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Abstract: Gracilioether M (6) and 11,12-dihydrogracilioether M (7), two polyketides with a [2(5H)-
furanylidene]ethanoate moiety, along with known plakortone G (9) and its new naturally occurring
derivative 9,10-dihydroplakortone G (8), were isolated from the Caribbean marine sponge Plako-
rtis halichondrioides. The structures and absolute configuration of 6, 7, and 8 were characterized
by analysis of HRESIMS and NMR spectroscopic data, chemical derivatization, and side-by-side
comparisons with published NMR data of related analogs. Compounds 6 and 7 and a mixture of
8 and 9 were evaluated for cytotoxicity against MCF-7 human breast cancer cells. In addition, the
in vitro antiplasmodial activity against Plasmodium berghei of these compounds was scrutinized using
a drug luminescence assay.
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1. Introduction

Natural marine products have risen in prominence as a valuable source of rare sec-
ondary metabolites, drawing the attention of scientists and researchers worldwide. These
compounds, often extracted from marine organisms such as corals, sponges, mollusks,
and algae, are renowned for their remarkable chemical diversity. Research conducted in a
plethora of marine ecosystems throughout the world has led to the emergence of a diverse
spectrum of molecules possessing an extensive array of biological activities that hold great
promise for strengthening medicine and advancing drug discovery [1–3]. In as much
as many of these secondary metabolites have displayed potent antifungal, antibacterial,
antiviral, and antimalarial properties [4,5], their importance in fighting infectious diseases
cannot be overstated. These unique compounds also offer promising pathways toward
crafting innovative pharmaceuticals that address the growing challenges of drug-resistant
pathogens [6]. Furthermore, the promise of marine natural products in tackling malaria has
stirred significant excitement, given their capacity to impede the reproduction of malaria-
causing parasites. This brings renewed hope in the battle against this highly destructive
illness [7–9].

Marine sponges stand out as a remarkable reservoir of potential lead compounds in
the continuous search for novel drugs. Their unique chemical compositions and the
diversity of the bioactive molecules that can be obtained from them make these ani-
mals a valuable source of inspiration and innovation in the fields of medicinal chem-
istry and drug discovery [4,5]. Among these interesting organisms, members of the
genus Plakortis have recently taken the spotlight given their well-known capacity to
yield polyketide natural products with a remarkable structural diversity and widespread
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bioactivity [10–12]. Despite their potential, only a small number of marine polyketide-
derived drugs are currently considered to be viable for medical therapeutic use due to their
restricted accessibility [12]. Notwithstanding this, marine polyketides have become a focal
point of intense research, and investigators throughout the world are diligently exploring
the molecular mechanisms behind their biological properties while aiming to harness their
therapeutic potential for the benefit of medical science and human health [13–16].

In recent years, several polyketides possessing a [2(5H)-furanylidene]ethanoate (fu-
ranylidene) motif have been detected, extracted, and isolated from a wide variety of marine
sponges, including species belonging to the genera Agelas and Plakortis. More specifically,
related compounds that were previously isolated from Plakortis sponges have been shown
to exhibit antimalarial and cytotoxic activities. This category of compounds includes the
likes of spongosoritin A (1) [17], 9,10-dihydrospongosoritin A (2) [18], gracilioether B
(3) [19], gracilioether C (4) [19], and gracilioether L (5) [20]. These compounds highlight the
prevalence and significance of the furanylidene moiety in polyketides sourced from marine
sponges and open new doors to further explore the biological functions and potential
applications of these metabolites [21]. Figure 1 provides a visual representation of the
chemical structures of compounds 1–5.
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Figure 1. Chemical structures of the marine sponge-derived polyketides 1–5.

As part of our investigations, which aim to discover innovative bioactive compounds
from Caribbean marine invertebrates, we recently conducted an extensive chemical anal-
ysis of the sponge Plakortis halichondrioides. Specimens of this species were carefully col-
lected from waters surrounding Mona Island, which lies along the western coastline of
Puerto Rico. We now wish to report the isolation and structure elucidation of three new
Plakortis polyketides, namely, gracilioether M (6), 11,12-dihydrogracilioether M (7), and
9,10-dihydroplakortone G (8). Further research revealed that the latter compound was
isolated together with known plakortone G (9) [22]. An accurate spectroscopic analysis
of these compounds allowed us to establish unambiguously the specific arrangement of
atoms and functional groups shown in structures 6–9 (see Figure 2).



Appl. Sci. 2024, 14, 281 3 of 14
Appl. Sci. 2024, 14, 281 3 of 14 
 

 

Figure 2. Chemical structures of the previously unknown gracilioether M (6), 11,12-dihydrogracili-

oether M (7), and 9,10-dihydroplakortone G (8), along with that of known plakortone G (9). 

2. Materials and Methods 

2.1. Animal Material 

The Caribbean marine sponge P. halichondrioides was collected during an underwater 

expedition in June 2006 near Mona Island, Puerto Rico. The specimen was kept frozen at 

−20 °C prior to lyophilization. A voucher specimen bearing reference number IM0619 has 

been meticulously preserved at the Molecular Sciences Research Center (MSRC) of the 

University of Puerto Rico. 

2.2. General Experimental Procedures 

Chemical reagents were procured from several suppliers, including Acros, Fluka, 

Sigma–Aldrich,Burlington, Massachusetts, USA, and TCI. Deuterated NMR solvents were 

obtained from Sigma-Aldrich. Analytical Thin-Layer Chromatography (TLC) was con-

ducted on glass plates pre-coated with Silica Gel 60 F254 and purchased from Analtech. 

Visualization was achieved using UV light and/or an appropriate stain such as iodine on 

silica, sulfuric acid (H2SO4), or phosphomolybdic acid (PMA). Flash chromatography was 

carried out using Silica Gel 60 (35–75 mesh) from Analtech. Analytical reversed-phase 

high-performance liquid chromatography (RP-HPLC) was carried out using a Harmo-

nySecure RP18 Agilent, Santa Clara, California, USA (250 × 4.6 mm i.d., 5 μm) column 

mounted to an Agilent 1260 series system controller equipped with a 1260 G1315D pho-

todiode array detector and ChemStation software (B.04.02 SP2). Optical rotations were 

measured in chloroform (CHCl3) with an Autopol IV automatic polarimeter using a 10 

mm microcell. Fourier-transform infrared (FTIR) experiments were conducted using a 

Bruker Tensor 27 FTIR spectrometer. Ultraviolet–visible (UV-vis) spectra were recorded 

using a Shimadzu UV-2401 PC UV-VIS spectrophotometer. One-dimensional (1D) and 

two-dimensional (2D) nuclear magnetic resonance (NMR) data were acquired in CDCl3 

with either a Bruker DRX500 spectrometer, a Varian VS500 spectrometer, or a Varian 

VX500 spectrometer equipped with a Xsens Cold probe. Chemical shifts were referenced 

to the corresponding solvent signals (δH 7.26 and δC 77.0 for CDCl3). The spectra were pro-

cessed using Mestrenova (Mnova 11.0 Mestrelab Research) software. All the 3D molecular 

modeling was performed using the Spartan 14 Parallel Suite software (version 1.1.8) run-

ning on the Microsoft Windows platform, enabling accurate visualization of all the 3D 

chemical structures, whereas 2D NOE correlations were incorporated using ChemDraw 

Prime (version 20.0.0.41). 

2.3. Extraction and Isolation 

The freeze-dried sponge was carefully cut into small chunks and blended using a 

mixture of chloroform (CHCl3) and methanol (MeOH) at room temperature. After 

Figure 2. Chemical structures of the previously unknown gracilioether M (6), 11,12-
dihydrogracilioether M (7), and 9,10-dihydroplakortone G (8), along with that of known plakortone
G (9).

2. Materials and Methods
2.1. Animal Material

The Caribbean marine sponge P. halichondrioides was collected during an underwater
expedition in June 2006 near Mona Island, Puerto Rico. The specimen was kept frozen at
−20 ◦C prior to lyophilization. A voucher specimen bearing reference number IM0619
has been meticulously preserved at the Molecular Sciences Research Center (MSRC) of the
University of Puerto Rico.

2.2. General Experimental Procedures

Chemical reagents were procured from several suppliers, including Acros, Fluka,
Sigma–Aldrich, Burlington, MA, USA, and TCI. Deuterated NMR solvents were obtained
from Sigma-Aldrich. Analytical Thin-Layer Chromatography (TLC) was conducted on glass
plates pre-coated with Silica Gel 60 F254 and purchased from Analtech. Visualization was
achieved using UV light and/or an appropriate stain such as iodine on silica, sulfuric acid
(H2SO4), or phosphomolybdic acid (PMA). Flash chromatography was carried out using
Silica Gel 60 (35–75 mesh) from Analtech. Analytical reversed-phase high-performance
liquid chromatography (RP-HPLC) was carried out using a HarmonySecure RP18 Agilent,
Santa Clara, California, USA (250 × 4.6 mm i.d., 5 µm) column mounted to an Agilent
1260 series system controller equipped with a 1260 G1315D photodiode array detector
and ChemStation software (B.04.02 SP2). Optical rotations were measured in chloroform
(CHCl3) with an Autopol IV automatic polarimeter using a 10 mm microcell. Fourier-
transform infrared (FTIR) experiments were conducted using a Bruker Tensor 27 FTIR
spectrometer. Ultraviolet–visible (UV-vis) spectra were recorded using a Shimadzu UV-2401
PC UV-VIS spectrophotometer. One-dimensional (1D) and two-dimensional (2D) nuclear
magnetic resonance (NMR) data were acquired in CDCl3 with either a Bruker DRX500
spectrometer, a Varian VS500 spectrometer, or a Varian VX500 spectrometer equipped with
a Xsens Cold probe. Chemical shifts were referenced to the corresponding solvent signals
(δH 7.26 and δC 77.0 for CDCl3). The spectra were processed using Mestrenova (Mnova
11.0 Mestrelab Research) software. All the 3D molecular modeling was performed using
the Spartan 14 Parallel Suite software (version 1.1.8) running on the Microsoft Windows
platform, enabling accurate visualization of all the 3D chemical structures, whereas 2D
NOE correlations were incorporated using ChemDraw Prime (version 20.0.0.41).

2.3. Extraction and Isolation

The freeze-dried sponge was carefully cut into small chunks and blended using a
mixture of chloroform (CHCl3) and methanol (MeOH) at room temperature. After filtration,
the resulting crude extract was concentrated under reduced pressure to yield a thick brown
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paste. This brown material was suspended in distilled water (H2O) and subjected to
extraction with n-hexane. The resulting paste was chromatographed on silica gel using
mixtures of n-hexane and ethyl acetate (EtOAc), which led to seven fractions labeled by
ascendent polarity as fractions A to G. Fraction D was tried by further chromatography
separation using silica gel and a 9:1 mixture of n-hexane-EtOAc, yielding fractions D1
to D7. Thereafter, fraction D6 was dissolved in tetrahydrofuran (THF) and subjected to
RP-HPLC using an RP18 column (5 µm, 250 × 4.6 mm i.d., 1 mL·min−1) and a mixture
of 8:2 MeOH:H2O as mobile phase with the UV lamp detector set to 254 nm. Following
this process, pure gracilioether M (6) (retention time: 19.6 min, 5.7 mg, 0.002% yield) and
11,12-dihydrogracilioether M (7) (retention time: 25.6 min, 3.5 mg, 0.001% yield) were
isolated. The less polar fraction C was further chromatographed on silica gel using a
mixture of 95:5 n-hexane-EtOAc to afford an inseparable mixture of 9,10-dihydroplakortone
G (8) and previously known plakortone G (9) (17.5 mg, 0.006% yield).

2.4. Catalytic Hydrogenation of a Mixture of 9,10-Dihydroplakortone G (8)/plakortone G (9)

The mixture of 9,10-dihydroplakortone G (8) and plakortone G (9) (10.0 mg), 10%
Pd-on-C (3.2 mg), and hydrogen (H2) gas (1 atm) in anhydrous EtOAc (3 mL) was stirred
for 8 h at 25 ◦C. The resulting suspension was filtered through a short plug of silica gel
using DCM as eluent. Following in vacuo concentration and further separation by column
chromatography with silica gel and a mixture of 9:1 n-hexane-EtOAc, we obtained a single
product, namely, 9,10-dihydroplakortone G (8) (0.7 mg).

2.5. Catalytic Hydrogenation of Gracilioether M (6)

A pure sample of gracilioether M (6) (1.5 mg), 10% Pd-on-C (1.5 mg), and hydrogen
(H2) gas (1 atm) in anhydrous EtOAc (3 mL) was stirred for 8 h at 25 ◦C. The reaction mixture
was filtered through a short plug of silica gel using DCM as eluent. After concentration in
vacuo, we obtained pure 11,12-dihydrogracilioether M (7) (1.1 mg, 72.9% yield).

2.6. Pyridinium Chlorochromate (PCC) Oxidative Cleavage of Gracilioether M (6)

To a solution of gracilioether M (6) (1.2 mg) in 1,2-dichloroethane (10 mL), a mixture of
PCC (0.03 mmol) and 4 Å molecular sieves (10 mg) was added. The resulting mixture was
heated to reflux and allowed to react for a period of 15 h following a known procedure [23].
Thereafter, the reaction mixture was filtered through a short plug of silica gel using DCM
as eluent. The subsequent concentration of the eluate yielded pure plakortone G (9)
(0.6 mg, 60.1% yield).

2.7. Pyridinium Chlorochromate (PCC) Oxidative Cleavage of 11,12-Dihydrogracilioether M (7)

To a solution of 11,12-dihydrogracilioether M (7) (1.3 mg) in 1,2-dichloroethane
(10 mL), a mixture of PCC (0.03 mmol) and 4 Å molecular sieves (10 mg) was added.
The reaction mixture was heated to reflux and allowed to react for a period of 15 h follow-
ing a known procedure [23]. Thereafter, the reaction mixture was filtered through a short
plug of silica gel using DCM as eluent. The subsequent concentration of the eluate yielded
pure 9,10-dihydroplakortone G (8) (0.7 mg, 64.8% yield).

2.8. Antiplasmodial Activity against the Parasite Plasmodium Berghei

The antiplasmodial activity of gracilioether M (6), 11,12-dihydrogracilioether M (7),
and the mixture of 9,10-dihydroplakortone G (8) and plakortone G (9) was examined using
the P. berghei GFP-Lucama1 (1037cl1) parasite line, achieving the half-maximal effective
concentration (EC50) by an in vitro drug luminescence assay [24,25]. This experiment was
standardized utilizing the chloroquine diphosphate salt (100 nM, Sigma-Aldrich) as the
control group to determine the inhibition of blood stage development. The stock solution of
the specific glutathione S-transferase (GST) inhibitors (S-hexyl glutathione and ellagic acid,
Sigma-Aldrich) was prepared in 100% dimethyl sulfoxide (DMSO). Compounds 6 and 7,
as well as the inseparable mixture of 8 and 9, were individually dissolved in 100% DMSO,
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leading to stock solutions in a concentration of 10 mM for each compound. These stock
solutions were aliquoted and stored at −20 ◦C before the experiments. Additionally, further
dilutions of our three samples from the stock solutions were prepared using the Roswell
Park Memorial Institute medium (RPMI 1640) supplemented with 20% heat-inactivated
fetal bovine serum (FBS, Gibco, Grand Island, New York, USA) and 10,000 IU/mL of
neomycin solution (Sigma-Aldrich). Each natural product solution was prepared 24 h
before the experiment in a concentration of 10 µM and stored at 4 ◦C. Experiments were
conducted in triplicate. Furthermore, the experiments and the data analysis were performed
as described in previous works using GraphPad Prism vs. 6 software [24,25].

2.9. In Vitro Cell Viability Assay

Cell culture method: The human breast cancer cell line MCF-7 from ATCC® was
used to perform the cell viability assay. The cells were stored under liquid nitrogen at the
MSRC until experiments were conducted. For the experiments, MCF-7 cells were thawed
and grown in Dulbecco’s Modified Eagle’s Medium (DMEM) employing 5 % FBS and 1%
penicillin-streptomycin (Pen-Strep) and incubated at 37 ◦C in 5% carbon dioxide (CO2).
Cell passages were conducted twice weekly every 7 days. The cells were left to rise by
80% of confluency and appropriated to perform the cell viability experiments. This cell
culture method was adapted from the ATCC product information and other previous
works [26,27].

Cell viability test: Two-fold serial dilutions of compounds gracilioether M (6), 11,12-
dihydrogracilioether M (7), and the mixture of 9,10-dihydroplakortone G (8) and plakortone
G (9) in a concentration range of 0–400 µM were previously prepared to determine the
IC50. Subsequently, MCF-7 cells were seeded in 96-well plates at a 5.0 × 103 cells/mL
density. Cells were incubated for 24 h at 37 ◦C in 5% CO2, allowing for cell adherence to the
96-well plate. After 24 h of seeding, MCF-7 cells were treated with 100 µL of compounds 6
and 7 and the mixture of compounds 8 and 9 (0–400 µM). The control group was treated
with just media (DMEM, 1% Pen-Strep). The cell viability was determined after 72 h of
treatment. AlamarBlue® assay was employed to determine the cell viability; the media
was exchanged with 100 µL of AlamarBlue® solution (10%). After exchanging the media,
the 96-well plates were incubated for 4 h. The fluorescence (TECAN Microplate Reader
Infinite M200) was measured at 560.0 nm of excitation and λmax = 590.0 nm of emission.
The MCF-7 metabolic active cells (cells under proliferation) were analyzed, taking into
consideration the viability of the control group (100%) compared with the MCF-7 cells
treated with compounds 6 and 7, as well as the mixture of compounds 8 and 9. The IC50
was determined for these compounds by generating dose–response curves (% live cells vs.
concentration), employing GraphPad Prism vs. 9.3.0 and a nonlinear regression method.
The experiments were performed in triplicate, and the mean, standard deviation, and
coefficient of variation (%CV) were reported. This cell viability assay was adapted from
previous studies [26,27].

3. Results
3.1. Chemical Structural Analysis

During this study, three new polyketides possessing a furanylidene motif were iso-
lated from the marine sponge P. halichondrioides along with previously known plakortone
G (9) [22], thus totaling four compounds. Gracilioether M (6) was obtained as a color-
less optically active oil: [α]20

D-80.5 (c 0.96, CHCl3); UV (MeOH) λmax (log ε) 285 (3.45),
240 (2.55), 201 (3.17) nm; and νmax (thin film) 2964, 2936, 2874, 1715, 1689, 1626, 1459, 1164
cm−1. High-resolution electrospray ionization mass spectrometry (HRESIMS) indicated
a single [M+Na]+ ion peak at m/z 357.2401, suggesting a molecular formula of C21H34O3
(calculated as 357.2400). Likewise, 11,12-dihydrogracilioether M (7) was obtained as a
colorless optically active oil: [α]20

D-47.1 (c 0.70, CHCl3); UV (MeOH) λmax (log ε) 286 (3.15),
240 (2.31) nm; and νmax (thin film) 2961, 2929, 2873, 2859, 1716, 1688, 1638, 1626, 1458, 1273,
1164 cm−1. HRESIMS indicated a single [M+Na]+ ion peak at m/z 359.2553, suggesting
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a molecular formula of C21H36O3 (calcd 359.2557). All the proton and carbon resonances
of 6 and 7 were assigned by detailed 1D 1H- and 13C-NMR analysis and a combination of
2D NMR [1H–1H-correlated spectroscopy (1H–1H COSY), heteronuclear single-quantum
coherence spectroscopy (HSQC), and heteronuclear multiple-bond correlation (HMBC)].
The 1H and 13C NMR data for compounds 6 and 7 are shown in Table 1.

Table 1. NMR spectroscopic data for gracilioether M (6), 11,12-dihydrogracilioether M (7), and
9,10-dihydroplakortone G (8) in CDCl3 *.

Atom
Compound 6 Compound 7 Compound 8

δC
a δH

b (J in Hz) δC
a δH

b (J in Hz) δC
a δH

b (J in Hz)

1 166.9, C 166.9, C 173.5, C
2 83.4, CH 4.81, s 83.5, CH 4.82, s 135.8, C
3 171.9, C 171.9, C 150.1, CH 6.83, ovlc

4 139.9, C 140.0, C 89.3, C

5 139.7, CH 6.22, s 139.7, CH 6.23, s 36.9, CH2
1.60, m
1.73, m

6 98.0, C 97.9, C 20.6, CH2 1.10–1.38, ovl c

7 38.1, CH2
1.65, m
1.78, m 37.8, CH2

1.65, m
1.78, m 33.3, CH2

1.10–1.38, ovl c

1.10–1.38, ovl c

8 21.4, CH2 1.10–1.30, ovl c 20.9, CH2 1.10–1.30, ovl c 38.6, CH 1.10–1.38, ovl c

9 35.1, CH2
1.29, m
1.29, m 33.1, CH2

1.10–1.30, ovl c

1.10–1.30, ovl c 33.2, CH2
1.10–1.38, ovl c

1.10–1.38, ovl c

10 44.3, CH 1.72, m 38.6, CH 1.10–1.30, ovl c 28.8, CH2 1.10–1.38, ovl c

11 133.2, CH 5.01, dd (8.8,
15.2) 32.7, CH2

1.10–1.30, ovl c

1.10–1.30, ovl c 23.0, CH2 1.10–1.38, ovlc

12 132.1, CH 5.33, m 28.8, CH2 1.10–1.30, ovl c 14.1, CH3 0.86, t (7.4)
13 25.6, CH2 1.97, m 23.0, CH2 1.10–1.30, ovl c 18.5, CH2 2.28, m
14 14.2, CH3 0.94, t (7.5) 14.1, CH3 0.87, t (7.2) 12.0, CH3 1.15, t (7.5)

15 18.5, CH2 2.17, m 18.5, CH2 2.17, m 29.9, CH2
1.70, m
1.79, m

16 12.0, CH3 1.15, t (7.5) 12.0, CH3 1.15, t (7.5) 7.7, CH3 0.80, m

17 30.8, CH2
1.72, m
1.84, m 30.8, CH2

1.75, m
1.84, m 30.0, CH2

1.10–1.38, ovl c

1.10–1.38, br m
18 8.0, CH3 0.79, m 8.0, CH3 0.79, m 10.7, CH3 0.80, m

19 28.1, CH2
1.10–1.30, ovl c

1.10–1.30, ovl c 30.9, CH2
1.10–1.30, ovl c

1.10–1.30, ovl c

20 11.6, CH3 0.79, m 10.7, CH3 0.79, m
21 50.5, CH3 3.68, s 50.5, CH3 3.68, s

* All assignments are based on COSY, HSQC, and HMBC experiments. a Recorded at 125 MHz. Multiplicities
were obtained from the Attached Proton Test (APT) experiments. b Recorded at 500 MHz. c Overlapped signal.

The two-dimensional molecular structures for gracilioether M (6) and 11,12-dihy
drogracilioether M (7) were successfully determined based on gradient-selected correlation
spectroscopy (gCOSY), total correlation spectroscopy (TOCSY), HSQC, and HMBC data.
Copies of all the spectra can be found in the supplementary materials as Figures S1–S14.
Careful spectroscopic analyses clearly show a distinction between the two compounds:
gracilioether M (6) possessed an additional olefin at the C11–C12 position (δH 5.02, H11; δH
5.34, H12; δC 133.3, C11; δC 132.2, C12) when compared against 11,12-dihydrogracilioether
M (7) (δH 1.10–1.20, H11α; δH 1.10–1.20, H11β; δH 1.10–1.20, H12; δC 32.7, C11; δC 28.8,
C12). However, it is important to mention that the furanylidene functionality present
in 6 and 7 is the same as that reported for compounds 1–5 [17–20] on account of the
fact that all these compounds display the same key resonances, which are ascribable to
that functionality.

Conversely, despite our best efforts, 11,12-unsaturated butyrolactones 9,10-dihydr
oplakortone G (8) and plakortone G (9) were isolated as an inseparable mixture. This
mixture was obtained as a yellowish optically active oil: [α]20

D-38.3 (c 0.87, CHCl3). The
evaluation of the HRESIMS of the mixture suggested that it consisted of two compounds
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with formulae C18H30O2 ([M+Na]+ m/z 301.2138 found, 301.2138 calcd) and C18H32O2
([M+Na]+ m/z 303.2299 found, 303.2295 calcd) for 8 and 9, respectively. The evaluation
of the NMR data for compound 9 (shown in Table S1 in the supplementary materials)
indicated that it matched those reported for plakortone G [22]. Likewise, the structure
of compound 8 was demonstrated by a combination of 2D NMR (1H–1H COSY, HSQC,
HMBC) and high-resolution mass spectrometry data. The 1H and 13C NMR data for
compound 8 are reported in Table 1.

3.2. In Vitro Drug Luminescence Assay against Plasmodium Berghei

The evaluation of gracilioether M (6), 11,12-dihydrogracilioether M (7), and the mix-
ture of 9,10-dihydroplakortone G (8) and plakortone G (9) for antiplasmodial activity
was assessed through an in vitro drug luminescence assay against P. berghei [24,25]. The
P. berghei model is typically used to initially test potential antiplasmodial compounds in
research and is one of the preclinical steps in drug development [28–30]. P. berghei is closely
related to human malaria parasites, as their life cycles and pathophysiology are similar [31].
Additionally, the complete life cycle is easy to maintain in laboratory settings [32]. Figure 3
illustrates the results obtained for Plakortis metabolites 6–9 at 10 µM. It was observed that
the percentage of parasite growth decreased to ~70–75 % when compared with the control
group (100%). However, these findings revealed that none of the compounds tested inhib-
ited parasite growth by >50% at 10 µM, which indicated that these marine natural products
did not possess significant antiplasmodial activity when compared against chloroquine
(positive control, EC50 = 23.23 nM, the dose–response curve for chloroquine is included as
Figure S23 in the supplementary materials), a common drug employed for the treatment
of malaria [33]. Due to the lack of significant antiplasmodial activity of compounds 6–9,
the EC50 values of these compounds were not determined. However, the dose–response
curves are included as Figures S24–S26 (see Supplementary Materials).
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Figure 3. Results for antiplasmodial activity at 10 µM. These data represent one experiment in
triplicate. Bars represent the standard deviation. None of the compounds tested inhibited parasite
growth by 50% at 10 µM.

3.3. In Vitro Cytotoxicity Assay against MCF-7 Cell Line

The in vitro cytotoxicity assessment for gracilioether M (6), 11,12-dihydrogracilioether
M (7), and the mixture of 9,10-dihydroplakortone G (8) and plakortone G (9) was conducted
employing a human breast cancer MCF-7 cell line after 72 h of treatment. These experiments
were performed using a concentration range of 0-400 µM. Table 2 provides a summary of
the percentages of cell viability and the coefficients of variation (%CV) resulting from the
MCF-7 cells treated with compounds 6 and 7 and the mixture of compounds 8 and 9.
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Table 2. Percentages of cell viability of MCF-7 cells treated with compound 6 (gracilioether M), com-
pound 7 (11,12-dihydrogracilioether M), and the mixture of compounds 8 (9,10-dihydroplakortone G)
and 9 (plakortone G).

Concentration
(µM)

Compound 6 Compound 7 Mixture of Compounds
8 and 9

% Cell
Viability % CV % Cell

Viability % CV % Cell
Viability % CV

400 7 5 0 0 32 5
200 43 5 10 3 71 5
100 78 4 69 4 78 3
50 83 5 82 5 85 5
25 89 4 92 5 85 4
13 88 3 103 3 84 2
6 87 3 101 3 87 3
3 90 3 101 2 89 4
2 91 3 96 5 92 3
0 100 4 100 4 100 5

Figure 4 illustrates the dose–response curve (IC50 curves) of MCF-7 cells after 72 h of
treatment. The cell viability assays reveal IC50 values > 100 µM for all the analyzed marine
natural products after treating the human breast cancer MCF-7 cells. The measured IC50
values were 169, 119, and 299 µM for gracilioether M (6), 11,12-dihydrogracilioether M
(7), and the mixture of 9,10-dihydroplakortone G (8) and plakortone G (9), respectively.
These findings demonstrate that the title compounds do not display significant cytotoxicity
effects against MCF-7 cells when compared with letrozole (10) (positive control, IC50 = 20
µM) [27], a drug that is usually prescribed for the treatment of estrogen receptor-positive
(ER-positive) breast cancer subtypes, represented here by MCF-7 cells [34].
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Figure 4. Dose–response or IC50 curves of the human breast cancer MCF-7 cell line for (red) com-
pound 6 (gracilioether M), (green) compound 7 (11,12-dihydrogracilioether M), (blue) the mixture of
compound 8 and 9 (9,10-dihydroplakortone G and plakortone G), and (black dashed lines) letrozole
(10) as positive control.

4. Discussion

Once the planar molecular structures of the designated natural products were eluci-
dated as depicted in 6–8 based on the analyses outlined above, our attention was diverted
toward establishing their relative stereochemistry. Two out of the twenty-one carbons of 6
and 7 are stereogenic, and their location along the C8 acyclic tail made the configurational
assignment somewhat difficult. Initially, the relative configurations of the stereocenters at
C6 and C10 in compounds 6 and 7 were tentatively established through comprehensive
analyses that included comparisons of proton and carbon chemical shifts along with proton
NMR coupling data between each of these compounds (Table 1) and those reported for
compound 1 [17]. Furthermore, a 2D NOESY experiment allowed us to reduce the num-
ber of possible stereoisomers surrounding the furanylidene moiety. Figure 5 highlights
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a few of the 2D NOESY cross-peaks that were observed for compound 6. The actual 2D
NOESY NMR spectrum of 6 (Figure S8) has been included in the Supplementary Materials.
Most notably, the presence of cross-peaks between H2-15 and both H2 and H5 indicated
that these protons lie within close proximity to each other in both gracilioether M (6) and
11,12-dihydrogracilioether M (7).
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Regarding the C6 and C10 in compounds 6 and 7, the absence of reliable cross-peaks
that were ascribable to Hs near these centers made it impossible to assign their relative
stereochemistry based on NOE correlations alone. Notwithstanding this, the fact that
we managed to convert 6 into 7 by selective catalytic hydrogenation (vide infra) proved
categorically that these compounds share a common stereochemistry at C6 and C10. At this
time, we remark that this conclusion was later substantiated through detailed comparisons
of relevant NMR chemical shifts of compound 7 with those of 9,10-dihydroplakortone G (8)
(see Table 1).

To finalize our configurational assignments for compounds 6 and 7, we conducted a
series of chemical correlation studies (Scheme 1) inspired by the prior work of Kowashi and
coworkers [35], who had firmly established the absolute configuration of plakortone G (9)
as 4R,8R. We commenced our investigation by conducting the catalytic hydrogenation of
the mixture of 9,10-dihydroplakortone G (8) and plakortone G (9) (H2, Pd-on-C, EtOAc, 8 h).
This simple procedure led to compound 8 as the sole product and thus quickly established
its absolute configuration as 4S,8R. Thereafter, the absolute configuration for gracilioether
M (6) and 11,12-dihydrogracilioether M (7) at C6 and C10 could be inferred following a
similar strategy. In the first place, we successfully transformed compounds 6 and 7 into
plakortone G (9) and 9,10-dihydroplakortone G (8), respectively, through chemoselective
PCC oxidative cleavage, as outlined by Perkins [23] [PCC (0.03 mmol), 4 Å MS (10.0 mg),
1,2-dichloroethane (10 mL), reflux 15 h]. Since we had already succeeded at converting 6
into 7 by selective catalytic hydrogenation, the 6 ⇒ 9 and 7 ⇒ 8 degradations effectively
established the absolute stereochemistry of all the new compounds. A summary of all the
chemical interconversions conducted during this investigation is shown in Scheme 1. In the
second place, in so far as the configurational assignments for the ∆2 and ∆11 olefins in 6 (or
∆2 in 7) are concerned, we used the following strategy: The (Z)-geometry shown at ∆2 in 6
and 7 was based on the presence of strong nuclear Overhauser effect (NOE) interactions
between the protons attached to C2 and C15 (Figure 5). Regarding the geometry of ∆11 in 6,
the large coupling constant (15.1 Hz) detected between protons H11 and H12 combined
with the conspicuous absence of NOEs between them support the (E)-geometry.
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Arguably, the lack of activity of 6–9 against P. berghei might be attributed to the absence
of an endoperoxide ring system in them. Prior research has consistently highlighted the
pivotal role of this specific structural feature in conferring antimalarial activity [36,37].
The endoperoxide ring system is known for its ability to generate reactive oxygen species
within the parasite’s cells, ultimately leading to the destruction of the malaria-causing
pathogen [38–41]. Hence, the absence of this moiety in compounds 6 and 7 and the mixture
of 8 and 9 aligns favorably with the observed lack of activity against the malaria parasite.
This finding underscores the importance of the endoperoxide motif in the design and
development of antimalarial agents and provides valuable insights for future research in
this field.

As far as our in vitro cell viability experiments are concerned, we noticed that our data
revealed that none of the tested natural marine products exhibited discernible anticancer
activity against the cell line used throughout this work. The reduced effectiveness of
compounds 6–9 against MCF-7 cells may be explained by the absence of hydrophilicity in
their molecular structures. This contrasts with letrozole (10), which contains several nitrile
and 1H-1,2,4-triazole groups, as indicated in Figure 4. These functional groups within
structure 10 provide multiple sites for potential interactions through hydrogen bonding
within the enzyme pocket site of MCF-7 cells [42].

The observation regarding a plausible hydrophilic binding in the enzyme pocket site
of MCF-7 cells finds support in the fact that several natural marine products, renowned for
their remarkable anticancer activity against this breast cancer cell line, exhibit even lower
IC50 values than those reported for letrozole (10), since they also feature highly hydrophilic
functional groups throughout their molecular structures. For instance, 2,2-bis(6′-bromo-
3′-indolyl)ethylamine (11), an alkaloid that was isolated for the first time from the marine
tunicate Didemnum candidum [43] and later reisolated from the marine sponge Gellius sp.,
demonstrated an IC50 of 3.4 µM against MCF-7 cells [44]. The natural marine products de-
picted in Figure 6, which include alkaloids such as 2,2-bis(6′-bromo-3′-indolyl)ethylamine
(11), kuanoniamine A (12), kuanoniamine C (13), and neopetrosiamine A (14), peptides
like microcianamide A (15), microciamide B (16), hemiasterlin A (17), hemiasterlin B (18),
and stylissatin B (19), the macrocycle polyketide disctyostatin-1 (20), steroids such as ara-
gusterol A (21) and sterols 22–23, and terpenoids like palaluolol (24), thorectandrol B (25),
metachromin U (26), and metachromin (27), were sourced from the research conducted by
Hussain et al. [45]. These compounds have been spotlighted for their substantial activity
against MCF-7 cells. They all share highly hydrophilic functional groups throughout their
molecular structures, thus facilitating strong interactions through hydrogen bonding. In
contrast, compounds 6–9 lack such an affinity due to their extensive hydrophobic carbon
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chain, making these chemical interactions difficult. Figure 6 provides an overview of the
chemical structures of some representative natural products that were isolated from marine
sponges with significant activities against MCF-7 cells. The corresponding IC50, IG50, or
ED50 values for these compounds are also showcased in Figure 6.
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Figure 6. Natural marine products with significant activity against human breast cancer MCF-7 cell
lines. The compilation shown was achieved using partial data provided by Hussain et al. [45] and
corroborated at the sources. Illustration created with Biorender.com.

Equally important, the human breast cancer MCF-7 cells employed during this work
represent one of the most common types of breast cancer as an ER-positive breast cancer
subtype that expresses estrogen receptors [34,46]. Letrozole, employed here as the control
positive, is a type II aromatase inhibitor that prevents the transformation of androgens to
estrogens (required for breast cancer cell proliferation) using the aromatase enzyme [47,48].
It is conceivable that the absence of cytotoxic activity in compounds 6–9 could be explained
due to their marked differences in molecular structure when contrasted with letrozole, thus
causing them to be ineffective inhibitors of the aromatase enzyme.

5. Conclusions

Two new polyketides containing the [2(5H)-furanylidene]ethanoate moiety, gracil-
ioether M (6) and 11,12-dihydrogracilioether M (7), along with new 9,10-dihydroplakortone
G (8), were isolated from the n-hexane extract of the Caribbean sponge P. halichondrioides.
Their molecular structures, including absolute configuration, were characterized using
a combination of spectroscopic analysis and chemical correlation studies that involved
well-known reactions such as PCC oxidative cleavage and catalytic hydrogenation. These
methods also allowed us to assign the correct geometry for the ∆2 and ∆11 stereocenters in
6 and 7. The lead molecules identified herein belong to a large class of bioactive polyketide
natural products that become highly diversified through the formation and decompo-
sition of cyclic endoperoxide intermediates [11,49]. To date, members of this family of
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natural products include spongosoritin A [17,18] and the related plakilactones or gracil-
ioethers [19,50]. Herein, we report that compounds 6 and 7, and a mixture of compounds 8
and 9, failed to inhibit 50% of P. berghei’s growth at a concentration of 10 µM. The lack of a
biological response is likely due to the absence of an endoperoxide moiety in the molecular
structure of these compounds. Additional experiments are required to fully understand
the absence of cytotoxicity in gracilioether M (6), 11,12-dihydrogracilioether M (7), and
9,10-dihydroplakortone G (8) against human breast cancer cells. Unfortunately, the scarcity
of the new compounds isolated hindered our efforts to further investigate the potential
impact of these compounds on other human breast cancer cell lines. This predicament
severely limits any future perspectives.
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