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Abstract: The correct identification and timely pre-warning of driving behavior risks can remind
drivers to correct their unsafe driving behaviors effectively. First of all, four risk evaluation indicators
of driving behavior were defined based on lateral and longitudinal driving characteristics: the
lateral stability indicator, the longitudinal stability indicator, the car-following risk indicator, and the
lane-changing risk indicator. The Pearson correlation coefficient method was used to analyze the
correlation of the four indicators, and the conclusion showed that the four indicators were very weakly
correlated or presented an irrelevant correlation. Thus, the four indicators can describe different
driving behavior risks. Secondly, the criteria importance through intercriteria correlation (CRITIC)
method was used to determine the weight of each indicator, and a comprehensive measurement
model of driving behavior risk was established. To test the model, this study preprocessed the
trajectory data of small vehicles in Lanes 1–5 of the I-80 Expressway from the NGSIM dataset,
collected statistical analysis results of vehicle speed and acceleration, and obtained the parameters
data required for risk assessment. Then, based on the obtained trajectory data, the variation laws
and the thresholds of the four indicators were determined by using the interquartile difference
method. Finally, by using the K-means clustering algorithm, the risk types of driving behavior were
divided into four categories, namely, dangerous, aggressive, safe, and conservative. The dangerous,
aggressive, safe, and conservative driving behaviors accounted for 5.40%, 23.30%, 43.22%, and 28.08%
of the total samples, respectively. The expert’s assessment results of the driving behavior risk aligned
with the results obtained from the model measurements. This indicated that the driving behavior risk
measurement model here described can evaluate a driver’s risk status in real time, provide safety
tips for the driver, and offer theoretical support for driving safety warning systems.

Keywords: traffic safety; driving behavior; risk measurement; CRITIC weighting method; clus-
ter analysis

1. Introduction

With the continuous development of urbanization, the number of vehicles has in-
creased gradually, and the traffic safety situation is still grim. Several studies showed that
an abnormal driving behavior of drivers is the main factor that causes traffic accidents [1,2].
Therefore, the correct identification and timely pre-warning of abnormal driving behaviors
can effectively remind drivers to correct their driving behavior, which is of great signifi-
cance for reducing road traffic accidents. By analyzing traffic accident data in the CIDAS
database, Hu et al. [3] concluded that drivers with dangerous driving behaviors were
closely related to accidents and constructed an evaluation system to describe this relation-
ship. Guo et al. [4] established a traffic collision risk prediction model for highways after
analyzing the relationship of between dangerous driving behaviors and traffic accidents.
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Ucar et al. [5] established an abnormal driving behavior management system and adopted
mitigation strategies to improve the safety of all test vehicles by about 10 times based on
the actual traffic data in Virginia.

As a measure of a driver’s various operational performances during driving, driving
behavior is affected by many aspects. Singh et al. [6] reviewed natural driving research and
data collecting methods, discussed various factors that influence the driving behavior, and
found that the driving behavior was the main cause of most road accidents. Song et al. [7]
used the SHRP2 large-scale questionnaire to study the relationship between demographic
characteristics, sensation seeking, risk perception, and dangerous driving behavior, finding
that lower levels of sensation seeking and higher levels of risk perception can serve to
inhibit dangerous driving behaviors. Linkov et al. [8] studied the relation of personality
variables and driving behavior safety and concluded that the driver’s personality with a
high sense of seeking and a low sense of responsibility is closely related to a higher mean
speed and a higher risk behavior during driving.

Currently, there are three methods for studying the driving behavior: questionnaire
surveys, driving simulations, and algorithmic models. Among them, questionnaire surveys
require a large amount of manpower, and the cost of driving simulations is high. It
is most suitable to use an algorithm model for the evaluation of the driving behavior.
Chandra et al. [9] used the centrality function C-Measurement to classify drivers’ behavior;
they proposed a formula to quantify the driving behavior and divided it into four categories
by combining the graph theory and social psychology. Wang et al. [10] proposed a new
pattern recognition algorithm for unsupervised driving behavior data to discover the
common driving behavior patterns for each cluster. Van et al. [11] collected data for
different driving behaviors through a driving simulator, including maximum speed, lateral
position, and distance from the preceding car, and compared the objective data retrieved
by the driving simulator with the resulting scores of a questionnaire. The results showed
that people may have a different understanding of the safety level of driving behaviors.
The measurement of driving behavior risks is also a popular research field. However, the
majority of data utilized in driving behavior risk measurement is derived from videos and
simulation experiments. The length of road sections captured by video is limited, and
simulation experiments struggle to provide accurate driving behavior trajectory data. In
recent years, with the acquisition of a vast quantity of natural driving trajectory data, it has
become possible to conduct in-depth research on vehicle driving behavior. Jiang et al. [12]
proposed a new improved traffic conflict indicator, based on trajectory data collected
using unmanned aerial vehicles (UAVs), that builds upon the strengths of conventional
indicators and addresses their limitations. These indicators require the definitions and
calculations for three types of traffic conflicts (rear-end, lane change, and with fixed objects)
that accurately reflect real traffic risks. Park et al. [13] designed accurate algorithms to
extract vehicle trajectory data from video data collected by UAVs and then proposed a
lane-changing risk factor. This risk factor can provide a safety evaluation for the target
vehicle and adjacent vehicles during lane change. Yang et al. [14] proposed a real-time
driving behavior safety level classification and evaluation framework based on driving
behavior data and divided the driving behavior into normal driving, low-risk driving,
and high-risk driving by using the k-means clustering method, the hierarchical clustering
method, and the model-based clustering method, respectively. Based on the analysis of a
large number of trajectory data, Matousek et al. [15] proposed an abnormal driving pattern
detection method based on outlier detection to detect the driving behavior of drivers.
This method does not require specific data for normal driving behaviors and various
abnormal driving behaviors and is very reliable in detecting abnormal vehicle-driving
behaviors. In terms of risk measurement for driving behavior, the extant research primarily
concentrates on evaluating traffic conflicts and predicting the likelihood of traffic collisions,
while lacking a comprehensive risk assessment of various driving operations performed by
drivers. Concurrently, the existing research on driver classification focuses on considering
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a driver’s overall driving style and lacks an evaluation of the driver’s driving behavior risk
at each moment.

Furthermore, research on driving behavior could be applied in many frontier research
fields, such as autonomous driving and ecological driving, in the future. Collin [16] used
the autonomous driving rule manual to analyze the safety of driving behavior, formulated
the driving behavior of driverless vehicles through the precise definition of rules, and
made good use of trajectory violation indicators to help identify specific unsafe scenes.
Xiang et al. [17] proposed a hybrid model composed of the cloud model and the Elman
neural network to predict dangerous driving behaviors based on vehicle motion state
estimation and passenger subjective evaluation, which could provide a practical solution
for safe driving. Based on research into the rules governing the association between driving
behavior and accident risk, the individual driving behavior can be quantitatively evaluated
and utilized as an index for assessing the accident risk. The research findings related to
the driving behavior can be applied to driver training, enhancing driving safety, develop-
ing driver behavior recommendation systems, or formulating personalized insurance for
vehicles, and hold significant value.

In summary, the extant research on driving behavior risk measurement is not com-
prehensive and lacks a well-suited model for the real-time evaluation of driving behavior
risks. The primary contributions of this study are as follows: (a) we utilized the NGSIM
vehicle trajectory dataset as the data source for our research and employed a more accurate
method to extract the required trajectory data; (b) we comprehensively measured the driv-
ing behavior risk from three perspectives: driving, car-following, and lane-changing. The
parameters used in the established index model are easily collectible; (c) we constructed a
risk measurement model for driving behavior and clustered the driving behavior risk into
four categories. This model can assess the risk status at each moment during the driving
process of a vehicle in real-time. The research results can be used for monitoring and
warning against hazardous driving behaviors, driver training, and the creation of driver
behavior recommendation systems.

This paper is organized as follows: Section 2 introduces the driving behavior risk
indicators established in this study and the methods used; Section 3 conducts a case
analysis through the NGSIM data set, establishes a driving behavior risk measurement
model, divides the driving behavior risk categories through cluster analysis, and at the same
time, tests the driving behavior risk measurement model; Section 4 provides a summary of
this work.

2. Methods
2.1. Driving Behavior Risk Measurement

During the driving process, the driving behavior mainly includes lane-keeping, car-
following, and lane-changing behaviors [18,19]. Thus, this study defined four quantitative
indicators for three aspects (driving stability, car-following, and lane-changing safety), and
analyzed their correlation by using the Pearson correlation coefficient. Then, the threshold
of each indicator was calculated by using the interquartile difference method.

2.1.1. Risk Measurement Indicators

1. Driving stability indicator

The driving stability indicator includes lateral stability and longitudinal stability.

(a) Lateral stability indicator. The magnitude of lateral displacement serves as an
intuitive measure of a vehicle’s lateral deviation and can be readily computed
using the lateral coordinates in the trajectory data. The lateral stability of
vehicles during driving is evaluated by describing the coefficient of varia-
tion [20,21] of the lateral displacement offset. To calculate the lateral stability
indicator of the vehicle in frame t, this study selected the data changes of the
first 40 frames for description. The formula is shown in Equations (1) and (2).
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Dx(t) = |X(t)− X(t− 1)| (1)

R1(t) =
std(Dx(t− 40), · · · , Dx(t))

mean(Dx(t− 40), · · · , Dx(t))
(2)

where X(t) is the lateral coordinate of the target vehicle at frame t, Dx(t) is the lateral offset
of the target vehicle in the period [t − 1, t], std is the standard deviation, and mean is the
mean. The ratio of std to the mean is the coefficient of variation. The larger the coefficient of
variation is, the greater the dispersion of lateral displacement will be. It also shows that the
higher the probability of the vehicle serpentine driving is, the worse the driving stability
will be.

(b) Longitudinal stability indicator. Variations in a vehicle’s velocity during op-
eration can result in trajectory oscillations [22], with acceleration serving as
a metric for quantifying such fluctuations. Longitudinal stability is mainly
described by the difference between real-time acceleration and average accel-
eration of a vehicle in the period T. The formula is shown in Equation (3).

R2(t) =

√
∑T

i=t|ai − a|
T

(3)

where ai represents the acceleration of the target vehicle at frame i, and a represents the
average acceleration of the target vehicle in the period T. The value of T in this study was
40 frames, which was measured by the driving stability of the vehicle in the first 40 frames
of the frame t. The greater the value of R2 is, the greater the possibility of driving speed
instability, and the worse the longitudinal stability during driving.

2. Car-following risk indicator

Time to collision (TTC) is a widely employed metric in the assessment of vehicular
risk [23,24]. In this study, we utilized the inverse of TTC (ITTC) as an indicator of the
car-following risk. The larger the car-following risk indicator is, the smaller the value of
the TTC, and the higher the risk during car following will be. The formula is shown in
Equation (4).

R3(t) =
VF(t)−VP(t)

YP(t)−YF(t)− LP(t)
(4)

where YF(t) and VF(t) are the longitudinal coordinates and speed of the following vehicle,
respectively, and YP(t), VP(t), LP(t) are the longitudinal coordinates, speed, and length of
the vehicle being followed, respectively.

3. Lane-changing risk indicator

The Difference between Space distance and Stopping distance (DSS) is a prevalent
distance-based risk metric employed primarily in the computation of safe distances for
collision avoidance [25]. First of all, this study calculated the DSS value between the
target vehicle and three adjacent vehicles during lane changing. The formula is shown in
Equation (5).

DSS(t) =
V2

p (t)−V2
F (t)

2ug
+ YP(t)−YF(t)− LP(t)− τVF (t) (5)

where DSS(t) is the difference between the space and the stopping distance between the
following and the followed vehicles, u is the fractional rate, g is the acceleration of gravity,
and τ is the reaction time, with its value being 1.5 s when the rear vehicle accelerates and
0.7 s when the rear vehicle decelerates or drives at a constant speed. When DSS > 0, the
space distance between the front and the rear vehicles is greater than the stopping distance,
and no risk of collision between them is observed. When DSS < 0, the space distance is not
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enough for the rear vehicle to stop during an emergency, and there is a risk of collision
between them.

The ratio of the absolute value of DSS to the speed of the rear vehicle can reflect the
missing reaction time required by the driver [26]. The formula is shown in Equation (6).

T(t) =

{
0 , DSS(t) > 0
|DSS(t)|

VF(t)
, DSS(t) < 0

(6)

where T is the missing reaction time required by the driver to avoid a collision, and VF(t)
represents the longitudinal speed of the following vehicle.

Finally, this study considered the maximum values of three missing reaction times for
describing the risk of lane changing. The three missing reaction times are related to the
target vehicle and the front vehicle in the same lane, the target vehicle and the front vehicle
in the target lane, and the target vehicle and the rear vehicle in the target lane. The greater
the value of this indicator is, the longer the missing reaction time. It means that the safety
of lane changing is worse. The formula is shown in Equation (7).

R4(t) = max
(

Top(t), Tcp(t), Tc f (t)
)

(7)

where Top(t), Tcp(t), Tc f (t) represent the missing reaction time between the target vehicle
and the front vehicle before and after the lane change.

2.1.2. Indicators Correlation Analysis

Risk measurement indicators are used to describe the risk status of driving behavior
during driving. The Pearson correlation coefficient is a statistical parameter used to reflect
the degree of linear correlation between two variables [27–29]. To test the degree of
correlation between each indicator, this study used the Pearson correlation coefficient. The
correlation coefficient is represented by r, and its value is between −1 and 1. When r > 0,
two risk metrics of driving behavior are positively correlated. When r < 0, two metrics are
negatively correlated. This study used the absolute value of r to define the correlation. The
larger the absolute value of r, the stronger the correlation. The correlation between two
risk metrics of driving behavior is strong when |r| ≥ 0.7, moderate when 0.4 ≤ |r| < 0.7,
weak when 0.2 ≤ |r| < 0.4, and extreme weak or irrelevant when |r| < 0.2. The formula is
shown in Equation (8) [30,31].

r =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2·
√

∑n
i=1
(
Yi −Y

)2
(8)

where n is the sample of vehicle trajectory data, Xi, Yi are the observed values of any two
risk metrics of driving behavior, and X, Y are the mean values of the corresponding risk
metrics of driving behavior.

2.1.3. Indicators Threshold Analysis

This analysis shows that the driving behavior is dangerous when a certain indicator
exceeds the risk threshold during driving. The interquartile difference method was used to
solve the risk threshold of each indicator in this study.

The variation of lateral stability and longitudinal stability was selected to evaluate the
driving stability. For these two indicators, the smaller the lateral displacement variation and
the longitudinal speed variation, the smaller the driving stability indicator, thus the more
conservative the driving behavior. Conversely, the higher the driving stability indicator,
the more aggressive the driving behavior, and the higher the possibility of a dangerous
driving behavior. Therefore, the upper boundary was used as the threshold of the driving
stability indicator.
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The inverse of TTC was used to describe the car-following risk and as an evaluating
indicator. The smaller the value of TTC, the greater the car-following risk. Thus, the upper
boundary was used as the threshold of the car-following risk indicator in this study.

The lane-changing risk indicator was used to describe the danger level for a vehicle
during lane changing. Therefore, the larger the lane-changing risk indicator is, the higher
the possibility of accidents in the process of changing lane. Thus, the upper boundary
served as the threshold for the lane-changing risk indicator.

The interquartile difference method can be used to detect outliers far from the data
center [32]. For driving behavior risk metrics, a driving behavior with a score that is
lower than the threshold is more conservative. Abnormal values above the threshold
represent high values of the driving behavior risk metric, which correspond to dangerous
driving behaviors. For example, the driving behaviors characterized by lateral stability
exceeding the threshold often present serpentine driving (dangerous driving situations) [33].
The threshold [34] of the i-th driving behavior indicator can be calculated according to
Equation (9)

Threshold = Q3 + 1.5× IQR (9)

where Q3 is the upper quartile of the driving behavior risk metrics, and IQR is the interquar-
tile difference, that is, the difference between the upper quartile and the lower quartile.
Each driving behavior risk measurement indicator is calculated separately to judge the
possible abnormal value of the corresponding indicator.

2.2. Cluster Analysis Method of Driving Behavior
2.2.1. Risk Indicators Weighting Analysis

The correlation analysis of the four indicators showed that there was no significant
correlation between them. Therefore, the weight values of each indicator were calculated
using the CRITIC weighting method, and a comprehensive measurement model for driver
driving behavior risk was established. The risk measurement result of driving behavior
from the measurement model was obtained from a comprehensive evaluation of various
driving behaviors of a driver, simultaneously. In the preceding paragraph, the upper
boundary of each evaluation indicator was used as the risk threshold, which also represents
dangerous driving behaviors. Thus, the result of the measurement model is also inversely
proportional to safety.

The driving behavior risk measurement model also represents the transition from
conservative to dangerous behaviors as the value of the indicator increases. Before the
driving behavior risk indicator is weighted, each indicator must be normalized to avoid
the influence of the unit dimension among different driving behavior risk indicators. The
min–max standardization method selected in this study could eliminate the differences
among the indicators [35]. The formula is shown in Equation (10)

R∗i =
Ri − Ri−min

Ri−max − Ri−min
(10)

where R∗i is the normalized value of the i-th driving behavior risk metrics. Ri is the
initial value of the i-th driving behavior risk metric sample, and Ri−min and Ri−max are
the minimum and the maximum sample values of the i-th driving behavior risk metrics,
respectively.

The CRITIC weighting method is an objective weighting method that measures the
indicators comprehensively based on the contrast strength and the conflict between the
indicators [36]. Thus, the normalized data were weighted by using the CRITIC weight-
ing method in this study. The objective weight [37] of each indicator is expressed by
Equation (11)

Wj =
Cj

∑P
j=1 Cj

(11)
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where Wj and Cj are the weight and the information amount of the j-th driving behavior
risk metrics, respectively. The formula [38] is shown in Equation (12)

Cj = Sj × Rj = Sj

n

∑
i=1

(
1− rij

)
(12)

where Sj is the standard deviation of the j-th driving behavior risk metrics, that is, the
variability of indicator. The larger the value of Sj is, the greater the dispersion of the
indicator will be, and the more the information it can reflect. Thus, the indicator has greater
evaluation strength, and its weight value should be bigger. Rj stands for the conflicting
indicator of the j-th driving behavior risk metrics, and rij represents the correlation be-
tween the indicators i and j. The stronger the correlation, the less the conflict between
this and other indicators, and the more repetitive the evaluation content reflected. The
weight distribution value of this indicator will be smaller. The value of rij can be obtained
through the pairwise correlation analysis of the driving behavior risk metrics reported in a
previous article.

2.2.2. Risk Measurement Results Clustering Algorithm

The k-means clustering algorithm, also known as k-means algorithm, treats data as
points in K-dimensional space and performs clustering analysis based on the distance. The
variable K represents the clustering into K clusters, and means represents taking the mean
of the data in each cluster as the center of the cluster. In the assessment of the driving
behavior, K-means clustering exhibits exceptional applicability and convenience [14].

Based on the K-means clustering algorithm, this study defined four cluster centers,
namely, dangerous, aggressive, safe, and conservative behaviors. The conservative type
of behavior means that the driving behavior is too conservative during driving. This
behavior has a high degree of safety but is not conducive to improving the actual traffic
capacity of a road. The safe type of behavior means that the driving behavior is in an
ideal state and ensures driving safety, which is most conducive to the improvement of the
actual traffic capacity of a road. The aggressive type of behavior means that the driver
has some aggressive driving behaviors, such as frequent acceleration and deceleration
during driving, which are dangerous. The dangerous type of behavior means that the
driver adopts extremely dangerous driving behaviors, such as sudden braking and frequent
overtaking, which are extremely dangerous.

The 301,111 driving behavior risk measurement results from the trajectory data of
600 vehicles were clustered in the four cluster centers: dangerous, aggressive, safe, and
conservative. The initial cluster center points of the four types of data from large to small
were taken as the initial cluster center points from the 301,111 trajectory data, and the
distance among the four cluster centers and the risk measurement results of each driving
behavior were determined. According to the principle of the smallest distance, each driving
behavior risk measurement result was assigned to the four clusters: dangerous, aggressive,
safe, and conservative. Then, the calculation of the new cluster center point was performed,
and iteration was repeated until convergence [39].

The distance between the driving behavior risk measurement results and the four
cluster centers adopts the Euclidean distance [40,41]. The formula is shown in Equation (13).

dis
(
Xi, Cj

)
=

√
m

∑
t=1

(
Xit − Cjt

)2 (13)

where Xi represents the risk measurement of the i-th driving behavior 1 ≤ i ≤ n, Cj
represents the risk measurement cluster center of the j-th driving behavior 1 ≤ j ≤ k, Xit
represents the i-th driving behavior’s risk measurement of the t-th trajectory data, 1≤ t≤m,
and Cjt represents the j-th driving behavior’s risk measurement cluster center of the t-th
trajectory data.
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The calculation of the cluster center [42] of the trajectory data of each driving behavior
risk measurement cluster is presented in Equation (14).

Ct =
∑Xi∈Sl

Xi

|Sl |
(14)

where Cl represents the center of the l-th driving behavior risk measurement cluster,
1≤ l≤ k, |Sl | represents the number of objects in the l-th driving behavior risk measurement
cluster, and Xi represents the i-th object of the l-th driving behavior risk measurement
cluster, 1 ≤ i ≤ |Sl |.

3. Case Analysis and Discussion
3.1. Data Sources

In this study, the vehicle trajectory dataset from the I-80 road section in the NGSIM
dataset was selected. The detected road section is located on Interstate 80 in Emeryville, as
shown in Figure 1.

Figure 1. Schematic diagram of the I-80 detection section.

The detection area comprises eight lanes, of which lane 1 is the high-occupancy vehicle
lane, lane 6 is the distribution lane, lane 7 is the entry ramp, lane 8 is the exit ramp, and
lanes 1–6 are unidirectional lanes with a length of about 503 m. The driving direction
is from south to north, the average flow rate is 7124 veh/h, and the average speed is
8.32 m/s. This study selected the data from the congestion period, which contains a large
number of trajectory data of car-following and lane-changing behavior and well meets the
data requirements.

3.2. Data Preprocessing
3.2.1. Data Extraction

The NGSIM dataset contains a large amount of trajectory data. The parameters
available are detection frame number, vehicle identification number, vehicle length, and the
coordinate data of vehicles’ front center. The list of raw data used in this study is shown in
Table 1.

3.2.2. Trajectory Data Preprocessing

According to existing research literature, there are some outliers and measurement
errors in the NGSIM trajectory data, which have a great negative impact on the calibration
and verification of the models. Furthermore, the vehicles’ speed and acceleration in NGSIM
are obtained from first-order and second-order derivatives of longitudinal displacement,
respectively. The error of speed and acceleration will be magnified 10 times and 100 times
if the longitudinal displacement contains errors. Therefore, it was necessary to smooth the
NGSIM data.
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Table 1. Original data of the NGSIM dataset.

Parameter Describes Unit

Vehicle_ID vehicle identification number /
Frame_ID frame of data at a certain moment 0.1 s

Total_Frame total of frames of the target car in the dataset 0.1 s
Global_Time timestamp Ms

Local_X lateral coordinate of the front center of the vehicle Feet
Local_Y longitudinal coordinate of the front center of the vehicle Feet
v_length vehicle length Feet
v_Class vehicle type 1-Motorcycle, 2-Car, 3-Truck
Lane_ID current lane position of the vehicle /

Preceding vehicle ID number of the preceding vehicle on the same lane /
Following vehicle ID number of the rear vehicle on the same lane /
Location street name or highway name /

Many existing methods can be used for processing the NGSIM data, but most of them
directly smooth the speed and acceleration obtained from the derivation of the longitudinal
trajectory of vehicles, which will lead to overprocessing and affect the actual accuracy of
trajectory to a certain extent. To meet the research needs of this study, some processing on
the dataset was first carried out. The specific treatment scheme was as follows:

1. Convert the imperial units in the dataset into international standard units, exclude
the data of trucks and motorcycles, and only keep the data of small cars in the I-80
highway as the research object.

2. Handling abnormal data in NGSIM dataset. The data marked with the same vehicle
ID under different vehicle trajectories are relabeled, and then abnormal vehicles with
mismatched framerates are eliminated due to lane-changing behavior. Abnormal data
in the data collection, such as negative vehicle spacing, are also eliminated.

3. Renumber the vehicle ID of the sample data and recalculate the speed, acceleration,
and following distance of each vehicle in each frame according to ”Local_X” and
"Local_Y" in the dataset. The formula is shown in Equations (15)–(19).

Vxi(t) =
Xi(t + n)− Xi(t)

0.1n
(15)

Vyi(t) =
Yi(t + n)−Yi(t)

0.1n
(16)

Axi(t) =
Vxi(t + n)−Vxi(t)

0.1n
(17)

Ayi(t) =
Vyi(t + n)−Vyi(t)

0.1n
(18)

Di(t) = Yj(t)−Yi(t)− Lj(t) (19)

where Vxi(t) and Vyi(t) represent the lateral and the longitudinal speed of vehicle i at frame
t, respectively, Xi(t) and Yi(t) represent the lateral and the longitudinal coordinates of
vehicle i at frame t, respectively, Axi(t) and Ayi(t) represent the lateral and the longitudinal
acceleration of vehicle i at frame t, respectively, n represents the difference between the
frames, Di(t) represents the car-following distance, Yj(t) and Lj(t) represent the longitu-
dinal coordinate and the length of the vehicle j being followed, and Yi(t) represents the
longitudinal coordinate of the following vehicle i.

4. This study did not consider the collector–distributor lanes and the entrance and exit
ramps. Thus, only lanes 1–5 were reserved as the research object. The front and
rear vehicle information of vehicle i is searched through data matching, and only the
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vehicle i with continuous frames that can match the front and rear vehicle information
is reserved as the research object of the car-following risk measurement.

5. For the lane-changing behavior, this study only chose vehicles with single lane-
changing behavior as the research objects of the lane-changing risk measurement.

6. The Z-standardized scoring method was used to judge abnormalities of the screened
data and remove the noise in the dataset. The Z-standardized scoring formula [43] is
expressed by Equation (20).

Z =
y− µ

σ
(20)

where y represents the observed value, and µ and σ represent the mean value and the
standard deviation of the observed value, respectively.

3.2.3. Data-Preprocessing Results

1. Velocity mean and standard deviation

The average and standard deviation of the speed can reflect the quality of a driver’s
driving behavior during driving. The higher the average speed of the vehicle is, the greater
the possibility of overspeed during driving will be. A large standard deviation of speed
indicates that the speed varies greatly. Through the analysis of the data in the dataset, the
mean and standard deviation of the vehicle speed were obtained (as shown in Figure 2).

Figure 2. Mean and standard deviation of vehicles’ speed.

Figure 2 shows the mean and standard deviation of the vehicles’ speed according to
the sample data. The variation range of the average vehicle speed was 4–14 m/s, and that
of the standard deviation was 1–3. Data analysis showed that vehicles with a higher mean
speed also had higher standard deviations, which also suggests a poorer driver behavior.

2. Acceleration mean and standard deviation

The acceleration can reflect the amplitude of the driving speed adjustment during
driving, further reflecting the driving stability of vehicles. Therefore, an overall analysis
was conducted on the acceleration data in the dataset in this study, selecting the mean and
standard deviation of the acceleration for analysis, as shown in Figure 3.
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Figure 3. Mean and standard deviation of vehicles’ acceleration.

Figure 3 shows that the values of acceleration averages were mainly within the range
of (−0.5, 0.5). Excessive acceleration means that the vehicle accelerates or decelerates
rapidly. In the sample data with vehicle ID greater than 400, the standard deviation of
acceleration largely fluctuated, and the possibility of speed instability was high.

3.3. Calculation and Correlation Analysis
3.3.1. Results of the Driving Behavior Risk Measurements

Based on the obtained vehicle trajectory data, the risk assessment results of each
driving behavior could be obtained by using four risk measurement index calculation
formulas. The results of the driving behavior risk metrics are shown in Figure 4.

Figure 4. Distribution of driving behavior risk measurement results.

Figure 4 shows the distribution of the evaluation results of the four driving behavior
risk indicators. As shown in Figure 4, the values of each indicator are concentrated in
the lower numerical range, and only a small part of the data are concentrated in the
larger numerical range. The upper boundary of each indicator was considered as the risk
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threshold, which means that the risk of driving behavior was greater at the distribution
points in the area with larger values.

The change in lateral displacement is closely related to the lateral driving stability
of a vehicle during driving, and the change in the longitudinal speed of a vehicle can
reflect speed stability. A lower value of the indicator R1 indicates that the lateral driving
stability of a vehicle is better, and a lower value of the indicator R2 indicates that the
longitudinal driving stability of a vehicle is better. For the evaluation of the indicator R3
for the car-following risk, a larger value indicates that the car-following risk is greater, and
the possibility of collision is greater. The value of the lane-changing risk indicator R4 is
relatively small in Figure 4, and the number of sample data with a low value was far greater
than that with a high value. A larger value of the indictor R4 indicates a higher risk for the
vehicle during lane changing.

3.3.2. Correlation Analysis Results

Table 2 shows the results of a pairwise comparison of the four indicators (the lateral
stability indicator, the longitudinal stability indicator, the car-following risk indicator, and
the lane-changing risk indicator).

Table 2. Correlation analysis of the risk measure indexes.

Indicator R1 R2 R3 R4

R1 1.000 0.160 ** −0.040 ** −0.036 **

R2 0.160 ** 1.000 0.053 ** 0.043 **

R3 −0.040 ** 0.053 ** 1.000 0.072 **

R4 −0.036 ** 0.043 ** 0.072 ** 1.000
In the table, ** indicates that the correlation is significant at the 0.01 level (two-tailed).

Table 2 shows that the correlation coefficient between R1 and R2 was 0.160, thereby
showing a very weak positive correlation for the two indicators. For other indicators,
the correlation coefficient was lower (e.g., it was 0.072 between R3 and R4). Thus, the
four driving behavior evaluation indicators were very weakly correlated or showed an
irrelevant correlation, and the risk measurement of the driving behavior could be calculated
by weighting.

3.4. Driving Behavior Risk Measurement Model
3.4.1. Coefficient Normalization Results

For the convenience of data processing, a normalization processing of the indicators’
values was conducted, which did not affect the distribution of the data. The normalization
results for each indicator are shown in Figure 5.

Figure 5 shows the normalized distribution of each indicator after normalization,
and the density position of each indicator data aggregation varied. The values of R1, R2,
and R3 were mainly distributed in the range of 0–0.6, and the density peak points were
concentrated between 0.1 and 0.2. The values of R4 were mainly distributed in the interval
[0.0, 0.2]. The data of each indicator showed a trend of normal distribution. Considering
the ends of the normal distribution, the left end represents more conservative driving
behaviors, whereas the right end represents more dangerous driving behaviors. A higher
value of the risk metrics represents a greater risk of driving behavior. The values of the four
risk metrics in the interval [0.6, 1.0] of the normal distribution were lower. The reason is that
in the driving behavior dataset in this study, the data for dangerous driving behaviors were
relatively few. For example, the total number of R1 was 301,111, the number of R1 < 0.4 was
289,739, whereas the data for other intervals (corresponding to aggressive and dangerous
driving behaviors) only accounted for 3.8% of all data.
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Figure 5. Normalization results for the driving behavior risk indicators.

3.4.2. Weight Calculation Results

According to the above formula, the weights of various indicators (e.g., the driving
stability indicator, the car-following risk indicator, and the lane-changing risk indicator)
were calculated, and the results are shown in Table 3.

Table 3. Weights of the risk measure indexes.

Indicator Sj Rj Cj Wj

R1 0.65652 2.916 1.91442 0.397

R2 0.54565 2.744 1.49726 0.310

R3 0.13637 2.915 0.39751 0.082

R4 0.34692 2.921 1.01336 0.210

The driving behavior risk measurement of each vehicle in frame i was calculated
according to the weight in Table 3. MOR refers to the comprehensive risk evaluation results
of all driving behaviors for each vehicle in frame i. The calculation formula and distribution
of MOR are presented in Equation (21)

MOR = 0.397R1 + 0.310R2 + 0.082R3 + 0.210R4 (21)

where R1 and R2 represent the indicators of the lateral and longitudinal stability, respec-
tively, both of which determine the driving stability indicator, and R3 and R4 are the
indicators of car-following and lane-changing risk, respectively. Based on the dataset, the
frequency distribution of the driving behavior risk measurements was obtained, as shown
in Figure 6.

Figure 6 shows that the overall data presented a normal distribution, the risk mea-
surement for most drivers’ driving behavior was between 0.1 and 0.3, and the remaining
samples showed a lower frequency. For the MOR data, the lower their value, the more
conservative a driver’s driving behavior. Conversely, the higher their value, the more
aggressive a driver’s driving behavior.
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Figure 6. Frequency distribution of the driving behavior risk measurements.

3.5. Driving Behavior Risk Measurements’ Threshold Results

Through the comparison of the threshold results of the driving behavior risk metrics,
the division degree of the sample data of the indicator by the interquartile difference
method was analyzed (Table 4).

Table 4. Threshold results of the risk measure indicators.

Indicator Threshold Percentage of Dangerous Driving Behaviors

R1 2.560 3.35%

R2 2.160 6.12%

R3 0.324 6.26%

R4 1.470 0.90%

Table 4 shows that the interquartile difference method could extract the respective
thresholds according to different data to judge the distribution of abnormal data better. The
proportion of dangerous driving behaviors that corresponded to different indicators varied.
The boxplot of the interquartile difference method is shown in Figure 7.

Figure 7. Boxplot graph of the risk measure indexes.
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Figure 7 illustrates that the values of each indicator basically conformed to the normal
distribution, and most of the data were within the interquartile difference range. Only
a small part was outside the boundary range, which represented the dangerous driving
behavior. For example, for R1, the threshold of the interquartile difference was 2.560, which
means that the data outside the upper boundary of 2.560 were abnormal data, that is,
the vehicle appeared to perform serpentine driving, which accounted for 3.35% of the
total data.

3.6. Cluster Results of the Driving Behavior Risk Evaluation

The K-means clustering algorithm was selected to cluster the result of driving behavior
risk measurement in this study. First, the risk measurement model was used to measure
the driving behavior risk extracted from the trajectory data of 600 vehicles in the NGSIM
dataset, and the MOR value of each driving behavior in each frame was obtained. The
MOR value at each moment was used to evaluate the driver’s driving behavior at that
time. The initial cluster centers were sorted based on the magnitude of the assessed risk,
and the driving behavior risk measurement results were correspondingly divided into four
categories, namely, dangerous, aggressive, safe, and conservative.

The clustering results of the K-means clustering algorithm are shown in Tables 5 and 6.

Table 5. Cluster centers of the K-means clustering algorithm.

Cluster Name Dangerous Aggressive Safe Conservative

Initial cluster center 0.42 0.31 0.21 0.00

final cluster center 0.27 0.18 0.13 0.08

Table 6. Proportion of each cluster.

Cluster Range Proportion (%)

Dangerous [0.23, 0.47] 5.40

Aggressive [0.16, 0.23) 23.30

Safe [0.10, 0.16) 43.22

Conservative [0.00, 0.10) 28.08

As can be seen in Tables 5 and 6, the K-means clustering algorithm was used to iteratively
classify the driving behavior risk measurement model and finally determine the four types for
the driving behavior risk measurement. The range of [0, 0.10) for the MOR value represents
a conservative driving behavior, accounting for 28.08% of the total sample. The range of
[0.10, 0.16) for the MOR value represents a safe driving behavior, accounting for 43.22% of
the total sample. The range of [0.16, 0.23) for the MOR value represents an aggressive driving
behavior, accounting for 23.30% of the total sample. The range of [0.23, 0.47] of the MOR
value represents a dangerous driving behavior, accounting for 5.40% of the total sample.
The clustering results showed that most of driving behavior was safe and conservative. The
proportion of aggressive driving behavior was small, and that of dangerous driving behavior
was even less. It showed relatively few dangerous driving behaviors in a normal driving
environment. The clustering results of the driving behavior risk measurement are shown in
Figure 8.

Figure 8 shows the cluster results of the risk measurement for four types of driving
behaviors. The range of the MOR value is [0, 0.47], which includes four evaluation results:
dangerous, aggressive, safe, and conservative. Among them, the dangerous type was
characterized by the largest range, but the sample size was small, only accounting for 5.40%
of the entire sample. This showed that the driving behavior risk measurement model will
sensitively judge a behavior as dangerous when the vehicle shows a dangerous driving
behavior. According to the clustering results of the driving behavior risk measurement, the
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driving behavior of each driver at different times during driving can be analyzed, that is,
the same driver may have different driving behaviors under various conditions, as shown
in Figure 9.

Figure 8. Clustering results of the driving behavior risk measurement.

Figure 9. MOR clustering for a single driver.

In Figure 9, it can be seen that the considered driver showed four driving behaviors
during driving, the safe driving behavior accounted for the largest proportion, and the
dangerous driving behavior only appeared around the 220th frame. The four driving
behavior clusters obtained by the K-means clustering algorithm can thus reflect the security
types of driving behavior in real time during driving accurately.

3.7. Cluster Results Verification

In the previous section, the threshold result for each risk indicator was determined,
which was then used to test the final clustering results. The worse the risk measurement
of driving behavior is, the higher the percentage of the risk indicators for drivers’ various
driving behaviors exceeding the threshold should be. The integration results of the data
are shown in Tables 7 and 8.
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Table 7. Cluster results of the driving stability indicator.

Cluster
R1 R2

Mean Range Percent Over Threshold Mean Range Percent Over Threshold

Dangerous 2.526 [0.355, 6.245] 46.10% 2.152 [0.000, 6.053] 51.12%

Aggressive 1.669 [0.039, 3.603] 3.65% 1.470 [0.000, 3.638] 13.58%

Safe 1.060 [0.005, 0.245] 0% 1.189 [0.000, 2.588] 0.35%

Conservative 0.540 [0.004, 1.624] 0% 0.817 [0.000, 1.752] 0%

Table 8. Cluster results of the car-following risk and lane-changing risk indicators.

Cluster
R3 R4

Mean Range Percent Over Threshold Mean Range Percent Over Threshold

Dangerous 0.159 [0.003, 2.859] 10.98% 0.647 [0.005, 3.584] 4.02%

Aggressive 0.136 [0.001, 2.771] 7.76% 0.605 [0.001, 1.563] 3.24%

Safe 0.117 [0.001, 2.421] 5.68% 0.428 [0.002, 2.036] 0.51%

Conservative 0.111 [0.002, 1.659] 4.95% 0.294 [0.001, 1.564] 0.57%

Tables 7 and 8 show that the average value of each coefficient is higher when the
risk measurement result of the driving behavior is worse. For example, the average value
of the lateral displacement change indicator for the dangerous type was 2.526, whereas
that for the conservative type was only 0.540. The maximum value of the longitudinal
stability indicator for the dangerous type was 6.053, whereas that for the conservative
type was only 1.752. At the same time, for the dangerous and the aggressive driving
behaviors, the percentage of each coefficient exceeding the threshold was much higher
than that for the safe type and the conservative type. The coefficients for the dangerous
type and radical type were also different, which showed that the safety of a dangerous
driving behavior is poorer than that of an aggressive driving behavior. For the safe and
conservative driving behaviors, some of the values of the risk measurement indicators also
exceeded the threshold, but the proportion in excess was very small.

By comparing the thresholds of each coefficient with the clustering results, the test
results showed that clustering the driving behavior evaluation results into dangerous,
aggressive, safe, and conservative is correct and feasible to distinguish the driving be-
haviors of drivers. In order to further validate the effectiveness of the selected indices,
an experimental comparison was conducted on the driving behavior risk measurement
models composed of different indicators. Utilizing the CRITIC weighting method, three
new driving behavior risk measurement models were established, with the composition of
each model indicator shown in Table 9.

In Table 9, one or two indicators were removed from the driving behavior risk mea-
surement model, and the weight values of the indicators were recalculated. These three
kinds of driving behavior risk measurement models were used to calculate the driving
behavior risk measurement values, and clustering was completed through the K-means
clustering algorithm. We selected 20 vehicles among the 600 sample vehicles for the test. By
playing back the video, three experts in the field of traffic safety evaluated the risk of the
vehicle’s driving behaviors at each moment. In the end, the category of driving behavior
risk at each second for each vehicle was determined through discussion among the three
experts. A total of 1207 driving behavior risk measurement results evaluated by the experts
were collected in the experiment. The comparison between the expert evaluation results
and the model measurement results is shown in Table 10.
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Table 9. Weights of the driving behavior risk measurement models.

Model Composition
Weights

R1 R2 R3 R4

R1 + R2 0.546 0.454 0.000 0.000

R1 + R2 + R3 0.498 0.393 0.109 0.000

R1 + R2 + R4 0.424 0.338 0.000 0.238

Table 10. Results of the experiment.

Model Composition
Amount

Average Error Error Range
Dangerous Aggressive Safe Conservative

MOR (R1 + R2 + R3 + R4) 65 289 484 369 4.46% [1.61%, 7.69%]

R1 + R2 57 328 502 320 15.02% [11.02%, 18.19%]

R1 + R2 + R3 60 311 495 341 10.66% [6.74%, 13.64%]

R1 + R2 + R4 61 306 493 347 9.35% [6.49%, 14.10%]

Expert Evaluation Results 69 274 476 388 / /

Table 10 presents a comparison between the driving behavior risk measurements
obtained from different models and the expert evaluation results. The average error was
calculated as the ratio of the total number of cluster results measured by the model to the
expert evaluation results. The error range was determined by counting the error size for
each experimental vehicle. Firstly, when only considering the lateral stability indicator and
the longitudinal stability indicator, the average error of the model risk measurement was
the largest, with a significant discrepancy between the results identifying the dangerous
and conservative types and the expert evaluation results. Subsequently, the car-following
risk indicator and the lane-changing risk indicator were added to the model, resulting
in a 4.36% and 5.67% improvement in the model accuracy. This demonstrated that the
introduction of two indicators, the car-following risk indicator and the lane-changing risk
indicator, could effectively enhance the evaluation of driving behavior risk. Finally, the
measurement results of the risk measurement model composed of four indicators that
we established were consistent with the expert evaluation results, with an accuracy rate
of 95.54%. Through experimentation, it could be confirmed that the indicator setting of
the driving behavior risk measurement model is reasonable and effective. In contrast
to previous research [5,33], which often focused on individual indicators (e.g., following
distance and speed) or specific behaviors (e.g., serpentine driving), our model accounts
for lateral and longitudinal stability, car-following risk, and lane-changing risk to provide
a more comprehensive quantification of the driving behavior risk. The trajectory feature
variables used in our model can be easily and cost-effectively extracted from surveillance
and UAV videos. This will enables a real-time risk assessment of the driving behavior.

4. Conclusions

After analyzing the driving characteristics of vehicles, this research defined four
indicators for driving behavior risk measurement and established a driving behavior
risk measurement method based on the analysis of the driving trajectory data of a large
number of vehicles. Then, the driving behaviors were clustered into four types, namely,
dangerous, aggressive, safe, and conservative, based on the results of the driving behavior
risk measurement.

Four evaluation indicators can accurately measure the risk of driving behavior on the
basis of the lateral and longitudinal directions. The driving stability indicator includes the
lateral stability indicator and the longitudinal stability indicator. It is used to measure if
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a vehicle performs serpentine driving and has an unstable speed. The car-following risk
indicator that is expressed by the reciprocal of the collision time (TTC), is used to describe
the car-following behavior risk. The lane-changing risk indicator considers the relationship
between the target vehicle and adjacent vehicles (the front vehicles in the same lane, the
front and rear vehicles in the target lane during lane changing),and is used to evaluate
the safety degree of lane changing through the missing reaction time of the driver. Based
on the NGSIM dataset, the vehicle trajectory data were extracted in this study, and the
driving behavior risk measurement model was applied and verified by examples. The
results showed that the measurement indicators defined in this study are reasonable and
can accurately measure the driving behavior risk.

With the development of smart cities and big data, the availability of behavioral data
will become widespread. The data source of this study was the NGSIM dataset, and more
real-time vehicle trajectory data could be collected in the future. The results of this research
can provide a theoretical basis for drivers’ driving behavior recognition based on artificial
intelligence algorithms and further improve the accuracy of image recognition. In the
follow-up research, we will further improve the sample size, consider the risk measurement
for driving behaviors with multiple models, and consider more trajectory variables, such as
vehicle performance, road environment, and other influencing factors, to recognize driver
driving behavior risks better.
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