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Abstract: This study proposes a vessel position prediction method using attention spatiotemporal
graph convolutional networks, which addresses the issue of low prediction accuracy due to less
consideration of inter-feature dependencies in current vessel trajectory prediction methods. First,
the method cleans the vessel trajectory data and uses the Time-ratio trajectory compression algo-
rithm to compress the trajectory data, avoiding data redundancy and providing feature points for
vessel trajectories. Second, the Spectral Temporal Graph Neural Network (StemGNN) extracts the
correlation matrix that describes the relationship between multiple variables as a priori matrix in-
put to the prediction model. Then the vessel trajectory prediction model is constructed, and the
attention mechanism is added to the spatial and temporal dimensions of the trajectory data based
on the spatio-temporal graph convolutional network at the same time as the above operations are
performed on different time scales. Finally, the features extracted from different time scales are
fused through the full connectivity layer to predict the future trajectories. Experimental results
show that this method achieves higher accuracy and more stable prediction results in trajectory
prediction. The attention-based spatio-temporal graph convolutional networks effectively capture
the spatio-temporal correlations of the main features in vessel trajectories, and the spatio-temporal
attention mechanism and graph convolution have certain interpretability for the prediction results.

Keywords: ais; trajectory prediction; attention mechanism; spatio-temporal graph convolution

1. Introduction

Against the backdrop of increasingly frequent global vessel activities, vessel monitor-
ing in coastal areas is particularly important for navigation safety, emergency response, and
marine management. Traditional monitoring methods primarily rely on sensors to detect if
vessels appear in key areas of interest. However, during certain unexpected events, such as
signal interference, vessel data may not be obtained promptly, resulting in the inability to
monitor vessels in real-time. This information lag becomes more prominent when sensors
are turned off because the real-time vessel data cannot be acquired promptly, making it
difficult to monitor them in real time.

Since the Automatic Identification System (AIS) can monitor real-time information
such as position, sailing speed, and direction angle during ship navigation, the application
value of AIS trajectory data in the fields of ship monitoring, navigation safety, emergency
response, and marine management is becoming more and more prominent [1–4]. Through
deep mining and analysis of AIS trajectory data, ship activity patterns can be revealed [5],
and future ship trajectory trends can be further predicted [6]. The ultimate realization of
this method provides important support for marine navigation safety decision-making,
effectively improves the efficiency and pertinence of emergency response, and provides a
more scientific and precise decision-making basis for marine management.
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During the process of using AIS trajectory data for trajectory prediction, there are
several key steps involved, including data preprocessing and trajectory prediction model
construction [7,8]. The data preprocessing stage involves steps such as data parsing, clean-
ing and extraction, and trajectory compression, intending to select valid information and
provide an accurate and complete data foundation for subsequent analysis. Subsequently,
in the trajectory prediction step, deep learning techniques like recurrent neural networks
(RNNs) play a crucial role [8]. This technique constructs ship trajectory prediction models to
dig deeper into the patterns and relationships hidden in AIS trajectory data; when dealing
with large amounts of data with multiple attributes and strong spatiotemporal correlations,
it shows high efficiency and accuracy. Since trajectory data has multiple attributes, large
data volume, and strong spatiotemporal correlation, vessel trajectory prediction models
must have the ability to capture non-linear relationships between multiple variables.

In response to the above difficulties, this study proposes a trajectory prediction frame-
work based on Attention Spatio-Temporal Graph Convolutional Network (ASTGCN). The
primary objective is to accurately capture the intricate interrelationships among variables
inherent in vessel trajectory data. Through comparative analysis with existing models, we
demonstrate the significance of considering feature dependencies in improving trajectory
prediction accuracy. Moreover, we validate the efficacy of ASTGCN with a correlation
matrix derived from StemGNN in enhancing vessel trajectory prediction. The proposed
method adopts a multi-step approach. First, the Time-Ratio (TR) trajectory compression
algorithm is used to extract key feature points from vessel trajectories. Second, to capture
the non-linear relationships between the data more accurately, a self-attention mechanism is
used to construct the prior matrix input of the model, which learns the inherent connections
and dependencies between the data. Simultaneously, attention mechanisms are applied
in both time and space dimensions to assign higher weights to the main features in the
data, helping the model to focus on the key information that has a greater impact on the
prediction results, thus improving the accuracy of the prediction. Finally, by leveraging the
powerful capabilities of spatiotemporal graph convolutional networks in handling complex
patterns and temporal dependencies, a ship trajectory prediction model is constructed
to achieve accurate ship trajectory prediction. This approach effectively utilizes the rich
semantic information hidden in trajectory data and directly processes sequential data, such
as trajectories, in the form of graphs, enabling precise prediction of ship navigation trajecto-
ries. This method not only improves prediction accuracy but also provides a powerful tool
for understanding and interpreting ship navigation behaviors.

2. Related Work
2.1. Risk Collision Analysis

With the rapid development of the maritime industry, the safety of maritime trans-
portation has attracted the attention of people in related fields, and the risk analysis
methods of maritime transportation have been widely studied [9]. Risk collision analy-
sis, as a broader scenario of trajectory prediction, plays an important role in improving
the safety of maritime navigation. Ship collision risk analysis methods can be divided
into probabilistic model-based methods, geometric-based methods, and artificial neural
network-based methods [10].

Approach based on Geometry. Geometry-based methods can be divided into
two categories: those based on the Closest Point of Approach (CPA) and those based
on the Safe Domain (SD). The CPA method analyzes collision risk by predicting the closest
possible point of encounter between ships in the future, considering parameters such as
their current position, heading, and speed [11–13]. By calculating the shortest distance
between ships and the time required to reach that distance, potential collision risks can
be identified, allowing for the implementation of actions to avoid collisions. On the other
hand, SD-based methods calculate potential collisions by establishing a navigational safety
zone around a ship. However, these methods are highly sensitive to parameterization and
may not yield highly accurate results.
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Approach based on probabilistic model. The probabilistic model-based approach is
primarily based on support vector machines (SVMs) and Bayesian networks. SVM-based
methods calculate the probability of ship collisions by considering the ship’s motion charac-
teristics and environmental factors, enabling quantitative risk assessment. Zheng et al. [14]
implemented SVM-based probability computation by using the Safe Domain (SD) of the
owner ship (OS) and the target ship (TS) as input features. Building upon this founda-
tion, Liu et al. [15] developed a fuzzy quaternion ship domain (FQSD) model for ships,
which enables the calculation of ship collision risk by solving the maximum interval of SD
(MISD) and the violation degree of SD (VDSD). The method based on Bayesian Networks
(BNs) [16] is an effective means of modeling factors affecting accidents and nonlinear
causal relationships. Montewka et al. [17] integrated ship collision simulation results and
expert knowledge into Bayesian Networks to obtain the probability of specific collision
occurrences. Jiang et al. [18] also proposed a ship collision risk analysis method based on
the K2 algorithm for Bayesian networks (BNs), predicting probabilities of various types of
maritime accidents along Maritime Silk Road through maritime accident reports.

Approach based on artificial neural network. The traditional approach [19] to ana-
lyzing collision risk using neural networks focuses on predicting ship positions to aid in
collision avoidance. To enhance the prediction of risk index, Feng et al. [20] developed a
convolutional neural network (CNN) for ship collision avoidance based on expert knowl-
edge and Automatic Identification System (AIS) trajectory data. The network initially
calculates the original ship collision risk based on the ships’ motion characteristics and
distance between them, then adjusts this value using expert experience. Finally, the cor-
rected data and remotely sensed images are used as inputs for predicting the risk index.
In order to reduce the learning time of the network, reinforcement learning is applied in
collision risk analysis. By combining model-based and model-free algorithms with asyn-
chronous advantage actor-critic (A3C) [21] algorithms with existing models, significant
reductions in model learning time can be achieved. For example, Xie et al. [22] combined
a long short-term memory neural network (LSTM), Q-learning, and the A3C algorithm
to improve efficiency in the reinforcement learning process. To facilitate more effective
learning of collision avoidance strategies, Zhang et al. [23] proposed Constrained-DQN
(Deep Q Network). This approach reduces state-action space complexity by incorporating
constraints based on International Collision Avoidance Rules at Sea (COLREG), thereby
enhancing efficacy in collision avoidance outcomes.

2.2. Trajectory Prediction

Currently, trajectory prediction methods can be primarily divided into shallow
learning-based and deep learning-based approaches [24]. Shallow learning-based methods
have been around for a longer time and show certain effectiveness in handling simple
trajectory prediction tasks. However, their application is limited due to the lack of eval-
uation standards and limited adaptability in complex scenarios. With the widespread
application of deep learning techniques in various fields, more researchers are leveraging
the advantages of deep learning in capturing long-term dependencies and complex patterns
in data and applying them to the handling of trajectory prediction problems.

Trajectory prediction method based on shallow learning. Early trajectory prediction
methods usually combine kinematic models and Bayesian filters or their extensions to
make predictions by propagating the current state to the future state [25]. This method is
simple and easy to implement, but the prediction accuracy is limited in complex scenarios.

To describe nonlinear motion, Pavlovic et al. [26] proposed a switched linear dynamical
system model, and Sadeghian et al. [27] proposed a dynamic Bayesian network model that
considers social and physical constraints for path prediction under specific constraints.
These methods have certain advantages in dealing with complex problems, but they need to
consume a lot of computing resources, and it is difficult to make full use of some additional
scenarios and information. The rapid advancements in machine learning have facilitated
the application of tracking algorithms to enhance trajectory prediction models, such as



Appl. Sci. 2024, 14, 4104 4 of 20

the Kalman Filter (KF), Markov Model (MM), and Gaussian Process (GP) [28–30]. KF has
high short-term forecasting accuracy, but its long-term forecasting ability is limited. MM is
sensitive to trajectory fluctuations and is not suitable for medium and long-term trajectory
prediction. GP is well-suited for predicting noisy point trajectory data as it effectively
mitigates the issue of insufficiently discrete trajectory data and accurately represents the
statistical characteristics of the trajectory distribution. However, constructing a GP is quite
complex and requires a long computation time.

Although the trajectory prediction method of shallow learning has achieved some
results in the early stage, the model based on kinematics combined with a machine learning
algorithm has certain limitations. The prior assumptions of these models may constrain
overall performance and present challenges when dealing with complex scenarios and large
data sets. Due to the lack of specific scene information, lack of motion feature information,
complex model construction, and limited samples of large data sets, there is a certain gap
between the prediction effect of these methods and the actual situation.

Trajectory prediction method based on deep learning. Compared with the shallow
learning complex model construction, the trajectory prediction method based on deep
learning does not need a fixed mathematical model. This method is based on the construc-
tion of a network and relies on large-scale data sets to learn a more reasonable mapping
relationship to better deal with complex trajectory data. In recent years, with the rise
of deep learning, a variety of temporal prediction models have emerged, among which
Recurrent Neural Networks (RNN) and their variants, such as Long Short Term Memory
(LSTM), have emerged. LSTM and Gate Recurrent Unit (GRU) have achieved remarkable
success in trajectory prediction.

Antonios et al. [31] extended LSTM for human trajectory and solved the problem
that the performance of the Seq2Seq sequence model decreases with the increase of input
sequence; they also verified the effectiveness of Seq2Seq sequence model in trajectory
modeling and motion pattern prediction. On this basis, different from single-trajectory
prediction, STA-LSTM [32] and O-LSTM models take into account the interaction between
research objects in a certain space-time region and the impact of environmental information
to different degrees, and perform well on ETH and UCY data sets. Wang and Xiao [33]
combined the characteristics of the two networks and proposed a CNN-LSTM-SE model
for ship trajectory prediction, which performed well on several indexes.

However, when using a pure CNN model or a fusion of CNN and LSTM for temporal
prediction of non-Euclidean spatial data such as vessel trajectories, the model is unable to
adequately capture the dependencies between trajectory features and mine the temporal
patterns of trajectories. Aiming at the characteristics of trajectory data, a graph-based neural
network, which learns and trains on the graph structure, is capable of mining the potential
feature relationships and temporal patterns of non-Euclidean data such as trajectories.

The Spatio-Temporal Graph Convolutional Networks (STGCN) proposed by Yu et al. [34]
are suitable for non-linear and complex non-Euclidean spatial data, such as traffic flow,
and can effectively capture spatio-temporal correlation. Guo et al. [35] proposed Attention
Based Spatial-Temporal Graph Convolutional Networks (ASTGCN), which impose an
attention mechanism in the temporal and spatial dimensions and achieve better results in
capturing the spatio-temporal dependence in traffic flow data.

It is worth noting that no matter whether STGCN, ASTGCN, or some other graph-
based time series prediction models, they all need the dependency between multiple
variables as prior knowledge, and this prior input will greatly affect the subsequent pre-
diction results. To solve this problem, Cao et al. [36] proposed a Spectral Temporal Graph
Neural Network (StemGNN) for multivariate temporal prediction. The model learns the
implicit correlation between variables through the structure of its latent correlation layer,
and then inputs the learned adjacency matrix into the model for time domain, space domain
to frequency domain transformation, and graph convolution operations, and finally returns
to the original domain and outputs the prediction results. The model can capture the
spatiotemporal dependence in multivariate time series without prior output. Therefore,
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this study takes the correlation matrix extracted from the potential correlation layer of
StemGNN after training as the prior input of ASTGCN and then experiments with ship
trajectory prediction.

3. Vessel Data Preprocessing

AIS data often comes with various issues during the collection process, such as missing
values, noise points, and missing coordinate information, etc. To ensure complete and
accurate trajectory data, it is essential to perform trajectory cleaning operations. On this
basis, trajectory extraction is performed by statistically analyzing the time span between
different trajectories associated with the same MMSI. Therefore, the specific tasks in the
pre-processing stage of trajectory data are: removing invalid values, detecting and cleaning
outliers, and extracting trajectories.

3.1. Data Preprocessing
3.1.1. Removing Invalid Values

The absence of latitude and longitude information in ship trajectory data can lead to
track discontinuity and result in incorrect interpretations of ship behavior. Therefore, it is
necessary to remove these data points when traversing the data to ensure the integrity and
continuity of the trajectory data.

3.1.2. Outlier Detection and Cleaning

For erroneous data, which refers to the cases where the sog, cog, or rot of trajectory
points exceed normal thresholds, this study employs a rule-based method for identification,
followed by linear interpolation to replace the erroneous values. This approach not only
preserves the key information of the original data and eliminates the interference of out-
liers but also considers the spatiotemporal correlation between trajectory points through
interpolation, thereby enhancing the accuracy and reliability of the data.

3.1.3. Trajectory Extraction

Since the same MMSI may correspond to multiple trajectories in different periods,
it is necessary to accurately extract each trajectory based on the time span. The specific
steps are as follows: first, the AIS data are sorted according to timestamps to ensure the
temporal order of the data; second, each MMSI is traversed, and the time span between
adjacent data points is measured; finally, a suitable time threshold (such as several hours or
days) is set. When the time span between a data point and its previous data point exceeds
this threshold, it is considered the starting point of a new trajectory. Figure 1 shows the
trajectory extraction process based on MMSI and timestamps. Through this processing,
clear and accurate vessel trajectory information can be extracted from the original AIS data,
providing strong support for subsequent navigation path analysis and prediction.

The essence of trajectory compression is to represent the raw trajectory data more
simply while maintaining its key spatial and temporal relationships as well as trend features.
In the application of AIS data, due to the large scale of AIS data, it is difficult to process
and store the data, and the recorded data during navigation often contain a large amount
of dense and redundant information. Therefore, to reduce data volume and improve data
usability, it is necessary to compress trajectories.
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Figure 1. Pipeline for Trajectory Extraction.

3.2. Trajectory Compression

The essence of trajectory compression is to represent the raw trajectory data in a
simpler way while maintaining its key spatial and temporal relationships as well as trend
features. In AIS data applications, the difficulty of processing and storing arises from the
large scale of AIS data and the presence of dense and redundant information recorded
during vessel operations. Therefore, to reduce data volume and improve data usability, it
is necessary to compress trajectories.

In this study, the TR algorithm is selected for trajectory compression, which is based
on the synchronized Euclidean distance (SED) error for trajectory compression. The syn-
chronized Euclidean distance error can measure the distance between two positions at the
same time, which is the Euclidean distance between the point I on the trajectory segment
and its time-synchronized point I′ as shown in Formulas (1)–(3),

r =
Itime − Stime
Etime − Stime

, (1)

I′lat = Slat + r(Elat − Slat), (2)

I′lon = Slon + r(Elon − Slon), (3)
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where r represents the time ratio of IS and ES, and S, E represents the start and end points
of the trajectory segment.

4. Vessel Position Spatio-Temporal Prediction Model
4.1. Description of the Problem

AIS-based trajectory prediction is a multivariate time series forecasting problem [37]
that aims to predict the future movement of vessels using historical trajectory data. This
involves using pre-processed historical trajectory data features as inputs to the model and
inferring the position and timing of future vessels from these features. Specifically, this can
be described as follows:

Given the trajectory data of T position points in the past: X = (xt−T+1, . . . , xt), where xt ∈ Rn

represents the eigenvalue xt =
(
vesseltype, draughtt, lont, latt, sogt, cogt, rott, navstatust, time

)
of the

position point at time t. Input X into the prediction model to obtain the predicted trajectory
Y =

(
yt+1, . . . , yt+p

)
of position points in the future, where yt+1 ∈ Rn represents the

predicted trajectory point information at time t + 1.
ASTGCN, as a deep learning model specially designed for processing spatiotemporal

data, has unique advantages in directly processing time series data, such as trajectory and
traffic flow. The core of the model consists of three parts: space-time attention mechanism,
space-time graph convolution, and prior matrix determination.

1⃝ The spatio-temporal attention mechanism focuses on learning dynamic spatiotem-
poral dependencies in trajectory data, where the spatial attention mechanism is used to
simulate complex dynamic associations between different features to better understand
and capture the internal patterns of the data, while the temporal attention mechanism
is used to capture dynamic temporal associations between different time points, which
enables the model to better understand the temporal evolution of data. 2⃝ Space-time
graph convolution is a kind of convolution operation based on graph structure, which
includes graph convolution and time dimension convolution. Graph convolution extracts
the correlation of feature nodes from the graph-based trajectory network structure to help
the model understand the network structure characteristics of the data. Convolution in
the time dimension describes the dependencies between adjacent time segments, allowing
the model to better capture the temporal dynamics of the data. 3⃝ The prior matrix is
determined to deal with the irregular shape of the graph, and the structure of the graph
is constrained by introducing prior knowledge. Since spatiotemporal data usually have
irregular forms, a priori matrices need to be introduced to deal with this irregularity to
enable the model to better adapt to graph structures of different forms, thereby enhancing
the model’s generalization ability. The overall ASTGCN network framework is shown in
Figure 2.

Figure 2. ASTGCN network structure. The self-attention matrix output by the StemGNN model
(StemGNN − SAMi) is used as the prior matrix input for ASTGCN.
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4.2. Prediction Model
4.2.1. The Spatiotemporal Attention Mechanism

In the module of spatio-temporal attention mechanism, the additive attention mecha-
nism is used to process the spatial and temporal dimensions of the input data. Through
training, the model can learn and acquire the corresponding attention weights, and then
capture the relationship between the input data in different times and spaces. This mech-
anism not only enhances the model’s understanding of spatiotemporal data but also
provides more abundant spatiotemporal information for improving the model’s prediction
performance. The spatial attention mechanism is formulated as follows:

S = Vs · σ

((
X(r−1)

h W1

)
W2

(
W3X(r−1)

h

)T
+ bs

)
, (4)

S′
i,j =

exp(Si,j)

N
∑

i=1
exp(Si,j)

. (5)

X(r−1)
h =

(
X1, X2, ...XTr−1

)
∈ RN×Cr−1×Tr−1 is the input of the r-th STblock, Cr−1

represents the number of channels for the r-th layer input data, and Tr−1 is the length of
the time dimension of the r-th layer input data. Vs, bs ∈ RN×N , W1 ∈ RTr−1 ,
W2 ∈ RCr−1×Tr−1 , W3 ∈ RCr−1 are the matrices involved in training. σ indicates the sig-
moid activation function. The attention matrix S is computed dynamically from the input
of this layer, the element Si,j in S′ represents the degree of correlation of nodes semantically,
and the softmax Equation (5) is used for weight normalization. When performing graph
convolution, the spatial attention matrix S is multiplied by the adjacency matrix W to
calculate the dynamic influence between nodes.

The time attention mechanism is calculated as follows:

E = Ve · σ(((X(r−1)
h )TU1)U2(U3X(r−1)

h ) + be), (6)

E′
i,j =

exp(Ei,j
)

j=1
Tr−1

∑ exp(Ei,j)

, (7)

Ve , be ∈ RTr−1×Tr−1 , U1 ∈ RN , U2 ∈ RCr−1×N , W3 ∈ RCr−1 are the matrices in-
volved in training.The time-dimensional correlation matrix E is determined by the
variable input, and the element Ei,j in E semantically represents the degree of cor-
relation of nodes i, j. Finally, weight normalization is performed for E through
Formula (7). The normalized time-attention matrix is directly applied to the input

to obtain X̂r−1
h =

(
X̂1 , X̂2 , . . . , X̂r−1

)
= (X1 , X2 , . . . , XTr−1)E′ ∈ RN×Cr−1×Tr−1 , thereby

integrating relevant information and dynamically adjusting the input.
The spatio-temporal attention mechanism is used to enhance the learning ability of the

model. Specifically, an additive attention mechanism is added to the temporal and spatial
dimensions of the input of each STblock module, which is used to calculate the attention
weights between different temporal and spatial nodes. The combination of spatio-temporal
attention mechanism and graph convolutional network will enhance the modeling ability
of the trajectory prediction model, expand the range of spatio-temporal feature expression,
and improve the accuracy and robustness of trajectory prediction.

4.2.2. The Spatio-Temporal Graph Convolution

The spatio-temporal graph convolutions include convolutions in the spatial dimen-
sion and the temporal dimension. The former captures the spatial dependence from the
neighborhood, and the latter mines the temporal dependence of the neighboring time.
The dependence between trajectory features is regarded as a graph structure, and the
value of each node is regarded as a signal on the graph. To fully exploit the topological
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properties of the network, the graph convolution based on the spectrogram conclusion is
used to directly process the signal, and the signal correlation of the network is used in the
spatial dimension.

In spectrogram analysis, the structural properties of a graph can be obtained by
analyzing the corresponding Laplacian matrix of the graph and its characteristic values.
The Laplacian matrix of the graph is defined as L = D − A, and its normalized form is
L = IN − D− 1

2 AD− 1
2 ∈ RN×N ; A represents the graph adjacency matrix, IN is the identity

matrix, and the degree matrix D is a diagonal matrix consisting of node degree values
Dii = ∑

j
Aij. Eigenvalue decomposition of the Laplacian matrix:

L = UΛUT . (8)

Λ = diag([λ0, ..., λN−1]) ∈ RN×N is a diagonal matrix of eigenvalues and U represents
an orthogonal matrix composed of eigenvectors. Compared to traditional CNNs that only
work on regular data in Euclidean space, the following graph convolution can better capture
the interaction and information exchange between nodes in the corresponding graph
structure of non-Euclidean data. This is achieved by using a diagonalizable linear operator
in the Fourier domain to replace the traditional convolution. The specific convolution
formula is as follows:

gθ ∗G x = gθ(L)x = gθ(UΛUT)x = Ugθ(Λ)UTx. (9)

∗G here denotes the graph convolution operation. By using Chebyshev polynomials,
it is possible to maintain computational accuracy and significantly improve the efficiency
of processing large-scale graph data without performing costly feature decomposition:

gθ ∗G x = gθ(L)x = ∑K−1
k=0 θkTk(

∼
L)x. (10)

To dynamically adjust the correlation between points, each term of the Chebyshev
polynomial and the spatial attention matrix S′ are performed by the Hamada product, where
the parameter θ ∈ RK represents the vector of polynomial coefficients and
∼
L = 2

λmx
L − IN , λinax is the largest eigenvalue of the Laplacian matrix. The recursion

of the Chebyshev polynomial is defined as T .
κ(x) = 2xT .

κ−1(x) − T .
κ−2(x), T0(x) = 1,

T1(x) = x. To dynamically adjust the correlation between points, each term of the Cheby-
shev polynomial and the spatial attention matrix S′ are performed by the Hamada product
(denoted by ⊙). The graph convolution is transformed as follows:

gθ ∗G x = gθ(L)x =
K−1

∑
k=0

θk
(
Tk(L)⊙ S′)x. (11)

In the spatial dimension, the graph convolution operation has captured the neighbor
information on each node, and then a standard convolutional layer is superimposed on the
temporal dimension for calculation, and the node information is updated by merging the
information of adjacent time segments:

X(r)
h = ReLU

(
ϕ ∗

(
ReLU(gθ ∗G X̂(r−1)

h )
))

RCr×N×Tr , (12)

where ∗ represents the standard convolution operation, ϕ is the temporal dimension
convolution kernel parameter, and ReLU is the activation function.

In short, the spatio-temporal convolution module can well capture the dependencies in
terms of spatio-temporal characteristics of trajectory data. STblock is the core component of
the spatio-temporal convolution module, which is composed of a spatio-temporal attention
module, spatio-temporal convolution module, and residual module. When stacked, mul-
tiple STblocks can further extract a wider range of dynamic spatio-temporal correlations.
Finally, a fully connected layer is introduced to map the spatio-temporal features extracted
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by the STblock module to the dimensional space of the prediction target in order to realize
the effective prediction of trajectory data.

4.2.3. Determining a Priori Matrix

When the ASTGCN model processes trajectory data, it needs to define the prior ma-
trix of node information, so that based on the spatio-temporal attention mechanism, the
temporal and spatial features of trajectory data can be effectively captured through the
graph convolutional layer, and the dependencies between feature nodes can be further es-
tablished. For the specific task of AIS trajectory prediction, the prior matrix can be regarded
as the correlation coefficient matrix between trajectory features, and the self-attention
matrix output by the StemGNN model can be used as the prior input of ASTGCN. When
dealing with multivariate time series prediction problems such as trajectory prediction,
the StemGNN model learns the hidden association between variables through the Latent
Correlation Layer as an adjacency matrix, which is passed into the two-layer StemGNN
block. This model is universal to all multi-dimensional time series without predefined
topology structures, and the output self-attention matrix can be used as the prior input
of other graph-based time series prediction models. Therefore, this paper uses StemGNN
as one of the comparison models. The Latent correlation layer correlation matrix of the
StemGNN after training is used as the prior input of ASTGCN, and the experiment of
vessel trajectory prediction is then carried out.

5. Experiment and Analysis
5.1. Experimental Data

AIS data from January to February 2017 are used in the study. The data volume of this
part is 10.9 G and contains daily AIS vessel trajectory information during this period. The
information is stored in the format of CSV files. Each CSV file contains millions of data
records, and each record shows the static and dynamic information of the vessel in detail.

Among them, the static information includes MMSI number, IMO number, vessel
name, type, length and width, position, etc. The dynamic information includes vessel
position, time, ground heading, ground speed, bow direction, turning speed, sailing state,
etc. The detailed information is shown in Tables 1 and 2.

Table 1. Static information of the vessel.

Attribute Name Attribute Meaning Attribute Type

MMSI Vessel Unique identification code Int
Name Vessel Name Char

Vessel Type Vessel Type Char
Length Vessel Length Int
Width Vessel Width Int

Table 2. Dynamic information of the vessel.

Attribute Name Attribute Meaning Attribute Type

Lon Longitude Float
Lat Latitude Float
Sog Ground speed Float
Cog Course over ground Float
Rot Rate of turn Float

DT_Pos_Utc AIS Dynamic Position Update Time Time
Draught Vessel Draught Float

Nav_status Vessel Status Char
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5.2. Experimental Setup

The time span of the data set is from 1 January 2017 to 5 January 2017. The preprocessed
trajectory data are first grouped according to MMSI, and then the sliding window method
is used to process each trajectory segment to generate the input data required by the model.

The features in the training data include (vesseltype, draughtt, lont, latt, sogt, cogt, rott,
navstatust, time) and the output of the model predicts the location and time of future
trajectory points, which is (lont+1, latt+1, time). To assess the model’s performance, we
partitioned the dataset into three subsets, train, validation, and test, in a 7:2:1 ratio. In the
training process, a specific sequence step size is set, that is, the training sequence step size
(window) is 15, and the prediction sequence step size (horizon) is 5. Optim is set as Adam
optimizer. To prevent the model from overfitting or gradient explosion during the training
process, the gradient clipping technique is adopted, and the learning rate decay is used to
gradually approach the optimal solution.

STGCN, CNN_LSTM_CBAM, TCN, StemGNN, and other models are selected as
baseline methods to conduct comparative experiments with ASTGCN. Among them, there
are some structural similarities between STGCN and ASTGCN. Both adopt Gated CNNs
to extract features in both spatial and temporal dimensions and both perform graph
convolution operations in both dimensions separately. This design enables the model to
deeply capture complex dependencies in spatio-temporal data. CNN_LSTM_CBAM is a
model that combines a CNN and a LSTM network. It realizes the fusion and screening of
features by introducing the convolutional module attention mechanism. This design not
only enhances the feature extraction ability of the model but also provides it with excellent
model recognition ability. TCN adopts a pure convolutional approach that combines
causal convolutions, dilated convolutions, as well as the design of residual networks. This
structure enables the model to effectively capture temporal patterns, enhance the memory
of long-term dependencies, and compute features at multiple locations in parallel, thereby
improving the training speed. StemGNN is a relatively unique model. It maps the data to
the spectral domain by transforming it to the temporal and spatial domain and performs the
corresponding convolution operation on this basis. StemGNN can extract temporal patterns
and combine the self-attention mechanism to capture the dependency information between
features, thus providing the adaptive ability for time series prediction tasks. Through the
comparative experiments of these baseline methods, we can comprehensively evaluate the
performance and advantages of ASTGCN in dealing with spatio-temporal data.

When evaluating the performance of trajectory prediction models, we usually use
MSE (Mean Square Error) and L1 Loss as two evaluation metrics. MSE is a crucial metric for
evaluating the predictive performance of a regression model. It measures the accuracy of
the model’s predictions by calculating the mean of the sum of the squares of the differences
between the predicted and actual values. Despite its sensitivity to outliers, MSE remains
widely used in trajectory prediction because it captures the continuity and smoothness of
the model’s predictions. The formula is as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷl)
2. (13)

L1 Loss, also known as the mean absolute error (MAE), is another commonly used
metric for evaluating the accuracy of regression models. It is computed by taking the
absolute difference between the predicted values and the true values for each sample, and
then averaging them. Unlike mean squared error (MSE), L1 Loss is more robust to outliers.
The formula is as follows:

L1Loss =
1
n

n

∑
i=1

|yi − ŷl |. (14)

where n represents the number of trajectory points, yi represents the true value of the i-th
sample, and yi represents the predicted value of the i-th sample.
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In the trajectory prediction model, MSE and L1 Loss are used to measure the prediction
ability of the model, where MSE is suitable for smoother prediction results, and L1 Loss is
suitable for more attention to outliers or more robust prediction results.

5.3. Experimental Results Analysis

We deeply discussed the prediction accuracy of the five models on train/val/test
track data and the results shown in Figures 3–5. According to the training and testing
results of each model, CNN_LSTM_CBAM has relatively weak performance, high error,
and the slowest convergence speed. The other four models are similar in performance,
but ASTGCN has the smallest error and the fastest convergence on the training data set.
StemGNN and STGCN followed closely behind, while TCN performed slightly worse
than STGCN. ASTGCN showed the best performance on the validation dataset (val) and
test dataset (test). The error is quite close to the error on the training data set, and the
results are stable. StemGNN and STGCN followed closely behind, while TCN showed clear
signs of volatility and elevated errors. CNN_LSTM_CBAM continues to underperform on
all datasets.

In conclusion, ASTGCN shows excellent performance and stability in this experiment.
Compared with other models, it shows lower error and faster convergence rates on training
and validation data sets. This result shows that ASTGCN has strong potential and capability
in processing spatiotemporal trajectory data.

Figure 3. Error situation of each model on the training dataset: (a) Comparison chart of L1 indicators;
(b) Comparison chart of L1 indicator details; (c) Comparison chart of MSE indicators; (d) Comparison
chart of MSE indicator details.
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Figure 4. Error situation of each model on the val dataset: (a) Comparison chart of L1 indicators;
(b) Comparison chart of L1 indicator details; (c) Comparison chart of MSE indicators; (d) Comparison
chart of MSE indicator details.

Figure 5. Error situation of each model on the test dataset: (a) Comparison chart of L1 indicators;
(b) Comparison chart of L1 indicator details; (c) Comparison chart of MSE indicators; (d) Comparison
chart of MSE indicator details.
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By calculating the accuracy of each trajectory prediction model, the performance of
each model in predicting trajectory data is deeply discussed. The statistical results are
shown in Table 3. It can be seen from the data in the table that the prediction accuracy of the
ASTGCN model is superior to other models on each data set. Among them, it can be seen
from the prediction of CNN_LSTM_CBAM and TCN that although the relevant models
introduce standard convolution technology, which is helpful for trajectory prediction,
they only consider the local information of each position of the input data, ignoring the
important information of the time dimension. This makes these models limited in making
full use of the timing feature information in vessel trajectories. In contrast, graph-based
trajectory models such as StemGNN, STGCN, and ASTGCN are more suitable for dealing
with vessel trajectories with complex nonlinear relationships. These models can capture
the dependencies between features and the pattern information in time series to provide
more reliable and stable vessel trajectory prediction results. In summary, the accuracy of
vessel trajectory prediction of the ASTGCN model is significantly better than that of other
models on each data set, especially on training and verification data sets, and the error is
stable and kept at a low level. This shows that the ASTGCN model has high trajectory
prediction accuracy and good generalization ability and can effectively adapt to various
vessel trajectory data.

Table 3. Trajectory prediction accuracy of each model.

Model
Train Val Test

MAE MSE MAE MSE MAE MSE

CNN_LSTM_CBAM 0.00660 0.00370 0.00760 0.004600 0.1980 0.0950
TCN 0.00094 0.00017 0.00150 0.000287 0.0433 0.0056

StemGNN 0.00060 0.00014 0.00060 0.000190 0.0230 0.0048
STGCN 0.00070 0.00013 0.00078 0.000160 0.0270 0.0043

ASTGCN 0.00060 0.00016 0.00060 0.000160 0.0227 0.0041

By calculating the accuracy of each trajectory prediction model, the performance of
each model in predicting trajectory data is presented. The statistical results are shown
in Table 3. It can be seen from the data in the table that the prediction accuracy of the
ASTGCN model is superior to other models on each data set. Among them, it can be seen
from the prediction of CNN_LSTM_CBAM and TCN that although the relevant models
introduce standard convolution technology, which is helpful for trajectory prediction,
they only consider the local information of each position of the input data, ignoring the
important information of the time dimension. This makes these models limited in making
full use of the timing feature information in vessel trajectories. In contrast, graph-based
trajectory models such as StemGNN, STGCN, and ASTGCN are more suitable for dealing
with vessel trajectories with complex nonlinear relationships. These models can capture
the dependencies between features and the pattern information in time series to provide
more reliable and stable trajectory prediction results.

To verify the robustness and generalizability of the model on different datasets, the
trajectory data from April 2023 were used in this study to validate the model, and the
experimental results are shown in Table 4. From the data in the table, it can be seen that the
prediction accuracy of ASTGCN is higher than that of all other models. Combined with
Table 3, it can be seen that when the collective data volume is small, the prediction accuracy
of convolution-based models such as CNN_LSTM_CBAM and TCN is lower, while graph-
based prediction models can still produce more accurate predictions on smaller volume
datasets due to their ability to capture the dependencies between features.
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Table 4. Trajectory prediction accuracy of each model on April 2023 trajectory data.

Model
Train Val Test

MAE MSE MAE MSE MAE MSE

CNN_LSTM_CBAM 0.00644 0.00667 0.01408 0.0150 0.15941 0.06184
TCN 0.00045 0.00011 0.0032 0.00125 0.07312 0.00847

StemGNN 0.00028 0.00007 0.00048 0.00019 0.01446 0.00487
STGCN 0.00036 0.00011 0.00042 0.00031 0.06107 0.00481

ASTGCN 0.00018 0.00008 0.00019 0.00019 0.01442 0.00289

In summary, the accuracy of vessel trajectory prediction of the ASTGCN model is
significantly better than that of other models on each data set, especially on training and
verification data sets, and the error is stable and kept at a low level. This shows that the
ASTGCN model has high trajectory prediction accuracy and good generalization ability,
and that it can effectively adapt to various vessel trajectory data.

Additionally, ASTGCN possesses a certain level of interpretability when performing
trajectory prediction. During the training process, after the training of the StemGNN model
is completed, the attention matrix in the Latent correlation layer is displayed in the form
of a heat map, and the dependence between feature nodes can be visually observed, as
shown in Figure 6. In training the ASTGCN network, we use StemGNN’s attention matrix
as a prior input. After completing the training, the attention matrix was visualized in both
spatio-temporal and temporal dimensions, as shown in Figure 7. The visualization reveals
significant interactions between different time steps in the temporal dimension. In the
spatial dimension, the ship’s motion speed (SOG) and steering angular velocity (ROT) have
a greater effect on the variables lon, lat, and time, while the interactions among the other
variables are weaker. The visual result of this dependence relationship is in accord with the
actual motion principle of the vessel.

Figure 6. StemGNN attention matrix heat map.
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Figure 7. Heatmaps of the attention matrices in the temporal and spatial dimensions during the
trajectory prediction process of ASTGCN. (a) Heatmap of the attention matrix in the temporal
dimension; (b) Heatmap of the attention matrix in the spatial dimension.

The computational complexity of the ASTGCN model is mainly affected by the graph
convolution layer and the attention mechanism. The computational complexity of the graph
convolution operation mainly depends on the number of nodes and the structure of the
adjacency matrix, while the adaptive adjacency matrix is used in ASTGCN, the model can
dynamically adjust the number of adjacency matrices through the learning process, which
reduces the number of nodes that need to be processed in the traditional graph convolution
network and further reduces the computational complexity. In addition, although the
spatio-temporal attention mechanism of the model increases the computational complexity
compared to other models, this allows the model to better capture the correlation between
ship trajectory data, which improves the prediction accuracy and generalization ability.

In summary, the ASTGCN model not only performs well in prediction accuracy, but
its interpretability also provides us with the ability to deeply observe the dependencies
between feature nodes and the patterns in the space-time dimension. This interpretability
not only enhances the reliability of model prediction but also enables us to accurately
understand the internal structure of vessel trajectory data in order to provide a more
reliable and accurate basis for offshore vessel management decisions.

To verify the application effect of the model in real scenarios, we developed a trajectory
visual analysis platform, as shown in Figure 8, and integrated this trajectory prediction
framework. In this platform, users can realize trajectory prediction for any number of steps
by setting the number of prediction steps. Figure 9 shows the visualization of the prediction
results of the model on straight and curved trajectory.
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Figure 8. Visual analytics platform interface. (a) Selection box of the underlying map; (b) Ship type
filter; (c) Operation box of GIS (measurement, screening, marking); (d) Multi-functional menu bar, the
functions of ship trajectory data include ship trajectory data loading items, screening of the time range
of ship activities and screening of ship types; the functions of calculation and visualization include
the algorithm selection of trajectory segmentation, trajectory clustering and representative trajectory
display; (e) Corresponding to the visualization results of trajectory data loaded according to the filtering
conditions as well as the prediction results; (f) Interface navigation bar for switching the interface.

Figure 9. Visualization of the effect of trajectory prediction with a step size of 5. The arrows indicate
the direction of trajectory travel, the localization icon represents the predicted trajectory point, the
solid line represents the actual trajectory of the ship, and the dotted line represents the driving path
of the real trajectory in the validation set.
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6. Conclusions

Aiming at the problem of mining and forecasting vessel trajectory, this study presents
a method of constructing a vessel trajectory prediction model based on the Attention
Spatiotemporal graph Convolution network (ASTGCN). The core of this method is to
capture the spatio-temporal characteristics of vessel trajectories by introducing spatio-
temporal attention mechanism and spatio-temporal graph convolution. In addition, to
adapt the model to the graph structure corresponding to the vessel trajectory and improve
the prediction accuracy, a method to determine the prior matrix is also designed.

The experimental results proved the effectiveness of ASTGCN, which demonstrated
significant advantages in several performance indicators. This is mainly due to the attention
mechanism introduced in time and space dimensions, and the powerful processing ability
of nonlinear trajectory data based on the graph structure of non-Euclidean space. This
design allows the model to better capture major feature associations and spatiotemporal
dependencies in vessel trajectory data. The excellent performance of ASTGCN indicates
that the trajectory prediction model proposed in this study, based on the convolution
network of attentional spatiotemporal graphs, has a good performance in capturing the
spatiotemporal characteristics of vessel trajectory, which not only provides an accurate
prediction for the future trajectory of vessels but also has a certain interpretability for
the spatiotemporal attention mechanism of the network structure and the convolution of
spatiotemporal graphs. It provides a more transparent and reliable forecasting basis for
decision-makers.

Since the computational complexity of the ASTGCN model is mainly affected by the
number of nodes, the number of neighbors, the filter parameters, and the convolution order
(in the graph convolution layer), as well as the number of time steps and the vector dimen-
sions (in the attention mechanism), the scalability of the ASTGCN model can be improved
by considering the strategies of data parallelism, model parallelism, lightweight design,
and algorithmic optimization in the subsequent study. This will allow for effective resource
utilization and performance improvement when dealing with large spatio-temporal data.
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