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Abstract: The in situ stress distribution is one of the driving factors for the design and construction
of underground engineering. Numerical analysis methods based on artificial neural networks are the
most common and effective methods for in situ stress inversion. However, conventional algorithms
often have some drawbacks, such as slow convergence, overfitting, and the local minimum problem,
which will directly affect the inversion results. An intelligent inverse method optimizing the back-
propagation (BP) neural network with the particle swarm optimization algorithm (PSO) is applied to
the back analysis of in situ stress. The PSO algorithm is used to optimize the initial parameters of
the BP neural network, improving the stability and accuracy of the inversion results. The numerical
simulation is utilized to calculate the stress field and generate training samples. In the application
of the Shuangjiangkou Hydropower Station underground powerhouse, the average relative error
decreases by about 3.45% by using the proposed method compared with the BP method. Subsequently,
the in situ stress distribution shows the significant tectonic movement of the surrounding rock, with
the first principal stress value of 20 to 26 MPa. The fault and the lamprophyre significantly influence
the in situ stress, with 15–30% localized stress reduction in the rock mass within 10 m. The research
results demonstrate the reliability and improvement of the proposed method and provide a reference
for similar underground engineering.

Keywords: in situ stress; underground engineering; inversion method; numerical simulation; neural
network; particle swarm optimization algorithm

1. Introduction

With the larger scale, deeper burial, and more complex geological conditions of
underground engineering, accidents during construction occur frequently. Such as large
deformations in soft rocks, rockbursts in hard rocks, etc., were related to their regional in
situ stress [1–4]. Hence, an accurate in situ stress field is not only the basis for the design
and construction of underground engineering but also for the deformation and failure
research. In situ tests provide an effective way to obtain in situ stress directly. Currently,
the primary measurement methods are the hydraulic fracturing method, the stress relief
method, and the acoustic emission method [5–9]. However, the investigation of in situ
stress through boreholes is too expensive to set up sufficient boreholes to cover the entire
underground cavern.

To overcome the limitation of on-site test data, researchers generally adopt three-
dimensional numerical simulation methods to conduct the back analysis of the in situ stress
field in the engineering field [10–13]. The main inversion methods are the boundary load
adjustment method, the multiple regression fitting method, and the artificial neural network
(ANN) algorithm. The boundary load adjustment method involves repeatedly adjusting the
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numerical model’s boundary loads to approximate the calculated stress from the test data.
This method can effectively and directly obtain a reasonable in situ stress field through
iterative calculation. However, in practice, it may not always provide a unique and optimal
solution, and the iterative process can be irregular and time-consuming [14]. Multiple
regression is a method that takes many factors into account to ensure the uniqueness and
rationality of the results. For example, Chen et al. [15], Yu et al. [16], and Li et al. [17]
utilized the least squares regression method, the lasso regression method, and the partial
least squares regression method, respectively, to conduct multiple linear regression analysis
of the in situ stress field. In this method, the regression relationship between model
conditions and stress state has been established to reduce the computational cost. Due to
the basic assumptions of linearity and continuity, this method may be less applicable for
underground engineering with complex geological conditions, where the in situ stress field
is nonlinear with burial depth of rock. Hence, the application of artificial neural networks
to in situ stress inversion has become a popular methodology in the 21st century. Zhang
et al. [18], Li et al. [19], and Li et al. [20] utilized the genetical algorithm (GA), the back
propagation (BP) neural network, and the GA-BP artificial neural network, respectively, to
optimally solve the model boundary loads. They inversely obtained a more accurate in situ
stress field due to the effectiveness of ANN in solving nonlinear and complex problems.

However, traditional neural network algorithms often have several drawbacks in
practice. These include overfitting, slow convergence, and sensitivity to initial conditions,
which may make them less suitable for complex underground problems. Particle Swarm
Optimization (PSO), first proposed by Eberhart and Kennedy [21], is a widely used op-
timization algorithm. Due to its capability for global optimization, PSO can serve as a
pretraining step to optimize the initial parameters before actual training with the BP algo-
rithm. As a result, this approach may enhance the performance of network training and
improve the accuracy of prediction. To the best knowledge of the authors, the PSO-BP
algorithm was seldom applied to the back analysis of in situ stress.

In this paper, an intelligent in situ stress inversion method combining the BP algorithm
and the PSO algorithm is proposed. To improve the accuracy of the inversion results, this
method employs the global search capability of the PSO algorithm to optimize the BP
initial parameters. The training network was then utilized to search for optimal boundary
parameters of the numerical model based on the measured data. The next section outlines
the theory of the inversion method and the implementation procedure of the PSO-BP
algorithm. Subsequently, the proposed method was applied to an engineering project,
the underground powerhouse of Shuangjiangkou Hydropower Station, to demonstrate its
practicability.

2. Intelligent Inversion Method of the In Situ Stress Field
2.1. Determination of Boundary Conditions

In the analysis of the in situ stress field in the underground caverns, it is widely
acknowledged that the gravity stress and the geotectonic movement are the primary
contributing factors, while the influence of temperature and groundwater effects is generally
considered to be less significant and, hence, often ignored [22,23]. This paper adopts the
fast stress boundary method to conduct the in situ stress inversion by using the FLAC3D

7.0 software. This method assumes that the in situ stress field results from a combination of
self-weight and tectonic stresses. By adjusting the boundary conditions, a stress field that
best matches the test data can be determined, which is known as the inverse in situ stress.

In the fast Lagrangian method, the model’s horizontal stress state can be adjusted by
specifying the coefficient k (the ratio of horizontal stress to vertical stress), and the shear
stress state is simulated by applying the corresponding shear stress τ. In this paper, six
boundary coefficients are used to correspond to six different stress boundary conditions, as
shown in Figure 1. These coefficients include the self-weight coefficient (kg), the horizontal
stress coefficients (kx and ky), and the shear stress coefficients in three directions (τxz ,τyz,
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and τxy). In this way, the challenging problem of in situ stress inversion can be transformed
into finding an optimal solution for the six boundary conditions.
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2.2. Optimization Solution Based on PSO-BP
2.2.1. Coordinate Transformation and Orthogonal Design

The in situ stress measurements are typically presented in the geodetic coordinate
system. However, the inversion analysis for the in situ stress distribution in the under-
ground cavern area is generally carried out in the computational coordinate system. Hence,
before performing the inversion analysis, the stress state at the test points needs to be
transformed from the geodetic coordinate system to the computational coordinate system,
as demonstrated in Equation (1) [24].

σx = L2
1σ1 + L2

2σ2 + L2
3σ3

σy = M2
1σ1 + M2

2σ2 + M2
3σ3

σz = N2
1 σ1 + N2

2 σ2 + N2
3 σ3

τxy = L1M1σ1 + L2M2σ2 + L3M3σ3
τyz = N1M1σ1 + N2M2σ2 + N3M3σ3
τxz = L1N1σ1 + L2N2σ2 + L3N3σ3


(1)

where, Li = cosβicosαix, Mi = cosβisinαix, Ni = sinβi, βi is the angle between σi and the
horizontal plane, and αix is the angle between σi and the direction of the x-axis.

In order to conduct in situ stress inversion using neural network intelligence algo-
rithms, it is necessary to generate sufficient numerical data as input and output samples.
The orthogonal design method is used to design the training sample scheme and thus
calculate more comprehensive and representative combinations of boundary conditions at
a lower computational cost. This method utilizes orthogonal design tables to effectively
address the challenges posed by multi-factor design and optimal level determination. Ta-
ble 1 shows a typical four-factor and three-level L9(34) orthogonal design. The designed
boundary condition scheme is then input into FLAC3D software, respectively. The simu-
lated stresses at the in situ stress test points, together with the boundary conditions, serve
as the training samples for the network.
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Table 1. Typical orthogonal design table L9(34).

No. A B C D

1 A1 B1 C1 D1
2 A1 B2 C2 D2
3 A1 B3 C3 D3
4 A2 B1 C2 D3
5 A2 B2 C3 D1
6 A2 B3 C1 D2
7 A3 B1 C3 D2
8 A3 B2 C1 D3
9 A3 B3 C2 D1

2.2.2. PSO Optimized BP Network Algorithm

The fundamental principle of in situ stress inversion involves the establishment of a
nonlinear relationship between the stress state and the model boundary conditions in order
to identify the optimal boundary conditions that correspond with the measurement data.
The BP neural network is widely used in underground engineering due to its capacity to
deal with nonlinear problems [25,26]. However, the BP algorithm has some unavoidable
limitations in addressing complex nonlinear problems. For example, many parameters
should be initialized in the BP algorithm, such as weights, thresholds, error tolerance, etc.
Some of these parameters that are determined empirically and roughly are sometimes
not appropriate for a specific problem, and this limitation makes the BP algorithm quite
unstable. Thus, in this paper, the PSO has been used to optimize the BP initial parameters
to improve the stability and accuracy of the final result. The specific implementation steps
of the PSO-BP intelligent optimization algorithm are as follows [21,27]:

(1) Determine the structure of the BP neural network.
(2) Encode the BP connection weights and thresholds; the particle dimension D is the

sum of all weights in neural networks and is expressed as:

D = S1 × R + S1 × S2 + S1 + S2 (2)

where, R, S1, and S2 are the numbers of neurons in the input, hidden, and output layers,
respectively.

(3) Initialize the basic parameters of the particle swarm.
(4) Define the fitness function: the mean square error of BP is used as the function of

fitness value, and the function is expressed as:

Fitness =
1
N ∑N

i=1 ∑S2
o=1 (dio(xi)− yio)

2 (3)

where N represents the total number of input samples, dio(xi) is the o-th output result for
the i-th group of input samples, and yio is the corresponding actual value.

(5) Based on the input-output sample pair, each particle’s fitness value is calculated
using the forward algorithm and the fitness function of the BP network.

(6) For each particle, if Fitness[i] is less than the Pbest, let Pbest equal Fitness[i]; if
Fitness[i] is less than the Gbest, let Gbest equal Fitness[i];

(7) Update the velocity and position of the particles by Equations (4) and (5) and
ensure that the particle velocity does not exceed the velocity limit (vmax).

vij(t + 1) = vij(t) + c1r1(t)
[
pij(t)− xij(t)

]
+ c2r2(t)

[
pgj(t)− xij(t)

]
(4)

xij(t + 1) = xij(t) + vij(t + 1) (5)

where xij and vij are the position and velocity of particles i in the j-th dimensional com-
ponent, respectively; Pij and Pgj are the individual extremum and global extremum of
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particles i in the j-th dimensional component, respectively; c1 and c1 are acceleration con-
stants, which normally take the same value between 1.5 and 2.5; r1 and r2 are random
numbers ranging from 0 to 1.

(8) Calculate the error of the PSO-BP algorithm as:

E =
1
t ∑t

i=1 J(Gbest
(i)) (6)

where J(Gbest
(i)) is the fitness of the global optimal value in the i-th iteration and t is the

current iteration time.
(9) If the error (E) is within the preset tolerance or the number of iterations reaches its

maximum, the final solution is the vector of the global optimal position (Gbest) in the last
iteration. Otherwise, return to step 5.

2.2.3. PSO-BP Inversion Method

To enhance the accuracy of in situ stress inversion results, a nonlinear numerical
analysis approach was proposed that combines the model boundary conditions with the
PSO-BP algorithm. In this method, the complex geological movements are resolved into six
basic boundary conditions, and then, through FLAC3D software, the stress state of each
boundary is calculated to form the network samples. The PSO-BP neural network is used
to establish a nonlinear relationship between the boundary conditions and the stress state
at specific testing locations. Finally, the optimal boundary conditions that coincide with the
measurement results are obtained through iterative searching. The primary implementation
steps are shown in Figure 2:
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3. Application to the Shuangjiangkou Hydropower Station
3.1. Measured Results of In Situ Stress in Underground Cavern Zones
3.1.1. General Situation of Engineering Geology

The Shuangjiangkou hydropower station in Jinchuan County, Sichuan Province, is the
fifth power station in the Dadu River basin. Figure 3 shows the site of the Shuangjiangkou
hydropower station, which has the highest dam in the world. The underground cavern
is deeply buried on the left bank with a horizontal depth of 300–500 m and a vertical
depth of 42 m, and its axial azimuth is N10◦W. F1 is the main fault distributed around the
underground cavern area, which has a width of 0.5 to 0.6 m, and the occurrence is about
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N79◦W/SW∠48◦. A lamprophyre also occurred about N35◦–50◦W/SW∠72◦–75◦ at the
cavern area, with a width of 0.8–1 m. In general, the Shuangjiangkou underground cavern
area mainly comprises porphyritic granite with different degrees of weathering. Currently,
empirical systems, such as rock-mass rating (RMR), tunneling quality index (Q) system,
and geological strength index (GSI), are mainly utilized in international rock engineering
projects [28–30]. In the geological survey report of Shuangjiangkou Hydropower Station,
the (basic quality index of rock mass) BQ method [31] is employed to classify the rock mass
into four types of materials, namely, class II (fresh granite), class III (moderately weathered
granite), class IV (strongly weathered granite), and class V (geological structures), as listed
in Table 2.
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Table 2. The mechanical parameters.

Type of Rock
Mass

Rock
Classification

Density
(kg/m3)

Young’s
Modulus
E (GPa)

Poisson’s Ratio
µ

Cohesion
c (MPa)

Friction
Coefficient

f

Fresh granite II 2600 32.9 0.25 1.5 1.3
Moderately
weathered

granite
III 2550 25.0 0.30 1.0 1.0

Strongly
weathered

granite
IV 2350 20.0 0.32 0.5 0.8

Geological
structures V 2300 6.0 0.35 0.1 0.35
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3.1.2. Analysis of the Field Test

In situ stress measurements are a direct method for identifying the magnitude, direc-
tion, and distribution of in situ stress in the engineering field. Figure 4 displays the layout
of in situ stress measurement points around the underground caverns on the left bank. The
five measurement points are situated parallel to the main powerhouse’s axis and located
inside the SPD9# structure at an elevation of 2268 m. The measured data is obtained in
the geodetic coordinate system, and thus it is necessary to transform them into the model
coordinate system using Equation (1). The transformed results are listed in Table 3.
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Table 3. Stress components from in situ stress measurements around the underground caverns.

Test No. Test Point Burial
Depth σx/MPa σy/MPa σz/MPa τxz/MPa τyz/MPa τxy/MPa

1# SZK2 549 m 16.92 23.50 15.04 4.44 −3.19 1.54
2# SPD9-5 470 m 19.26 22.74 16.66 0.33 −7.11 4.71
3# SZK1 431 m 10.21 15.95 9.10 0.86 −2.60 −0.52
4# SPD9-6 357 m 18.64 21.86 13.56 4.29 −2.47 6.81
5# SPD9-1 308 m 15.84 22.18 24.01 1.64 −3.61 1.37

As shown in Table 3, the measured stress in the x-axis direction in the cavern area is
10.21–19.26 MPa, which is approximately 1.1 to 1.4 times greater than that in the vertical
direction. Similarly, the stress in the horizontal y-axis direction ranges from 15.95 to 23.50
MPa, which is around 1.4 to 1.8 times greater than the vertical stress. The measured stress
values are ranked as σy, σx, and σz in descending order, with horizontal stress σy and σx
being higher than the vertical stress σz. This suggests that the tectonic movements have a
significant impact on the stress distribution in the Shuangjiangkou underground cavern
area. The shear stress values in the cavern area are generally low, with an average of 2.3
MPa for τxz, −3.7 MPa for τyz, and 2.8 MPa for τxy in the three directions.

The monitoring data used in the back analysis may directly affect the accuracy of the
inversed in situ stress distribution, as it is the main input for the back analysis algorithm.
Therefore, filtering the illogical measured points is necessary for the inversion process. As
shown in Table 3, the stress values at the 3# measured point are smaller than the others, and
considering that the 3# point is located near the F1 fault, the stress decreases in this region
may be reasonable. Notably, despite the fact that the 5# point is located at the lowest burial
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depth of just 308 m compared to the highest 1# point of 549 m, the σz value at this point
is about 24 MPa, ranking first among these five measurement points (the average value
being 15.6 MPa). This means that there probably exist stress fluctuations near the 5# point
area, and the measured data at this point may not properly reflect the overall in situ stress
distribution in the engineering area. However, to consider the comprehensiveness and
diversity of the input sample, all five measurement points were included in the inversion
calculation.

3.2. Inversion Analysis of the In Situ Stress Distribution
3.2.1. Numerical Model

The inversion model should provide a comprehensive analysis of the impact of to-
pography, geomorphology, lithology, and geological structures on the engineering field.
After considering the precise locations of the testing points, a numerical model centered
on the main powerhouse was established. As shown in Figure 5a, the 3D model can be
mainly divided into three layers. The upper layer, represented by the color red, consists
of strongly weathered granite. The middle layer, depicted in blue, is composed of mod-
erately weathered granite. Finally, the lower layer, shown in green, comprises fresh rock.
The geological structures, namely the F1 fault and lamprophyre, are simulated in the
model through the fine mesh with specific thicknesses, as shown in Figure 5b. Besides,
the spatial relationships between the F1 fault, lamprophyre, and underground caverns
were determined based on a geological survey report. The underground cavern group
of the Shuangjiangkou hydropower station consists of three parallel caverns (the main
powerhouse, transformer chamber, and tailrace surge chamber) and some auxiliary caverns
such as the penstock and generatrix tunnels. The range of the model requires an adequate
length to minimize boundary effects and ensure an appropriate distance between the
underground caverns and boundaries. The Flac3D model has dimensions of 700 m in the
x-axis (vertical axial direction), 700 m in the y-axis (axial direction), and 1100 m in the z-axis
(elevation direction). The model has been extended to include the ground surface above the
underground caverns, consisting of 477,685 nodes and 753,151 brick elements. The mesh is
primarily composed of eight-node hexahedral elements, which exhibit uniform size and
excellent morphology. Besides, to improve the computational accuracy, the mesh in the
underground cavern area was further refined, with a minimum mesh density of 0.5m. In
FLAC3D software, the Mohr-Coulomb criterion is commonly used to model the behavior of
rock under different loading conditions, which is the criterion utilized in this back analysis.
The required mechanical parameters of all materials for this criterion, such as Young’s
modulus, Poisson’s ratio, and strength parameters, are listed in Table 2, according to the
geological survey report of Shuangjiangkou Hydropower Station.

3.2.2. Orthogonal Design Experiment

Obtaining accurate in situ stress distribution through neural networks requires a
sufficient number of comprehensive training samples. Therefore, the in situ stress at
the measurement points under different boundary conditions was generated through
FLAC3D software. The training sample scheme was established using an orthogonal design.
Firstly, the six boundary condition coefficients of in situ stress inversion in FLAC3D were
determined according to the inversion theory in Section 2.1. Then, the test data in Table 3
was used as the base values for each parameter. The weight coefficient kg was 1.3, the
horizontal stress coefficients kx and ky were 1.3 and 1.6, respectively, and the shear stress
coefficients were 2.3 MPa, −3.7 MPa, and 2.8 MPa, respectively. The weight coefficient, the
horizontal stress structure coefficients, and the shear stress coefficients were varied within
a range of 10%, 20%, and 30%, respectively, based on the base values. As shown in Table 4,
an L49 (76) orthogonal scheme was designed. The 49 sets of boundary condition schemes
were then input into FLAC3D software. The boundary conditions and the simulated in situ
stress at the testing points constitute the training samples for the network.
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Table 4. Boundary condition scheme L49(76).

Test No. kg kx ky τxz/MPa τyz/MPa τxy/MPa

1 0.91 0.91 1.12 1.61 −2.59 1.96
2 1.04 1.17 1.60 2.53 −4.44 3.64
3 1.17 1.43 2.08 1.84 −3.70 3.36
4 1.30 1.69 1.44 2.76 −2.96 3.08
5 1.43 1.04 1.92 2.07 −4.81 2.80
6 1.56 1.30 1.28 2.99 −4.07 2.52
7 1.69 1.56 1.76 2.30 −3.33 2.24
8 0.91 1.69 1.92 2.53 −3.70 2.52
9 1.04 1.04 1.28 1.84 −2.96 2.24

10 1.17 1.30 1.76 2.76 −4.81 1.96
11 1.30 1.56 1.12 2.07 −4.07 3.64
12 1.43 0.91 1.60 2.99 −3.33 3.36
13 1.56 1.17 2.08 2.30 −2.59 3.08
14 1.69 1.43 1.44 1.61 −4.44 2.80
15 0.91 1.56 1.60 1.84 −4.81 3.08
16 1.04 0.91 2.08 2.76 −4.07 2.80
17 1.17 1.17 1.44 2.07 −3.33 2.52
18 1.30 1.43 1.92 2.99 −2.59 2.24
19 1.43 1.69 1.28 2.30 −4.44 1.96
20 1.56 1.04 1.76 1.61 −3.70 3.64
21 1.69 1.30 1.12 2.53 −2.96 3.36
22 0.91 1.43 1.28 2.76 −3.33 3.64
23 1.04 1.69 1.76 2.07 −2.59 3.36
24 1.17 1.04 1.12 2.99 −4.44 3.08
25 1.30 1.30 1.60 2.30 −3.70 2.80
26 1.43 1.56 2.08 1.61 −2.96 2.52
27 1.56 0.91 1.44 2.53 −4.81 2.24
28 1.69 1.17 1.92 1.84 −4.07 1.96
29 0.91 1.30 2.08 2.07 −4.44 2.24
30 1.04 1.56 1.44 2.99 −3.70 1.96
31 1.17 0.91 1.92 2.30 −2.96 3.64
32 1.30 1.17 1.28 1.61 −4.81 3.36
33 1.43 1.43 1.76 2.53 −4.07 3.08
34 1.56 1.69 1.12 1.84 −3.33 2.80
35 1.69 1.04 1.60 2.76 −2.59 2.52
36 0.91 1.17 1.76 2.99 −2.96 2.80
37 1.04 1.43 1.12 2.30 −4.81 2.52
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Table 4. Cont.

Test No. kg kx ky τxz/MPa τyz/MPa τxy/MPa

38 1.17 1.69 1.60 1.61 −4.07 2.24
39 1.30 1.04 2.08 2.53 −3.33 1.96
40 1.43 1.30 1.44 1.84 −2.59 3.64
41 1.56 1.56 1.92 2.76 −4.44 3.36
42 1.69 0.91 1.28 2.07 −3.70 3.08
43 0.91 1.04 1.44 2.30 −4.07 3.36
44 1.04 1.30 1.92 1.61 −3.33 3.08
45 1.17 1.56 1.28 2.53 −2.59 2.80
46 1.30 0.91 1.76 1.84 −4.44 2.52
47 1.43 1.17 1.12 2.76 −3.70 2.24
48 1.56 1.43 1.60 2.07 −2.96 1.96
49 1.69 1.69 2.08 2.99 −4.81 3.64

3.2.3. Identification of Boundary Conditions

A reliable nonlinear relationship between boundary conditions and the stress at the
measured points is crucial for the accuracy of the inversed in situ stress distribution.
However, the traditional method may encounter some issues such as ‘over-fitting’ or
‘under-fitting’ due to the uncertainty in the training sample size. The limitations restrict
the ability of nonlinear mapping to approximate and subsequently affect the accuracy and
reliability of the algorithm results. To address this issue, the PSO optimization method
was used to optimize the BP neural network and establish a more accurate and reliable
nonlinear model.

The PSO-BP neural network was trained using the boundary conditions listed in
Table 4 as input samples and the corresponding calculated stresses at the measured points
as sample outputs. The Shuangjiangkou hydropower station has five measurement points
around the left underground caverns, each with six stress values; thus, a 30-16-6-6 topologi-
cal network was constructed. The mean square error of the network model was set to 10−8,
which was used to judge the training accuracy of iterations. The PSO-BP network was
stopped after 3367 iterations when the error reached the preset value. Subsequently, the
actual stresses at each measured point are input into the trained PSO-BP model to search
for the optimal combination of boundary conditions. The inversed coefficients obtained by
the PSO-BP neutral network are kg = 1.43, kx = 1.26, ky = 1.60, τxz = 1.61 MPa, τyz = −2.51
MPa, and τx = 1.44 MPa.

To validate the accuracy of the determined boundary conditions, the obtained coeffi-
cients are utilized in the FLAC3D software for additional forward analysis. Table 5 gives the
stress results for each measurement point. It shows that the analysis results are generally
acceptable for most points, except for the resulted σz of point 5#, where the analysis error
is 20.33%. The average analysis error for the remaining points is 8.09%. Compared with
Table 3, the measured σx and σy of point 5# are almost equal to those of other points, but
the measured σz of point 5# is 7–15 MPa greater than that of other points, so it may not be
accurately measured. As a result, the back-analysis σz of point 5# does not match very well
with the measured data. Figure 6 compares the inversed and tested stresses. The dashed
line indicates where the two stresses are equal. It can be observed that there is excellent
agreement between the PSO-BP results and measured data, with a correlation coefficient of
about 0.95.
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Table 5. Computational stress components at test points.

Test No. σx/MPa σy/MPa σz/MPa τxz/MPa τyz/MPa τxy/MPa

1 18.33 20.07 14.83 1.02 −2.63 1.22
2 18.08 20.91 14.45 1.12 −2.18 1.27
3 11.98 18.10 9.41 1.63 −0.80 0.37
4 17.72 22.48 14.02 1.69 −2.34 0.73
5 17.96 23.49 14.00 2.65 −2.45 0.79
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3.3. Characteristics of In Situ Stress around Underground Caverns

The purpose of the in situ stress inversion is to investigate the distribution of in situ
stress in the engineering area. By studying its distribution characteristics, it is possible
to provide some references for the engineering’s design, construction, and long-term
stability. Hence, based on the boundary conditions obtained from the PSO-BP inversion,
the distribution characteristics of the in situ stress in the Shuangjiangkou underground
cavern area were computed.

Figure 7 shows the stress distribution in the cross-section of the main powerhouse,
while Figure 8 plots that in the longitudinal section direction. As can be seen, there is an
increasing trend in the distribution of in situ stresses with the increase in rock burial depth.
The shallow surface presents local stress relaxation with relatively low stress values in this
area. This is followed by a stress transition zone, where the principal stress distribution
gradually becomes horizontal with a progressive increase in stress. The deeper part of
the rock has a higher stress level and a more stable stress state. The first principal stress
ranges from 20 to 26 MPa, with some stress concentration occurring around the river valley.
The third principal stress ranges from 14 to 18 MPa and is predominantly oriented in the
vertical direction. Fault F1 and the lamprophyre notably influence the stress distribution in
the main powerhouse area, resulting in a significant reduction in the stresses within 10 m.



Appl. Sci. 2023, 13, 4697 12 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 15 
 

 
Figure 6. Comparison of inverted results with measured results. 

3.3. Characteristics of In Situ Stress around Underground Caverns 
The purpose of the in situ stress inversion is to investigate the distribution of in situ 

stress in the engineering area. By studying its distribution characteristics, it is possible to 
provide some references for the engineering’s design, construction, and long-term stabil-
ity. Hence, based on the boundary conditions obtained from the PSO-BP inversion, the 
distribution characteristics of the in situ stress in the Shuangjiangkou underground cavern 
area were computed. 

Figure 7 shows the stress distribution in the cross-section of the main powerhouse, 
while Figure 8 plots that in the longitudinal section direction. As can be seen, there is an 
increasing trend in the distribution of in situ stresses with the increase in rock burial 
depth. The shallow surface presents local stress relaxation with relatively low stress val-
ues in this area. This is followed by a stress transition zone, where the principal stress 
distribution gradually becomes horizontal with a progressive increase in stress. The 
deeper part of the rock has a higher stress level and a more stable stress state. The first 
principal stress ranges from 20 to 26 MPa, with some stress concentration occurring 
around the river valley. The third principal stress ranges from 14 to 18 MPa and is pre-
dominantly oriented in the vertical direction. Fault F1 and the lamprophyre notably influ-
ence the stress distribution in the main powerhouse area, resulting in a significant reduc-
tion in the stresses within 10 m. 

 
Figure 7. Stress distribution in the cross-section of the main powerhouse. (a) the first principal stress, 
(b) the third principal stress. 

Figure 7. Stress distribution in the cross-section of the main powerhouse. (a) the first principal stress,
(b) the third principal stress.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 15 
 

 
Figure 8. Stress distribution in the longitudinal section of the main powerhouse. (a) the first princi-
pal stress; and (b) the third principal stress. 

The results of the in situ stress inversion indicate that weak structural planes may 
have the potential to significantly influence the stress state of an engineering area. As 
shown in Figure 9, all three stress components increase with the buried depth while re-
maining relatively consistent within the main powerhouse area at the same elevation. 
There is a sudden drop in stress values at the fault area, with the σx falling to around 10–
12 MPa, σy about 17–20 MPa, and σz about 8–10 MPa. However, the stress state around the 
tailrace surge chambers does not fluctuate since the fault and the lamprophyre do not 
intersect with the tailrace surge chambers. Thus, faults and lamprophyre could notably 
influence the in situ stress distribution, leading to a reduction in the in situ stress value of 
the surrounding rock. 

 
Figure 9. Stress variations along the depth (a) in the main powerhouse and (b) in the tailrace surge 
chambers; Stress variations in the plane of 2260 m elevation along the axis of the main powerhouse 
(c) and along the vertical axis of the main powerhouse (d). 

Figure 8. Stress distribution in the longitudinal section of the main powerhouse. (a) the first principal
stress; and (b) the third principal stress.

The results of the in situ stress inversion indicate that weak structural planes may have
the potential to significantly influence the stress state of an engineering area. As shown
in Figure 9, all three stress components increase with the buried depth while remaining
relatively consistent within the main powerhouse area at the same elevation. There is a
sudden drop in stress values at the fault area, with the σx falling to around 10–12 MPa, σy
about 17–20 MPa, and σz about 8–10 MPa. However, the stress state around the tailrace
surge chambers does not fluctuate since the fault and the lamprophyre do not intersect
with the tailrace surge chambers. Thus, faults and lamprophyre could notably influence
the in situ stress distribution, leading to a reduction in the in situ stress value of the
surrounding rock.
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4. Discussion

To validate the improvement of the proposed method, a comparison between the
PSO-BP in situ stress numerical analysis method and the conventional method is conducted
in Shuangjiangkou Hydropower Station engineering.

For comparison, the BP network was constructed the same as the PSO-BP network in
this study, with a topology of 30-16-6-6 and the mean square error of the network model
set to 10−8. The BP neural network was also trained using the boundary conditions listed
in Table 4 as input samples and the calculated stresses at the measured points as sample
outputs. After the iterative search, the optimal combination of boundary conditions from
the BP network method can be obtained. The inversed coefficients are kg = 1.35, kx = 1.18, ky
= 1.72, τxz = 0.73 MPa, τyz = −2.29 MPa, and τx = 1.75 MPa. Then, the obtained coefficients
are utilized in the FLAC3D software for additional forward analysis, which generates the
computational results from the conventional method, as shown in Table 6. For comparison,
the measured data and the results from the PSO-BP method are also listed in this table.

As can be seen, the BP network method also inversed a relatively reasonable combina-
tion of boundary conditions, while the average relative error of the PSO-BP results is 3.45%
lower than that of the conventional method, indicating a closer approximation to the actual
in situ stress. Therefore, for in situ stress inversion using the same engineering, the PSO-BP
method may evidently improve the accuracy of the inversion results compared with the
conventional BP network method. It should be noted that the PSO-BP method has some
limitations, one of them being the requirement of sufficient input samples. While the huge
training samples result in a significant increase in computational cost, the accuracy of the
results may improve as the number of samples increases. Hence, it is necessary to select a
reasonable and sufficient number of training samples for different engineering problems.
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Table 6. Computational stress components at test points. A comparison of the computational stress
of the two back analysis methods.

Test No. Algorithm σx/MPa σy/MPa σz/MPa τxz/MPa τyz/MPa τxy/MPa

1
Measured 16.92 23.50 15.04 4.44 −3.19 1.54

BP 14.50 21.07 13.47 0.69 −2.18 1.29
PSO-BP 18.33 20.07 14.83 1.02 −2.63 1.22

2
Measured 19.26 22.74 16.66 0.33 −7.11 4.71

BP 14.36 21.87 13.31 0.47 −1.88 1.45
PSO-BP 18.08 20.91 14.45 1.12 −2.18 1.27

3
Measured 10.21 15.95 9.10 0.86 −2.60 -0.52

BP 10.52 19.21 8.75 1.21 −0.21 0.71
PSO-BP 11.98 18.10 9.41 1.63 −0.80 0.37

4
Measured 18.64 21.86 13.56 4.29 −2.47 6.81

BP 14.22 23.49 13.21 1.30 −1.92 1.82
PSO-BP 17.72 22.48 14.02 1.69 −2.34 0.73

5
Measured 15.84 22.18 24.01 1.64 −3.61 1.37

BP 14.27 24.38 13.33 1.61 −2.07 0.95
PSO-BP 17.96 23.49 14.00 2.65 −2.45 0.79

5. Conclusions

To improve the accuracy of the in situ stress inversion, a PSO-BP in situ stress nu-
merical analysis method was proposed and applied to the in situ stress inversion of the
Shuangjiangkou Hydropower Station underground engineering. Based on the results of
the numerical simulation, the feasibility of the method was verified, and the characteristics
of the in situ stress distribution around the underground caverns were obtained. The main
conclusions are drawn as follows:

(1) The complex geological movements can be decomposed into six basic boundary
conditions for numerical simulation, and the PSO-BP neural network can then identify
the optimal boundary conditions that best represent the measured in situ stresses.

(2) The average relative error of the inversion results obtained by the proposed method is
3.45% lower than those obtained by the traditional method; thus, the proposed method
is more effective and the inversed in situ stress distribution is more reasonable.

(3) The distribution of in situ stresses increases as the buried depth of rock increases.
The first principal stress ranges from 20 to 26 MPa, with stress concentration around
the river valley. The third principal stress ranges from 14 to 18 MPa and is oriented
approximately vertically.

(4) Fault F1 and the lamprophyre notably influence the stress distribution in the main
powerhouse area, with 15–30% localized stress reduction in the rock mass within 10m,
which may provide a reference for similar engineering with weak structural planes.
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