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Abstract: This paper presents a Deep Learning (DL) and Image-Processing (IP) pipeline that addresses
exposure recovery in challenging lighting conditions for enhancing First Responders’ (FRs) Situational
Awareness (SA) during rescue operations. The method aims to improve the quality of images captured
by FRs, particularly in overexposed and underexposed environments while providing a response
time suitable for rescue scenarios. The paper describes the technical details of the pipeline, including
exposure correction, segmentation, and fusion techniques. Our results demonstrate that the pipeline
effectively recovers details in challenging lighting conditions, improves object detection, and is
efficient in high-stress, fast-paced rescue situations.
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1. Introduction

Situational Awareness (SA) is critical for First Responders (FRs) during rescue oper-
ations. FRs must have a clear understanding of the location of individuals in need, any
potential risks, and any other essential factors crucial to properly and safely perform their
duties. The use of Artificial Intelligence (AI) and advances in object detection technology
can greatly enhance FRs’ SA by identifying and highlighting key elements, reducing their
cognitive burden, and improving their perception. However, these improvements are effec-
tive only in well-lit environments, while, in real-world scenarios, FRs often face challenging
conditions, such as smoke, dust, or limited visibility, which can impair both human and AI
perception. To overcome these challenges, it is necessary to utilise technology and equip
FRs with tools and resources capable to improve their SA in all situations and conditions.

One critical aspect of enhancing FRs’ perceptual ability is to improve their visibility un-
der adverse conditions, such as overexposed and underexposed scenarios.
Traditional approaches to image restoration and exposure correction rely on image his-
togram adjustments. Histogram-based methods operate on the statistical distribution of
pixel intensities in an image. These methods modify the histogram to make the image
visually appealing and better expose the features in the scene [1–4]. Other techniques,
related to Retinex theory [5], have also found wide application, both within and outside of
learning-based methodologies [6–11]. According to Retinex theory, the perceived colour of
an object depends on both the spectral reflectance of the object and the spectral distribution
of the incident light. Retinex-based exposure correction algorithms recover the original
reflectance of the scene by removing the effects of the illumination. Further research has
shown the effectiveness of High Dynamic Range (HDR) based techniques for exposure
correction. The most common technique for creating HDR images is to exploit the in-
formation of a stack of bracketed exposure Low Dynamic Range (LDR) images [12–15].
Other techniques reconstruct an HDR image from a single LDR image [16–20].

Despite significant advances in exposure correction techniques, it is essential to note
that existing methods are not optimised for rescue scenarios and may not meet the specific
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needs of FRs. To address this gap, we present a novel pipeline that integrates Deep Learning
(DL) and Image-Processing (IP) techniques specifically tailored to improve the operational
abilities of rescuers. Our method is designed to meet three main requirements: detailed
feature recovery, enhanced object detection, and efficiency. Detailed feature recovery refers
to the model’s ability to enhance a scene by revealing hidden features, whereas improved
object detection capabilities refer to the model’s capacity to enhance other DL techniques
by acting as an intelligence amplification (IA) layer. Furthermore, the pipeline has been
designed to handle the high-stress, fast-paced nature of rescue situations, where accurate
and quick information is crucial.

As a proof of concept, the pipeline has been tested on a data set created in the frame-
work of the Horizon 2020 project, “first RESponder-Centered support toolkit for operating
in adverse and infrastrUcture-less EnviRonments” (RESCUER), during the Earthquake
Pilot performed in Weeze, and organised by I.S.A.R Germany (International Search and
Rescue organisation).

The paper is structured as follows. In Section 2, we describe the technical details of the
pipeline, including exposure correction, segmentation, and fusion techniques, indicating
the DL and IP features involved in the process. We also introduce the data set used,
and how we collected the training data. In Section 3, we present different metrics of
model performance validation over the data set constructed in the Weeze Earthquake Pilot.
In Section 4, we discuss the results obtained in Section 3, highlighting the strengths and
potential applications of the proposed approach. Finally, in Section 5, we summarise the key
findings of our study and their implications, as well as highlight limitations and potential
areas for future research.

2. Materials and Methods

In rescue operations, the safety of both rescuers and victims relies on having accurate
and up-to-date information about the environment. The unpredictable and rapidly chang-
ing conditions of a disaster scene make it essential for rescuers to understand the physical
and geographical features of the area, as well as any human-made structures or infrastruc-
tures present. However, lighting deficiencies and scene degradation can present significant
challenges for rescuers in identifying key features, such as pathways, buildings, and other
landmarks. To address these challenges, we propose a pipeline that integrates both DL
and IP techniques specifically designed to handle extreme lighting conditions. In the fol-
lowing section, the pipeline graphics are depicted using the TM-DIED: The Most Difficult
Image Enhancement Dataset [21], which showcases images in various lighting scenarios
featuring diverse intensity shifts between regions that are underexposed, overexposed,
and correctly exposed.

2.1. Pipeline Design

The pipeline, as it is represented in Figure 1, comprises three main modules, each
playing a specific role in improving the quality of the final image. We designed the
first two, Exposure Correction (EC) and Exposure Segmentation (ES), to work in parallel.
Simultaneously advancing the flow enabled us to boost all the steps required to reach the
final module. EC aims to adjust the exposure of acquired images to an optimal level, using
a DL method that automatically adapts to different lighting conditions. The isolation of
Regions Of Interest (ROIs) based on their exposure levels is achieved by ES through the
application of IP techniques such as global thresholding and edge detection. ES allows the
system to process each ROI independently, ensuring that the final image contains only the
information of interest. Finally, the last module, Image Fusion (IF), combines both EC and
ES results to produce the final outcome. IF takes as input the information of all ROIs and
corrections collected from the previous stages and fuses them to create a single image with
an optimal exposure level.
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Figure 1. Pipeline overview. The figure represents the main flow of the pipeline. The modules
corresponding to Image-Processing (IP) techniques are coloured orange, whereas the module with
the Deep Learning (DL) framework is coloured blue.

2.1.1. Exposure Correction (EC)

The EC module adjusts the brightness and contrast of an image to achieve an optimal
level of visibility and detail. In recent years, researchers have proposed several DL methods
for exposure adjustments and demonstrated their effectiveness in several applications,
including surveillance, robotics, and photography [22–25].

In the following section, we describe the DL framework for exposure adjustment in
rescue scenarios. We subdivide it into two parallel branches, namely the Under-Exposure
Branch (UEb) and the Over-Exposure Branch (OEb), which perform the under- and overex-
posure corrections, respectively. Both share the same unsupervised DL model designed
for low-light image enhancement. In the UEb, we apply the model directly to the original
images to correct and recover their dark areas. Instead, for the OEb, we introduce a pre-
processing step on the original images to treat the overexposure correction as if it were
an underexposure recovery problem. After the application of the model, at the end of
OEb, a post-processing step is necessary to restore the original appearance of the images.
Further details on the processing procedures are given at the end of this section. The high-
level architecture of the EC module is outlined in Figure 2.

Further details about the main components of EC are provided below:
Low-Light DL model: As DL model, we used the SCI (Self-Calibrated Illumination) [8].

The model is designed to be fast and flexible, thus making it ideal for real-time situations
with unpredictable lighting conditions, such as those encountered in rescue scenarios.
To train the model, we selected low-light images from several publicly available datasets,
including LOL DATASET [6], Ex-Dark DATASET [26], MIT-Adobe FiveK [27]. This hetero-
geneous nature of the resulting data set was crucial to ensure that the training data set was
diverse and representative of a wide range of low-light scenarios.

The resulting training dataset comprises 2500 images captured under different indoor
and outdoor lighting conditions, thus ranging from high-quality images with good resolu-
tion and minimal noise to very noisy ones with low visibility. The dataset features various
scenes and subjects, including landscapes, indoor scenes, and objects, thus providing a var-
ied set of low-light scenarios. Diversity was further increased through data augmentation
techniques such as rotation, flipping, and cropping, which create additional images and
improve the model’s ability to generalise to different scenarios.
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OEb processing: To perform the overexposure correction, we first pre-process the input
exploiting the CIELAB color space since it separates colour information (encoded in the
a∗ and b∗ channels) from lightness information (encoded in the L∗ channel). Independent
manipulation of the L∗ channel has been valuable in reversing brightness without affecting
the colour appearance of the original images. In addition, CIELAB is designed to be
perceptually uniform, which means that equal changes in lightness should appear to
be equally perceptible. Therefore, inverting the L∗ channel results in negated images,
with the relative differences between the lightness values of different colours remaining
consistent. This pre-processed image is then fed to the OEb (see Figure 3). Once the model
is applied, we post-process the image by reversing the L∗ channel to recover its original
lighting distribution.

2.1.2. Exposure Segmentation (ES)

EC outputs complementary results, which need to be merged based on the exposure
conditions of the original image. The ES module identifies the overexposed or underex-
posed regions of the original image, thus allowing the construction of a final image with
a more balanced exposure and a wider range of details. Specifically, the module outputs
three binary images (MOE, MUE, and MCE), which refer to the Over, Under, and Correctly-
Exposed Masks, respectively (see Figure 4).

We created the segmentation masks using lightness, saturation, and contrast informa-
tion, as detailed in Equations (1)–(5). The first two components are retrieved from the HSV
(Hue, Saturation, Value) color space, which separates the chromatic (H and S) from the
lightness information (V). The Contrast (C) information is obtained by taking the absolute
value of the Laplacian of the grayscale version of the images and then applying a threshold
to the resulting Laplacian image. This thresholding step helps suppress low-amplitude
noise and retain only the most prominent features, resulting in the thresholded version of
C, denoted as TC.

The three visual attributes that contribute to mask generation are determined by the
properties of the regions being segmented. Overexposed regions occur when too much
light enters the camera, resulting in washed-out or overly bright images that appear white
and blown out. Conversely, underexposure happens when too little light enters the camera,
resulting in dark images with less vibrant colours.

Figure 2. Exposure correction (EC). The figure illustrates the EC module, comprising two parallel
branches. The upper branch, labelled as the Under-Exposure Branch (UEb), displays the direct
application of the Low-Light DL model to the original image. The second branch, identified as the
Over-Exposure Branch (OEb), exhibits the intermediate processing steps required for correction.
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(a) L∗ channel histogram
of the image before pre-
processing.

(b) L∗ channel histogram
of the image after pre-
processing.

(c) The image before pre-
processing.

(d) The image after pre-
processing.

Figure 3. OEb input generation. The image on the left is the original, and the image on the right is
after pre-processing. Above each image is the histogram distribution of their lightness (L∗) channel.
The conversion from (c) to (d) enabled us to treat the overexposure correction as an underexposure
recovery problem.

Figure 4. Exposure segmentation (ES). The input is the image under the original lighting conditions.
The outputs are three binary images (MOE, MUE and MCE), which represent the Over, Under and
Correctly-Exposed Masks, respectively.

Masks were obtained using the following thresholding relationships:

MOE(i, j) =
{

1, V(i, j) > 0.9∧ S(i, j) < 0.1
0, V(i, j) ≤ 0.9∨ S(i, j) ≥ 0.1

(1)

MUE(i, j) =
{

1, V(i, j) < 0.1
0, V(i, j) ≥ 0.1

(2)

MCE(i, j) = ¬(MOE(i, j) ∨MUE(i, j)) (3)
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where MOE, MUE, and MCE are the Over-Exposed, Under-Exposed, and Correctly-Exposed
Masks. V and S are the Value and the Saturation channels of the HSV version of the
image scaled between [0, 1]. To include edges and textures information, for each mask M∗,
we applied:

M∗ ∨ TC (4)

where TC is the following binary mask:

TC(i, j) =
{

1, C(i, j) ≥ 0.9
0, C(i, j) < 0.9

(5)

The selection of threshold values for the over- and underexposed masks was guided
by both empirical observation and domain knowledge, the latter being derived from a litera-
ture review of typical brightness and saturation ranges for such regions.
This knowledge allowed us to narrow the range of values to test empirically and helped us
select threshold values that were more likely to capture the relevant characteristics of the
image [28–32].

We experimentally tested various threshold values to determine the optimal ones and
visually evaluated the resulting masks to assess their accuracy in identifying over- and
underexposed regions. Based on this evaluation, we found that a threshold value of 0.9
for brightness and 0.1 for saturation was effective in detecting overexposed regions, while
a threshold value of 0.1 for brightness was effective in identifying underexposed regions.
Examples of masks generated using different thresholds are presented in Appendix A.
Figure 5 highlights some results of the ES module.

Figure 5. Segmentation masks. The figure represents some examples of our segmentation.

2.1.3. Image Fusion (IF)

In the final stage of the pipeline, the intermediate results are merged to produce
the final, corrected image. The module takes the original image (X) and the intermediate
correction results, namely XOE for the OEb correction and XUE for the UEb correction, along
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with their respective non-overlapping masks (MCE, MOE, and MUE) as input. The merging
process, as introduced in [33], relies upon a Hadamard product (denoted by the symbol ◦)
to combine the input images and their corresponding masks:

Y = X ◦MCE + XUE ◦MUE + XOE ◦MOE (6)

The formula ensures that the final image is a combination of the correctly exposed
regions of the original image and the regions corrected by the UEb and OEb branches,
as defined by their respective masks. This property is guaranteed by the fact that the three
masks (MCE, MOE, and MUE) are mutually exclusive and together form a matrix of ones,
except for the edges.

Although Equation (6) ensures that the resulting image covers all the desired regions,
it may produce abrupt transitions and visible artefacts. Therefore, to produce a final image
with smooth transitions between regions and a natural-looking appearance, we utilise the
Laplacian Pyramid Blending [34], which involves the following steps:

Pyramid Creation: Construction of the Laplacian Pyramids of X, XUE and XOE, as well
as the Gaussian Pyramids of MCE, MUE and MOE.

Layer Fusion: Apply Equation (6) layer-wise to the pyramids generated in the previous
step to obtain the Pyramid of Blended images (Pyrb).

Reconstruction: Reconstruct the final image from Pyrb by performing the following
steps: at each level, expand the current layer with lower resolution to match the size of
the next level in the pyramid. Add the expanded layer to the corresponding layer in the
pyramid to form a higher-resolution blended image. Repeat this process until the final level
is reached, yielding the final blended image with the original resolution.

3. Results

In this section, we report on the results of the pipeline and show that it meets the
requirements for rescue scenarios. To do so, we evaluate its performance in terms of details
recovery, object detection improvement, and efficiency.

As stated in Section 1, we measure the effectiveness of our method on the data set
collected at the Weeze earthquake pilot. Our dataset comprises 282 images that depict
earthquake scenarios, taken both indoors and outdoors. The images are available in both
RAW and JPG formats and have a resolution of 3840 × 5750 pixels. They were captured in
a variety of exposure settings, mostly featuring buildings and humans in the scenes.

3.1. Details Recovery

A crucial aspect of the pipeline is enhancing images through heightened detail, but the
subjective nature of image quality poses a challenge in demonstrating improvements.
To address this issue, we analysed several aspects of our results.

Reference-based Image Quality Analysis: In this section, we evaluate the quality of
the images produced by the pipeline by comparing them with reference images (R). R is
obtained by using Automatic Exposure Bracketing (AEB) [35], a technique that captures
the same scene several times at different exposure levels.

To quantify the similarity between the reference images and the pipeline’s outputs, we
utilise two widely used image quality metrics: Mean Squared Error (MSE) and Structural
Similarity Index (SSIM) [36]. Both metrics are computed for both the original and the
output images with respect to the reference images. MSE computes the average of the
squared differences between the pixel intensities of two images, while SSIM compares
the structural information and texture of the images to provide a measure of similarity.
By deriving both metrics for the original images and the pipeline’s outputs, we determine
whether the pipeline outputs are more similar to the reference images than the original ones.
The average MSE and SSIM for both sets of images are presented in Table 1. In addition
to reporting the average MSE and SSIM for the original and output images, we analysed
the distribution of these metrics across all images used in our evaluation. In Appendix B,
we use box plots to visualise the distribution of the MSE and SSIM values for both sets of
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images (Figure A4); we also display a sample of the images along with their corresponding
MSE and SSIM values in Tables A1 and A2.

Table 1. The table represents the average Mean Squared Error (MSE) and Structural Similar-
ity Index (SSIM) for both the original images (X) and the corrected images (Y) with respect to
their references (R).

MSE SSIM

Original (X) 0.101 ± 0.051 0.331 ± 0.185
Corrected (Y) 0.033 ± 0.014 0.476 ± 0.130

Image Characteristics Evaluation: The image characteristics of both original images
and pipeline results were assessed using a set of metrics, including Texture (T), Entropy (E),
Object Count (OC), Segmentation Masks (SM), and Hue Similarity Index (HSI).

T (Texture): Measures the visual pattern or structure of the images. We compute it by
getting the variance of random images’ windows.

E (Shannon Entropy): Measures the degree of disorder in the images. A higher value
indicates that the image has more information content, whereas a lower value indicates
that the image has less degree of uncertainty. The comparison of Shannon entropy [37] of X
and Y quantifies the changes in information content resulting from the correction process.

OC (Object Count): OC represents the number of objects in an image. We obtain the
metric by counting the connected components of the images. In particular, a connected
component is defined as a set of pixels in the image that are connected through a path of
neighbouring pixels of similar intensities.

Table 2 displays the values of the three metrics mentioned above, calculated for both
the original and corrected images. To reduce any noise that may have been introduced
during the exposure correction process, we applied an average smoothing filter to the
images. Taking this step ensures that the metrics reflect the amount of detail recovered
from the corrected images.

Table 2. Texture (T), Entropy (E), and Object Count (OC) table. The table represents the average
metrics for both the original (X) and the output images (Y).

T E OC

Original (X) 0.011 ± 0.022 0.0013 ± 0.035 ∼144
Corrected (Y) 0.141 ± 0.012 0.0215 ± 0.003 ∼867

SM (Segmentation Masks): Segmentation masks are used to identify different regions
or objects within an image. In particular, we used the mask MCE to identify well-exposed
areas of the images before and after correction, as shown in Figure 6.

Figure 6. Segmentation Masks (SM). The upper part represents the Correctly-Exposed Mask of the
original images (MCEX ). The lower part depicts the same mask on the pipeline results (MCEY ).
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HSI (Hue Similarity Index): Hue Similarity Index is a metric used to measure the
similarity between the hue values of the original and corrected images. We calculated HSI
as the Pearson correlation coefficient [38] on the Hue channel of the HSV version of the
original and corrected images.

Figure 7 shows the box plot of the HSI values for the original and corrected hue
channels. Our results demonstrate a linear relationship between the two pairs of images,
indicating that our pipeline effectively preserves colour consistency.

Figure 7. The figure reports the box plot of the Hue Similarity Index (HSI) for the original and
corrected hue channels.

Visual Inspection: To demonstrate the effectiveness of our procedure, we compare the
results (Y) obtained by applying the pipeline to the initial images (X) with the reference
images (R), as shown in Figure 8.

Figure 8. Visual comparison. The illustration shows a comparison of the original image (X), the image
produced by the pipeline (Y), and the benchmark image (R).
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3.2. Object Detection Improvement

In rescue scenarios, accurately locating and identifying individuals is critical.
However, when a scene is not properly exposed, certain features of its objects can be ob-
scured or washed out, making it difficult for the detector to identify them. To test and evalu-
ate the pipeline’s effectiveness in identifying people, we used the YOLOv7 [39] object detec-
tor, which is a state-of-the-art deep learning model for object detection.
Specifically, we used the pre-trained weights of YOLOv7 on the Microsoft COCO: Common
Objects in Context data set [40], which contains a large number of annotated images of
objects belonging to 80 different categories, including people. We applied the detector to
both the original and corrected images, to assess its performance in identifying people
under different lighting conditions.

The detector performances were evaluated using: Precision (P), Recall (R), F1-score
(F1), and Average Precision (AP). Precision computes the proportion of true positives
(correctly detected people) among the total number of people detected. Recall is a measure
of the proportion of true positives among the total number of actual people. F1-score is
the harmonic mean of precision and recall. Average Precision (AP) evaluates the accuracy
of the detector based on its precision and recall and it is calculated as the area under the
Precision-Recall (PR) curve, which plots the precision values against the corresponding
recall values at different detection thresholds.

The performances are summarised through the Precision-Recall (PR) and F1-Confidence
curves shown in Figure 9a,b. Additionally, the Average Precision (AP) is reported in Table 3
to provide a comprehensive evaluation of our model’s performance. In Figure 10, we also
provide a visual comparison of the predicted bounding boxes.

3.3. Efficiency

Having fast corrections is of the utmost importance in real-time operational scenarios.
Therefore, one of the requirements of the pipeline is that it has a response time suitable for
rescue scenarios. To evaluate the pipeline efficiency, we first calculate the time needed to arrive
at the IF module (1st stage) and then the time required for the fusion (2nd stage). Calculating
the time of the 1st stage is a matter of computing the longest time between the parallel
branches of the pipeline (see Figure 11). In Table 4, we report the running time (s) for images
of different shapes (Width (W), Height (H), Channels (C)) by averaging 10,000 experiments
conducted on an NVIDIA GeForce GTX 1650 using the CUDA toolkit version 11.7.

(a) Precision-Recall (PR) curve. (b) F1-Confidence curve.
Figure 9. (a,b) show that a greater Area Under the Curve (AUC) corresponds to the corrected images.

Table 3. Average Precision. The table represents the Average Precision (AP) values for both the original
(X) and the corrected (Y) images, calculated using the Precision-Recall (PR) curve displayed in Figure 9a.

Average Precision (AP)

Original (X) 0.501
Corrected (Y) 0.658
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Figure 10. People detector. The figure represents the predicted boxes on some of the original and
output images.

Table 4. Computation time. The table represents the average running time for images of
different shapes.

(W , H, C) 1st Stage (s) 2nd Stage (s) Total (s)

(128, 128, 3) 0.0011 0.0015 0.0026
(256, 256, 3) 0.0014 0.0041 0.0055
(512, 512, 3) 0.0027 0.0238 0.0265

(1024, 1024, 3) 0.0125 0.1036 0.1161
(2048, 2048, 3) 0.0424 0.3975 0.4399

Figure 11. Stages overview. The figure represents the stages of the total computing time.
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4. Discussion

The results of our pipeline indicate that it effectively meets the requirements for rescue
scenarios. Our methodology was able to improve image detail, enhance object detection,
and provide fast processing.

As described in the details recovery Section 3.1, we used several metrics to evaluate the
image characteristics of the pipeline’s outputs compared to the original images. The results
showed that the pipeline was able to improve the complexity of the image’s texture, increase
the information content, and augment the number of objects detected. Reference-based
image quality analysis also demonstrated that the pipeline was able to produce images
with higher quality compared to the original images, as evidenced by the reduced MSE
and increased SSIM. Visual inspection further supported these results, providing a clear
side-by-side comparison of the original, reference, and corrected images.

One of the main objectives of this model was to improve the light environment to
boost the efficiency of other vision DL models, and this goal has been achieved as detailed
in the object detection improvement Section 3.2. The section highlighted how the pipeline
was able to improve the performance of the YOLOv7 object detector in the detection of
people. The results indicated that the corrected images allowed the model to identify
individuals with higher Precision, Recall, F1-score, and Average Precision compared to
the original images. The Precision-Recall and F1-Confidence curves, as well as the visual
comparison of the predicted bounding boxes, provided clear evidence of the improvement
in people detection.

The Efficiency Section 3.3, indicates that the pipeline was able to process and provide
information quickly enough to meet real-time requirements, which is essential in rescue
scenarios. The results showed that the pipeline was able to reach the IF module (1st stage)
and complete the fusion stage in a reasonable time even for images with different shapes.

5. Conclusions

In this study, we propose a pipeline of Deep Learning (DL) and Image-Processing
(IP) techniques to improve the Situational Awareness (SA) of First Responders (FRs) in
adverse lighting conditions. The pipeline consists of three modules: Exposure Correction
(EC), Exposure Segmentation (ES), and Image Fusion (IF). EC aims to adjust the exposure
of the acquired images to an optimal level, ES separates the images into regions of interest
based on their exposure levels, and IF combines both the EC and ES results to produce
the final image. The proposed method offers a solution to the challenges faced by FRs to
enhance their operational capacity and allow them to make more informed decisions in
high-pressure and fast-paced rescue scenarios.

While our method has shown improvements in image detail recovery, object detection
performance, and fast processing, there is still room for improvement to address its limi-
tations and expand its applicability. In particular, while our ES module strikes a balance
between image enhancement and fast inference, we recognize that there is potential to
explore adaptive thresholds or learning-based segmentation to improve its effectiveness
in complex situations. Additionally, generating exposure segmentation masks with high
precision is essential for ensuring the accuracy and reliability of our model.

To further enhance the performance and applicability of our method, we plan to
modify the pipeline by removing its dependencies on the ES module. Specifically, we aim
to use the EC module to generate multiple images with different exposure levels and merge
them to create an image with a wider dynamic range. We intend to explore the integration
of our pipeline into augmented reality visualization tools like the Hololens, which could
offer new possibilities for real-world applications.

Through the Modane pilot, we plan to collaborate with professional first responders,
including firefighters and medical rescuers, to gather feedback and refine it based on input
from actual end-users.



Appl. Sci. 2023, 13, 5499 13 of 19

In conclusion, the proposed pipeline provides a solution to the challenges faced by
FRs under adverse lighting conditions, and the results indicate its potential for further
development and implementation in real-world scenarios.
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MOE Over-Exposed Mask
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R Reference images
T Texture
E Entropy
OC Object Count
SM Segmentation Mask
P Precision
R Recall
F1 F1-score
AUC Area Under the Curve
AP Average Precision

https://cordis.europa.eu/project/id/101021836


Appl. Sci. 2023, 13, 5499 14 of 19

Appendix A

Here we provide an overview of the experimental setup and methodology used
to generate the masks discussed in Section 2.1.2. The aim of these experiments was to
determine optimal threshold values to detect over- and underexposed regions in images,
based on a combination of empirical observation and domain knowledge. To begin, we
conducted a thorough literature review of typical brightness and saturation ranges for over-
and underexposed regions in images, which allowed us to narrow down the range of values
to test empirically. We then systematically tested various threshold values for brightness
and saturation, visually evaluating the resulting masks to determine their accuracy in
identifying over- and underexposed regions. Figures A1–A3 represent the experiments.

Figure A1. Threshold adjustment. This figure showcases experiments conducted on the V channel
of the HSV version of original images to determine the optimal threshold values for generating
MUE masks.
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Figure A2. Threshold adjustment. This figure showcases experiments conducted on the V channel of
the HSV version of original images to determine the threshold values for generating MOE masks.
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Figure A3. Threshold adjustment. This figure presents experiments conducted on the S channel of
the HSV version of the original images to determine the threshold values for generating MOE masks.

Appendix B

Here, we present supplementary information regarding the outcomes of our method-
ology. Specifically, we include box plots that illustrate the mean squared error (MSE) and
structural similarity index measure (SSIM) of both the original and corrected images in
comparison to the reference images, as depicted in Figure A4. Additionally, we offer two
tables containing the MSE and SSIM values of a randomly selected subset of 20 images each.

Table A1 represents a sample of MSE for the original and corrected images compared
to the reference images. The MSE values demonstrate the accuracy of the images before
and after correction, with lower values indicating better results.

Similarly, Table A2 shows a sample of the SSIM values for both the original and
corrected images with respect to the reference images. SSIM values measure the struc-
tural similarity between images and are used to evaluate the quality of corrected images.
Higher SSIM values indicate better similarity between images.
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(a) Box plot of MSE for original and corrected
images with respect to the reference images.

(b) Box plot of SSIM for original and corrected
images with respect to the reference images.

Figure A4. (a) shows the box plot of Mean Squared Error (MSE) between the original and refer-
ence images and between the corrected and reference images. (b) shows the Structural Similarity
Index (SSIM) box plot between the original and reference images, and between the corrected and
reference images.

Table A1. Mean Squared Error (MSE) values for a sample of the images.

Original (X) Corrected (Y)

0.089 0.027
0.119 0.038
0.150 0.018
0.098 0.013
0.099 0.057
0.012 0.010
0.028 0.027
0.176 0.031
0.098 0.007
0.087 0.026
0.076 0.018
0.043 0.028
0.140 0.039
0.135 0.052
0.130 0.065
0.223 0.047
0.044 0.049
0.065 0.050
0.142 0.024
0.011 0.035

Table A2. Structural Similarity Index (SSIM) values for a sample of the images.

Original (X) Corrected (Y)

0.441 0.444
0.303 0.694
0.247 0.463
0.140 0.564
0.003 0.199
0.441 0.801
0.562 0.442
0.509 0.572
0.717 0.652
0.035 0.588
0.338 0.781
0.392 0.582
0.683 0.699
0.611 0.640
0.358 0.486
0.369 0.373
0.358 0.462
0.111 0.131
0.103 0.597
0.302 0.206
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