blockchain through
computationally intensive mining processes, making it challenging for malicious entities to
tamper with the ledger.

To model the prevention of Sybil attacks mathematically, we denote variables such as the
total number of nodes (N), total number of miners (M), total computational power of miners
(P), target difficulty for PoW mining (T), current blockchain height (H), block reward (B), and
cost of performing a Sybil attack (C). The probability of a Sybil attack succeeding (PSybil) can
be represented as C

P . To prevent Sybil attacks, the computational power of legitimate nodes
participating in PoW mining (Plegitimate) must exceed the computational power of potential
attackers (C). Thus, by ensuring that P exceeds C, the CIDS network mitigates the risk of Sybil
attacks, safeguarding its trust and privacy-preserving capabilities.

By integrating blockchain with a PoW consensus mechanism into the CIDS network,
the system ensures that Sybil attacks are economically infeasible for potential attackers. The
computational resources required to perform a successful Sybil attack would surpass the
computational power of honest nodes participating in PoW mining, thereby safeguarding
the integrity and trustworthiness of the CIDS network.

In the CIDS, FL plays a pivotal role in preserving privacy by ensuring decentralized
storage of sensitive data, while blockchain technology is utilized to uphold trust and
transparency within the system. This combination of mechanisms is well suited to prevent
data breaches and uphold privacy standards. In the CIDS ecosystem, each edge device
trains its local intrusion detection model using locally collected sensitive network traffic
data. These data remain decentralized and are never shared with other devices or the
central server. Let N represent the total number of participating edge devices in FL, M
denote the total number of fog nodes, and T represent the total number of transactions
recorded on the blockchain. Furthermore, Datai signifies the sensitive data stored on edge
device i, Modeli denotes the local model trained on edge device i, and Updateij represents
the model update transmitted from edge device i to fog node j.

After local training, edge devices transmit only model updates (not raw data) to
the fog nodes for aggregation. This transmission process employs privacy-preserving
techniques such as secure aggregation or differential privacy to maintain the confidentiality

Appl. Sci. 2024, 14, 4109 32 of 35

of individual contributions. These methods ensure that the aggregated model update Aggj
does not divulge any sensitive information regarding the individual data of edge devices.

After the model updates are aggregated at the fog nodes, denoted as Transactiont =
{Aggj}M

j=1, they are bundled into a transaction and subsequently recorded on the blockchain.
Acting as a decentralized ledger, the blockchain meticulously records all transactions per-
taining to model updates and interactions between edge devices and fog nodes. This
blockchain-based architecture ensures transparency and immutability, empowering all
participants to verify the integrity of the recorded transactions. Through the fusion of FL
for privacy-preserving model training and blockchain for transparent transaction recording,
the CIDS adeptly averts data breaches and upholds trust within the system.

The CIDS leverages a sophisticated blend of FL and blockchain technology within
an edge–fog–cloud architecture to fortify its trustworthiness and preserve user privacy.
FL ensures that sensitive data remain decentralized, as each edge device trains its local
intrusion detection model without sharing raw data. Model updates are aggregated at
fog nodes using privacy-preserving techniques such as secure aggregation or differential
privacy, safeguarding individual contributions. These aggregated updates are then recorded
on the blockchain, serving as a transparent and immutable ledger that meticulously records
all interactions and transactions within the system. This innovative fusion of FL and
blockchain technology not only prevents data breaches but also instills confidence in the
integrity and transparency of the CIDS ecosystem, fostering trust among its participants.

5. Discussion and Future Works

In the context of our study, FL with an edge–fog–cloud architecture emerges as a more
lightweight alternative compared to centralized learning. This conclusion is drawn from
several key observations across various parameters. Firstly, while both approaches demon-
strate high performance levels, centralized learning consistently yields superior accuracy,
precision, recall, and F1-score values, with percentages reaching 99.36%, 99.55%, 99.79%,
and 99.67%, respectively. However, FL operating within an edge–fog–cloud framework
exhibits slightly lower performance levels after five rounds of training, with accuracy, preci-
sion, recall, and F1-score values recorded at 97.65%, 97.65%, 100%, and 98.81%, respectively.

Moreover, in terms of training time, FL showcases a significant advantage over centralized
learning. Centralized learning often entails longer training times, averaging 4041.07 s, attributable
to the sequential processing of data on a single server. Conversely, FL achieves a notably lower
average training time of 155 s across edge devices, owing to the distributed learning paradigm
that enables parallel processing capabilities. This parallelization of model training on multiple
devices results in faster convergence and reduces the overall training time significantly.

Furthermore, an analysis of CPU usage reveals consistent average values across edge
devices in both federated and centralized learning, with an average of 4.7%. However, a
stark contrast emerges in memory consumption between the two approaches. Centralized
learning exhibits notably higher average memory usage, reaching 40.78 GB, compared to FL,
where the average memory usage across edge devices is substantially lower at 32.15 GB. FL
optimizes CPU resources by distributing computational demands across edge devices, en-
hancing system performance. In contrast, centralized learning may experience CPU spikes
due to sequential data processing, potentially leading to performance bottlenecks. Addi-
tionally, FL typically incurs lower memory consumption due to the distributed data storage
across edge devices, which efficiently utilizes memory resources compared to centralized
learning’s centralized data storage, necessitating larger memory capacity on the server.
Thus, the FL approach with an edge–fog–cloud architecture emerges as a more lightweight
solution, offering efficient utilization of resources and enhanced system scalability.

The implementation of FL in edge–fog–cloud brings opportunities in terms of la-
tency compared to implementation in cloud-centric architectures; while cloud-centric
architectures offer scalability and flexibility, they may suffer from higher latency due to
the centralized nature of processing and storage. Edge–fog–cloud architecture addresses

Appl. Sci. 2024, 14, 4109 33 of 35

latency concerns by distributing resources closer to the data source or end-users, thereby
reducing the round-trip time for data and improving the responsiveness of applications.

The CIDS trust and privacy-preserving analysis underscores the robustness and relia-
bility of our proposed CIDS in maintaining trust and preserving user privacy. Through the
integration of FL and blockchain technology within an edge–fog–cloud architecture, our
system ensures that sensitive data remain decentralized and secure. FL enables model train-
ing on local datasets without the need for centralized data aggregation, thus minimizing
the risk of data breaches and ensuring user privacy. Moreover, the utilization of blockchain
technology with a PoW consensus mechanism further enhances trust by establishing a
transparent and immutable ledger for recording all transactions and interactions within the
system. This combination of FL and blockchain not only fortifies the integrity of the CIDS
but also instills confidence in its ability to uphold user privacy.

By employing FL, our system adopts a privacy-preserving approach to model training,
ensuring that sensitive data remain confidential and decentralized. Model updates are
aggregated at fog nodes using secure techniques such as secure aggregation or differential
privacy, guaranteeing the confidentiality of individual contributions. Subsequently, these
aggregated updates are recorded on the blockchain, providing a transparent and tamper-
proof record of all transactions and interactions within the network. This innovative
integration of FL and blockchain technology not only mitigates the risk of data breaches
but also reinforces the trustworthiness of the CIDS ecosystem. Through its commitment to
privacy-preserving practices and transparent transaction recording, our proposed system
stands as a testament to its dedication to maintaining trust and safeguarding user privacy
in the realm of intrusion detection.

In future works, our CIDS will continue to evolve to address emerging threats such
as data poisoning, model inversion attacks, and model inversion attacks. To mitigate the
risk of data poisoning, where adversaries inject malicious data into the training process to
compromise model integrity, our system will incorporate advanced anomaly detection tech-
niques and robust data validation mechanisms. Additionally, to counter model inversion
attacks, which exploit vulnerabilities in machine learning models to infer sensitive data
from model outputs, we will implement enhanced privacy-preserving techniques such as
secure enclaves and differential privacy to protect against information leakage.

Moreover, to innovate new consensus mechanisms that enhance the existing PoW
algorithm, our future research will explore novel approaches such as proof of stake (PoS)
or proof of authority (PoA) to improve scalability, energy efficiency, and overall system
security. These enhanced consensus mechanisms will not only bolster the resilience of
our system against adversarial attacks but also optimize resource utilization and facilitate
seamless network operation. Through these future works, our CIDS aims to stay at the
forefront of intrusion detection technology, ensuring robust security and privacy protection
in dynamic and evolving threat landscapes.

6. Conclusions

In conclusion, our study demonstrates that FL within an edge–fog–cloud architec-
ture offers a compelling lightweight alternative to centralized learning methodologies.
While centralized learning exhibits superior performance metrics such as accuracy, pre-
cision, recall, and F1-score, with percentages reaching as high as 99.36%, FL within an
edge–fog–cloud framework maintains commendable performance levels, with accuracy,
precision, recall, and F1-score values recorded at 97.65%, 97.65%, 100%, and 98.81%, respec-
tively, after five rounds of training. Furthermore, FL demonstrates a significant advantage
in terms of training time, with an average training time of 155 s across edge devices com-
pared to the much longer average of 4041.07 s for centralized learning. This advantage is
attributed to FL’s distributed learning paradigm, enabling parallel processing capabilities
and faster convergence. Additionally, FL optimizes CPU and memory resources by dis-
tributing computational demands and data storage across edge devices, leading to efficient
resource utilization and enhanced system scalability. Moreover, the implementation of FL

Appl. Sci. 2024, 14, 4109 34 of 35

within an edge–fog–cloud architecture addresses latency concerns by distributing resources
closer to the data source or end-users, thereby reducing round-trip time and improving
application responsiveness. This architecture ensures efficient resource utilization while miti-
gating the risk of data breaches and preserving user privacy through the integration of FL and
blockchain technology. By adopting privacy-preserving techniques such as secure aggregation
and differential privacy, our proposed system upholds the confidentiality and decentraliza-
tion of sensitive data, while the utilization of blockchain technology enhances transparency
and trustworthiness through a tamper-proof record of all transactions and interactions. In
essence, our study showcases the effectiveness of FL within an edge–fog–cloud architecture as
a lightweight, efficient, and trustworthy solution for CIDSs in IoT environments, poised to
make significant contributions to the security and integrity of IoT systems.

Author Contributions: Conceptualization, A.A.W. and G.K.; methodology, A.A.W. and G.K.; software,
A.A.W.; validation, A.A.W., G.K. and P.S.; formal analysis, A.A.W.; investigation, A.A.W.; resources,
A.A.W.; data curation, A.A.W.; writing—original draft preparation, A.A.W.; writing—review and
editing, G.K. and P.S.; visualization, A.A.W.; supervision, G.K.; project administration, A.A.W.;
funding acquisition, G.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This research used a public dataset download from https://www.unb.
ca/cic/datasets/iotdataset-2023.html (accessed on 1 December 2023).

Acknowledgments: The work was supported by the project Minigrants for doctoral students of the
Wroclaw University of Science and Technology.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sarker, I.H.; Khan, A.I.; Abushark, Y.B.; Alsolami, F. Internet of Things (IoT) Security Intelligence: A Comprehensive Overview, Machine

Learning Solutions and Research Directions. Mob. Netw. Appl. 2023, 28, 296–312. [CrossRef]
2. Wardana, A.A.; Kołaczek, G.; Warzyński, A.; Sukarno, P. Ensemble averaging deep neural network for botnet detection in

heterogeneous Internet of Things devices. Sci. Rep. 2024, 14, 3878. [CrossRef]
3. Li, W.; Au, M.H.; Wang, Y. A fog-based collaborative intrusion detection framework for smart grid. Int. J. Netw. Manag. 2021,

31, e2107. [CrossRef]
4. de Souza, C.A.; Westphall, C.B.; Machado, R.B.; Loffi, L.; Westphall, C.M.; Geronimo, G.A. Intrusion detection and prevention in fog based

IoT environments: A systematic literature review. Comput. Netw. 2022, 214, 109154. [CrossRef]
5. Wardana, A.A.; Kołaczek, G.; Sukarno, P. Collaborative Intrusion Detection System for Internet of Things Using Distributed

Ledger Technology: A Survey on Challenges and Opportunities. In Intelligent Information and Database Systems; Springer: Cham,
Switzerland , 2022; pp. 339–350.

6. Awan, K.A.; Din, I.U.; Almogren, A.; Rodrigues, J.J.P.C. AutoTrust: A privacy-enhanced trust-based intrusion detection approach
for internet of smart things. Future Gener. Comput. Syst. 2022, 137, 288–301. [CrossRef]

7. Li, W.; Meng, W.; Kwok, L.F. Surveying Trust-Based Collaborative Intrusion Detection: State-of-the-Art, Challenges and Future
Directions. IEEE Commun. Surv. Tutorials 2022, 24, 280–305. [CrossRef]

8. Alli, A.A.; Alam, M.M. The fog cloud of things: A survey on concepts, architecture, standards, tools, and applications. Internet
Things 2020, 9, 100177. [CrossRef]

9. Gkogkos, G.; Patsonakis, C.; Drosou, A.; Tzovaras, D. A DLT-based framework for secure IoT infrastructure in smart communities.
Technol. Soc. 2023, 74, 102329. [CrossRef]

10. Imteaj, A.; Thakker, U.; Wang, S.; Li, J.; Amini, M.H. A survey on federated learning for resource-constrained IoT devices. IEEE
Internet Things J. 2021, 9, 1–24. [CrossRef]

11. Sarhan, M.; Lo, W.W.; Layeghy, S.; Portmann, M. HBFL: A hierarchical blockchain-based federated learning framework for
collaborative IoT intrusion detection. Comput. Electr. Eng. 2022, 103, 108379. [CrossRef]

12. Ashraf, E.; Areed, N.F.F.; Salem, H.; Abdelhay, E.H.; Farouk, A. FIDChain: Federated Intrusion Detection System for Blockchain-
Enabled IoT Healthcare Applications. Healthcare 2022, 10, 1110. [CrossRef] [PubMed]

13. He, X.; Chen, Q.; Tang, L.; Wang, W.; Liu, T. CGAN-Based Collaborative Intrusion Detection for UAV Networks: A Blockchain-Empowered
Distributed Federated Learning Approach. IEEE Internet Things J. 2023, 10, 120–132. [CrossRef]

https://www.unb.ca/cic/datasets/iotdataset-2023.html
https://www.unb.ca/cic/datasets/iotdataset-2023.html
http://doi.org/10.1007/s11036-022-01937-3
http://dx.doi.org/10.1038/s41598-024-54438-6
http://dx.doi.org/10.1002/nem.2107
http://dx.doi.org/10.1016/j.comnet.2022.109154
http://dx.doi.org/10.1016/j.future.2022.07.026
http://dx.doi.org/10.1109/COMST.2021.3139052
http://dx.doi.org/10.1016/j.iot.2020.100177
http://dx.doi.org/10.1016/j.techsoc.2023.102329
http://dx.doi.org/10.1109/JIOT.2021.3095077
http://dx.doi.org/10.1016/j.compeleceng.2022.108379
http://dx.doi.org/10.3390/healthcare10061110
http://www.ncbi.nlm.nih.gov/pubmed/35742161
http://dx.doi.org/10.1109/JIOT.2022.3200121

Appl. Sci. 2024, 14, 4109 35 of 35

14. Abdel-Basset, M.; Moustafa, N.; Hawash, H.; Razzak, I.; Sallam, K.M.; Elkomy, O.M. Federated Intrusion Detection in Blockchain-Based
Smart Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2022, 23, 2523–2537. [CrossRef]

15. Abdel-Basset, M.; Moustafa, N.; Hawash, H. Privacy-Preserved Cyberattack Detection in Industrial Edge of Things (IEoT): A Blockchain-
Orchestrated Federated Learning Approach. IEEE Trans. Ind. Inform. 2022, 18, 7920–7934. [CrossRef]

16. Neto, E.C.P.; Dadkhah, S.; Ferreira, R.; Zohourian, A.; Lu, R.; Ghorbani, A.A. CICIoT2023: A Real-Time Dataset and Benchmark
for Large-Scale Attacks in IoT Environment. Sensors 2023, 23, 5941. [CrossRef] [PubMed]

17. Le, T.-T.-H.; Wardhani, R.W.; Putranto, D.S.C.; Jo, U.; Kim, H. Toward Enhanced Attack Detection and Explanation in Intrusion Detection
System-Based IoT Environment Data. IEEE Access 2023, 11, 131661–131676. [CrossRef]

18. Zhou, C.V.; Leckie, C.; Karunasekera, S. A survey of coordinated attacks and collaborative intrusion detection. Comput. Secur.
2010, 29, 124–140. [CrossRef]

19. Marchetti, M.; Messori, M.; Colajanni, M. Peer-to-peer architecture for collaborative intrusion and malware detection on a large
scale. In Information Security, Proceedings of the 12th International Conference, ISC 2009, Pisa, Italy, 7–9 September 2009; Springer:
Berlin/Heidelberg, Germany, 2009.

20. Liang, W.; Xiao, L.; Zhang, K.; Tang, M.; He, D.; Li, K.C. Data fusion approach for collaborative anomaly intrusion detection in
blockchain-based systems. IEEE Internet Things J. 2021, 9, 14741–14751. [CrossRef]

21. Shetty, T.; Negi, S.; Kulshrestha, A.; Choudhary, S.; Ramani, S.; Karuppiah, M. Blockchain for intrusion detection systems. In
Blockchain Technology for Emerging Applications; Academic Press: Cambridge, MA, USA, 2022; pp. 107–136.

22. Alevizos, L.; Eiza, M.H.; Ta, V.T.; Shi, Q.; Read, J. Blockchain-Enabled Intrusion Detection and Prevention System of APTs within
Zero Trust Architecture. IEEE Access 2022, 10, 89270–89288. [CrossRef]

23. Subathra, G.; Antonidoss, A.; Singh, B.K. Decentralized Consensus Blockchain and IPFS-Based Data Aggregation for Efficient
Data Storage Scheme. Secur. Commun. Netw. 2022, 2022, 3167958. [CrossRef]

24. Munir, A.; Kansakar, P.; Khan, S.U. IFCIoT: Integrated Fog Cloud IoT: A novel architectural paradigm for the future Internet of
Things. IEEE Consum. Electron. Mag. 2017, 6, 74–82. [CrossRef]

25. Roy, S.; Li, J.; Bai, Y. A Two-layer Fog-Cloud Intrusion Detection Model for IoT Networks. Internet Things 2022, 19, 100557.
[CrossRef]

26. Nilsson, A.; Smith, S.; Ulm, G.; Gustavsson, E.; Jirstrand, M. A Performance Evaluation of Federated Learning Algorithms. In
Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning, Rennes, France, 10 December 2018;
pp. 1–8. [CrossRef]

27. Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Process.
Mag. 2020, 37, 50–60. [CrossRef]

28. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
29. Aggarwal, C.C. Neural Networks and Deep Learning; Springer: Cham, Switzerland, 2018; Volume 10, pp. 973–978.
30. Zhu, H.; Xu, J.; Liu, S.; Jin, Y. Federated learning on non-IID data: A survey. Neurocomputing 2021, 465, 371–390. [CrossRef]
31. Alkasassbeh, M.; Baddar, S.A. Intrusion Detection Systems: A State-of-the-Art Taxonomy and Survey. Arab. J. Sci. Eng. 2023,

48, 10021–10064. [CrossRef]
32. Ren, K.; Ho, N.M.; Loghin, D.; Nguyen, T.T.; Ooi, B.C.; Ta, Q.T.; Zhu, F. Interoperability in Blockchain: A Survey. IEEE Trans.

Knowl. Data Eng. 2023, 35, 12750–12769. [CrossRef]
33. Hazra, A.; Rana, P.; Adhikari, M.; Amgoth, T. Fog computing for next-generation Internet of Things: Fundamental, state-of-the-art

and research challenges. Comput. Sci. Rev. 2023, 48, 100549. [CrossRef]
34. Zhang, D.G.; Wu, H.; Zhao, P.Z.; Liu, X.H.; Cui, Y.Y.; Chen, L.; Zhang, T. New approach of multi-path reliable transmission for

marginal wireless sensor network. Wirel. Netw. 2020, 26, 1503–1517. [CrossRef]
35. da Silva, L.G.F.; Sadok, D.F.H.; Endo, P.T. Resource optimizing federated learning for use with IoT: A systematic review. J. Parallel

Distrib. Comput. 2023, 175, 92–108. [CrossRef]
36. Lan, K.; Heidemann, J. A measurement study of correlations of Internet flow characteristics. Comput. Netw. 2006, 50, 46–62.

[CrossRef]
37. Sathish, K.; Hamdi, M.; Chinthaginjala, R.; Pau, G.; Ksibi, A.; Anbazhagan, R.; Abbas, M.; Usman, M. Reliable Data Transmission in

Underwater Wireless Sensor Networks Using a Cluster-Based Routing Protocol Endorsed by Member Nodes. Electronics 2023, 12, 1287.
[CrossRef]

38. Lee, J.Y.; Lee, W.; Kim, H.; Kim, H. Adaptive TCP Transmission Adjustment for UAV Network Infrastructure. Appl. Sci. 2020, 10, 1161.
[CrossRef]

39. Park, J.-S.; Lee, J.-Y.; Lee, S.-B. Internet traffic measurement and analysis in a high speed network environment: Workload and
flow characteristics. J. Commun. Netw. 2000, 2, 287–296. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TITS.2021.3119968
http://dx.doi.org/10.1109/TII.2022.3167663
http://dx.doi.org/10.3390/s23135941
http://www.ncbi.nlm.nih.gov/pubmed/37447792
http://dx.doi.org/10.1109/ACCESS.2023.3336678
http://dx.doi.org/10.1016/j.cose.2009.06.008
http://dx.doi.org/10.1109/JIOT.2021.3053842
http://dx.doi.org/10.1109/ACCESS.2022.3200165
http://dx.doi.org/10.1155/2022/3167958
http://dx.doi.org/10.1109/MCE.2017.2684981
http://dx.doi.org/10.1016/j.iot.2022.100557
http://dx.doi.org/10.1145/3286490.3286559
http://dx.doi.org/10.1109/MSP.2020.2975749
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1016/j.neucom.2021.07.098
http://dx.doi.org/10.1007/s13369-022-07412-1
http://dx.doi.org/10.1109/TKDE.2023.3275220
http://dx.doi.org/10.1016/j.cosrev.2023.100549
http://dx.doi.org/10.1007/s11276-019-02216-y
http://dx.doi.org/10.1016/j.jpdc.2023.01.006
http://dx.doi.org/10.1016/j.comnet.2005.02.008
http://dx.doi.org/10.3390/electronics12061287
http://dx.doi.org/10.3390/app10031161
http://dx.doi.org/10.1109/JCN.2000.6596720

	Introduction
	Related Works
	Methodology
	CIDS Architecture
	FL with DNN
	Dataset Preprocessing
	Performance Parameters
	Benchmarking Scenario

	Results
	Experiment Environment and Configuration
	Centralized Learning vs. FL Based on Edge–Fog–Cloud Architecture
	Centralized Learning Performance
	FL on Edge Layer Performance
	FL on Fog Layer Performance
	FL on Cloud Layer Performance
	FL Based on Edge–Fog–Cloud Architecture (Training Time)
	FL Based on Edge–Fog–Cloud Architecture (Resource Consumption)
	Latency Performance
	Performance Comparison

	DLT Performance
	CIDS Trust and Privacy-Preserving Analysis

	Discussion and Future Works
	Conclusions
	References

