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Abstract: Convolutional neural networks (CNNs) have become a popular choice for various image
classification applications. However, the multi-layer perceptron mixer (MLP-Mixer) architecture has
been proposed as a promising alternative, particularly for large datasets. Despite its advantages in
handling large datasets and models, MLP-Mixer models have limitations when dealing with small
datasets. This study aimed to quantify and evaluate the uncertainty associated with MLP-Mixer
models for small datasets using Bayesian deep learning (BDL) methods to quantify uncertainty
and compare the results to existing CNN models. In particular, we examined the use of variational
inference and Monte Carlo dropout methods. The results indicated that BDL can improve the
performance of MLP-Mixer models by 9.2 to 17.4% in term of accuracy across different mixer models.
On the other hand, the results suggest that CNN models tend to have limited improvement or
even decreased performance in some cases when using BDL. These findings suggest that BDL is a
promising approach to improve the performance of MLP-Mixer models, especially for small datasets.

Keywords: uncertainty quantification; Bayesian deep learning; MLP-Mixer; variational inference
(VI); MC-dropout

1. Introduction

In recent years, convolutional neural networks (CNNs) have been adopted as the
most widely used architecture for computer vision problems. This adaptation of CNNs
in the field of image processing is mainly due to their effectiveness and efficiency [1].
These networks are composed of layers that utilize convolutional methods on an input
to produce an output. Filters, which operate using a sliding window on the input, are
utilized in the convolution process to generate a feature map [2]. CNNs often incorporate
pooling layers, in conjunction with convolution layers, to reduce the dimensionality of
the feature map and decrease computational demands. A tensor with one, two, or three
dimensions can be used as input for the CNN, and the output produces similar shapes
in most cases [3]. Various CNN architectures have been developed in the last decade,
including ResNet [4], Inception [5], and DenseNet [2]. In the field of biomedical deep
learning, CNNs have seen widespread adoption and have been applied to numerous
applications, such as medical imaging.

Over time, researchers have developed several CNN models and architectures, such as
ResNet [4], Inception [5], DenseNet [6], vision transformers [7], and Swin transformers [8],
which have become increasingly complex. Despite the popularity of CNNs, some al-
ternative architectures have emerged recently, such as the multi-layer perceptron mixer
(MLP-Mixer), which was introduced in 2021. A recent study by Tolstikhin et al. [9] chal-
lenged the notion that more complex models and architectures lead to better performance.
The authors introduced a novel architecture called MLP-Mixer, which is based on multi-
layer perceptrons (MLPs) in conjunction with mixers. The MLP-Mixer model divides
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images into patches, referred to as tokens, which then transform into simple MLPs us-
ing matrix multiplication. The use of two layers of mixers, token mixing, and channel
mixing, enabled inter- and intra-interaction between patches. While MLP-Mixers have
shown state-of-the-art performance and perform well on large datasets, they still lag behind
CNN models on small datasets and have a larger number of parameters [9,10]. To address
these issues, researchers have proposed various versions of the MLP-Mixer model, such
as Sparse-MLP, S2-MLP, As-MLP, and Hire-MLP [10]. Despite these challenges, the key
advantages of the MLP-Mixer are its simplicity, flexibility, and scalability, which make it an
attractive alternative to CNNs for vision tasks.

In the field of deep learning for computer vision, the performance of various architec-
tures, such as MLP-Mixers and CNNs, is typically evaluated using measurements such as
sensitivity, specificity, accuracy, precision, recall, receiver operating characteristics (ROCs),
area under the ROC curve (AUC), F1 score, and other similar metrics [11]. Although these
metrics have been successful in differentiating between good and bad models, they do not
provide any information about the confidence of a particular model. Measuring the confi-
dence of a model is crucial, especially in domains such as medical diagnosis, where errors
can have serious consequences. Thus, it is essential to estimate the uncertainty of both the
model and the data. One method for uncertainty quantification is through the Bayesian
deep learning (BDL) models [12], which treats the weights of the model as random variables.
BDL incorporates prior information about the distribution of the weights and updates it
with new data to estimate the uncertainty associated with the model’s predictions.

BDL is a type of deep learning that utilizes Bayes’ theorem to calculate the poste-
rior distribution by incorporating prior distribution and likelihood of the data as input
components [13]. This approach is useful in measuring different uncertainties related to
the data and architecture used [13]. In BDL, various statistical distributions can be utilized
to represent the prior and posterior distributions; however, the normal and Bernoulli dis-
tributions are the most prevalent when it comes to image data [14]. To generate output,
the Bayesian approach obtains samples from the posterior distribution. Markov chain
Monte Carlo (MCMC) is one of the most well-known exact sampling methods for posterior
distribution, however, it is impractical to scale up for larger datasets, such as images, and
can be computationally expensive [14]. To address this issue, other approximation methods
such as variational inference (VI) [15] and Monte Carlo dropout (MC-Dropout) [16] are
used. VI assumes that the data follows a normal distribution and samples from a nor-
mal distribution for the model’s posterior [15]. On the other hand, MC-Dropout utilizes
the Bernoulli distribution to generate a posterior distribution [16,17]. These methods are
faster and have fewer parameters than MCMC, making them more feasible for larger-scale
datasets [14].

This study aimed to assess the confidence level in predicting the results of deep
learning models using BDL for the MLP-Mixer architecture. The focus of this research
was on quantifying uncertainty in MLP-Mixers, rather than achieving optimal results.
Furthermore, the study aimed to compare the uncertainty quantification of MLP-Mixers
with that of several CNN architectures. Even though many works have been published
on uncertainty quantification [13,14], to the best of our knowledge, this is the first study
to apply BDL to estimate uncertainty in MLP-Mixers. Thus, this study provides essential
insights into the potential and limitations of this architecture.

The rest of the paper is organized as follows: Section 2 presents the methods and data
utilized in this study. Specifically, the section provides a detailed overview of the BDL
approach and its application to uncertainty quantification in MLP-Mixers and CNN models.
Section 3 reports the experimental results of the MLP-Mixers and CNN models. Section 4
presents a detailed discussion of uncertainty quantification in deep learning models with a
particular focus on MLP-Mixers. Finally, Section 5 concludes the paper by summarizing
the key findings and discussing their implications for future research in the field.
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2. Methodology

In this study, BDL was applied to quantify the uncertainty of the MLP-Mixer model.
To better understand the approach, it is crucial to understand the working mechanism
of MLP-Mixer models. MLP-Mixer is a modern architecture used for vision tasks that
uses multi-layer perceptrons (MLPs) as the fundamental building blocks. The idea behind
MLP-Mixer is to replace convolutional layers with MLPs, which enables the network to
have greater expressive power and flexibility. The MLP-Mixer architecture is composed
of three primary components: patch processing, mixer layers, and classification head. In
patch processing, the input image is initially divided into non-overlapping patches of size
(p × p), where p represents the patch size. Each patch is then flattened into a vector. The
mixer layers are the key building blocks of MLP-Mixer. The output tokens of the last mixer
layer are processed by a global average pooling layer to obtain a single feature vector. This
vector is then passed through a fully connected layer, which produces the final classification
output. The entire architecture of MLP-Mixers, as proposed by [9], is illustrated in Figure 1.
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In the MLP-Mixer model, each mixer layer consists of two sub-layers: token mixing
and channel mixing.

• Token mixing: The token mixing layer applies a fully connected MLP to each patch
vector, which generates a set of token vectors. These tokens represent the local in-
formation within each patch, and the MLP learns to transform the tokens to extract
significant features, as mathematically given in Equation (1).

T′ = (w2σ(w1(LN(X∗)) + b1) + b2) + X∗ (1)

where T′ is the output of the token mixing layer, LN(X∗) is the layer normalization
for each token vector, w1 and b1 are weight and biases for the first dense layer in token
mixing, w2 and b2 are weight and biases for the second dense layer in token mixing,
with a σ (GELU) nonlinearity activation function between the two dense layers. Finally,
the X∗ at the end represents the skip connection;

• Channel mixing: The channel mixing layer applies another MLP to the set of token
vectors generated by the token mixing layer. This MLP is applied across the tokens of
each patch, allowing global information to be captured across the entire image. The
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output of the channel mixing layer is a new set of token vectors that are then fed to
the next mixer layer. This is defined mathematically in Equation (2).

C′ =
(
w4σ

(
w3
(

LN
(
T′
))

+ b3
)
+ b4

)
+ T′ (2)

where C′ is the output of the channel mixing layer, LN(T′) is the layer normalization
for each channel vector, w3 and b3 are weight and biases for the first dense layer in
channel mixing, w4 and b4 are weight and biases for the second dense layer in channel
mixing, with a σ (GELU) nonlinearity activation function between the two dense
layers. Finally, the T′ at the end represents the skip connection.

In this study, BDL was applied to the equations presented above to quantify the
uncertainty in MLP-Mixer. Rather than using single point estimates for the weight and
biases (w and b), the proposed method applied Bayesian distribution to both. However,
in the utilized models, the GELU activation function from the original MLP-Mixer was
replaced by ReLU in the utilized MLP-Mixers. The details of the materials and methods
are presented in the following sections. Figure 2 depicts the process taken to quantify the
uncertainty of models.
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Figure 2. Flowchart of the utilized models and uncertainty quantification.

2.1. Datasets

This study utilized two relatively small datasets. The first dataset was characterized
by low levels of noise, making it suitable for the classification task. The second dataset
consisted of grayscale images that required different classification approaches compared to
color images. Therefore, it was crucial to carefully select the appropriate dataset for this
study. The two datasets are briefly explained in the following sections.
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2.1.1. Acute Lymphoblastic Leukemia (ALL)

In this study, the ALL image dataset created by Mehrad et al. [18] was used to evaluate
the proposed methods. Before discussing the technical details of the dataset, it is important
to provide an overview of ALL.

ALL is a malignant neoplasm cancer that affects the blood and bone marrow. The
bone marrow is the soft tissue inside the bones and is responsible for producing blood
cells. ALL is characterized by the overproduction of immature white blood cells, known as
lymphoblasts, that do not function properly and can outnumber normal blood cells. This
can cause anemia, infections, and other serious health issues [19]. There are two main types
of leukemia: acute and chronic. Acute leukemia is a more aggressive form that requires
immediate treatment and is characterized by the rapid production of underdeveloped
blood cells. Chronic leukemia, on the other hand, takes longer to develop and may not
require immediate treatment [20]. ALL is a type of acute leukemia that affects lymphoid
cells, which are a specific type of white blood cell that helps strengthen the immune system.
ALL is more common in children than in adults and is identified by the rapid production
of underdeveloped lymphocytes or lymphoblasts. This disease can be life-threatening if
not treated promptly [21].

This study used a collection of images called the ALL dataset, which specifically
focused on hematogenous, a type of underdeveloped white blood cell found in the bone
marrow of children and adolescents. The dataset contains 3256 peripheral blood smear
(PBS) images from 89 individuals suspected of having ALL, which were collected at Tehran’s
Taleqani Hospital in Iran [22]. The dataset was composed of 25 healthy individuals with
benign conditions and 64 individuals who tested positive for a type of malignant lym-
phoblast. As stated by Mehrad et al. [18], the main purpose of this dataset was to classify
images into four categories: benign, early Pre-B, Pre-B, and Pro-B, as illustrated in Figure 3.
These categories are referring to different stages of cancer development in B-cells. B-cells
are a type of white blood cell that play a role in the immune system. Benign refers normal,
healthy lymphocytes that have not yet become cancerous B-cells, while pro-B refers to
lymphocytes that are in the earliest stages of development that have not yet developed
some of the key features of mature lymphocytes. Early Pre-B cells are lymphocytes that
are in the early stages of development and have not yet fully matured. Pre-B cells are
lymphocytes that are in a slightly more advanced stage of development and are closer to
becoming fully mature. Early Pre-B and Pre-B are commonly affected by ALL. The images
were enlarged to 100× using a Zeiss camera to ensure a suitable resolution for image
processing. The reason for using this dataset in the current study is that it is relatively
small, yet still allows a high level of accuracy to be achieved. Only a few researchers have
used this dataset and CNNs to identify ALL using PBS, including Ghaderzadeh et al. [23],
Atteia et al. [24], and Billah et al. [25]. Therefore, the proposed method in this study could
provide additional insights and comparisons with previous research on this dataset.
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2.1.2. Breast Cancer

Breast cancer is a type of cancer that originates in the breast tissue. It is among the
most commonly occurring cancer type in women, although it may also occur in men, albeit
less frequently. This disease occurs when abnormal cells within the breast tissue grow
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uncontrollably and form a mass, referred to as a tumor. While some tumors are benign
and not cancerous, others are malignant and can spread to other parts of the body if left
untreated [26]. The diagnosis of breast cancer typically involves a combination of physical
examination, imaging tests, such as mammography or ultrasound [27], and biopsy. Early
detection and prompt treatment are key to increasing the chances of survival and recovery
from breast cancer [28].

In 2018, Al-Dhabyani et al. [27], developed a dataset of medical images of breast cancer
using ultrasound scans. The dataset, known as the Breast Ultrasound Dataset, is divided
into three categories: normal, benign, and malignant images. With the help of machine
learning algorithms, these images can be used for classifying, detecting, and segmenting
breast cancer. The data consisted of 780 grayscale breast ultrasound images of 600 women
aged between 25 and 75 years. The images were on average 500 × 500 pixels in size. This
dataset was selected due to its relatively small size and grayscale format, which is beneficial
for classification purposes in this study. Figure 4 illustrates a few samples from this dataset.
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2.2. Data Preparation

In this study, the data preparation process involved several steps aimed at optimizing
the performance of the deep learning models. The first step involved resizing the images
to 128 × 128 pixels to reduce computational requirements while maintaining an adequate
level of resolution for accurate image analysis. The second step involved addressing the
issue of class imbalance by assigning different weights to each class using a class weight,
which is essential for ensuring the accurate classification of minority classes. However, this
study did not employ any augmentation, resampling, or similar techniques, as the primary
objective was to estimate uncertainty rather than achieve state-of-the-art results. While these
methods might have improved the accuracy of our results, they would have introduced
additional complexity and gone beyond the scope of our intended goals. Instead, the study
focused on evaluating the inherent uncertainty present in the data, which provides valuable
information for further analysis.

The evaluation of the model involved a three-fold data split where 15% of the data
was allocated for testing, another 15% for validation, and the remaining 70% was used for
training the models. Additionally, the data was normalized to ensure that features had
similar scales, which is crucial for deep learning model stability and convergence. This
approach to data preparation is essential for developing robust and generalizable deep
learning models, which are important in many applications, including image analysis.

2.3. Uncertainty Quantification

BDL is a statistical approach that combines deep learning with Bayesian methods to
estimate the uncertainty of model predictions. BDL estimates the probability distribution
of model parameters based on observed data, allowing for the calculation of both point
estimates and associated uncertainties. This method is particularly useful in classification
problems, where the goal is to predict categorical labels given a set of inputs.
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There are several methods to estimate uncertainty in BDL, but two popular methods
are VI and MC-Dropout. Both methods are based on Bayes’ theorem, which states that:

P(A|B) = P(A) P(B|A)

P(B)
(3)

where P(A|B) is the posterior probability of A given B, P(B|A) is the likelihood of B given
A, P(A) is the prior probability of A, and P(B) is the marginal likelihood or evidence.

The predictive distribution can be calculated as:

P(y∗|x∗, D) =
∫

P(y∗|x∗, ω)P(ω|D)dω ≈
∫

P(y∗|x∗, ω)q(ω)dω (4)

In VI, the assumption is that the true posterior distribution P(w|D) (also denoted as
P(w|X, Y) in the context of machine learning) of the model parameter w can be approxi-
mated with a simpler distribution q(w) that belongs to a tractable family of distributions.
The goal of VI is to find the best approximation q(w) by minimizing the Kullback–Leibler
(KL) divergence between the true posterior distribution P(w|D) and the approximate
distribution q(w) distribution:

KL(q(ω)‖P(ω|D) =
n

∑
i=1

qi(ω).(log qi(ω)− log Pi(ω|D)) (5)

The KL divergence measures the distance between the two distributions and is non-
negative, with a value of 0 only when the two distributions are identical. Therefore,
minimizing the KL divergence is equivalent to finding the best approximation q(w) that is
closest to the true posterior distribution P(w|D).

However, the MC-Dropout method involves using dropout during both training and
testing to estimate the model’s uncertainty. During training, dropout is applied to the
inputs and/or hidden units of the neural network with a certain probability. This creates
an ensemble of different neural networks that share weights, with some neurons randomly
dropped out. The loss function is computed for each dropout run, and the weights are
updated based on the average of the losses. During testing, the model is run multiple times
with dropout applied, and the predictions are averaged over the runs. The dropout rate is
considered a hyperparameter that controls the model’s uncertainty. The final predictions
are given by:

P(y∗|x∗, D) =
∫

P(y∗|x∗, ω)P(ω|D)dω ≈ 1
T

T

∑
t=1

p(y∗|x∗, ω) (6)

where p(y∗|x∗, ω) is the predicted probability of class i for the t th dropout run, and T
is the number of dropouts runs. This method can be viewed as an approximation of
Bayesian model averaging, where the dropout masks are treated as different models, and
the predicted probabilities are averaged to estimate the expected probability of each class
given the input x∗. After computing the predicted probabilities for each class using MC-
Dropout, the final predicted class is obtained by applying the argmax function to the
predicted probabilities. The argmax function returns the index of the class with the highest
predicted probability.

Both VI and MC-Dropout are effective approaches that can enhance the reliability and
resilience of deep learning models. VI provides a probabilistic framework for estimating
complex posterior distributions, allowing for more accurate uncertainty estimations for
individual neurons. On the other hand, MC-Dropout provides a computationally efficient
way to estimate model uncertainty through the use of dropout masks during both training
and testing. Nevertheless, both methods have their own strengths and limitations, and
the choice of which one to use will depend on the specific problem and the available
computational resources. For instance, VI can be computationally demanding since it in-
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volves calculating the gradients of the lower bound objective with respect to the variational
parameters. In contrast, MC-Dropout may not produce precise results if the number of
dropout runs is small, and it may not be suitable for problems where the uncertainty is
highly dependent on the input. Therefore, selecting either VI or MC-Dropout necessitates
careful consideration of the specific problem requirements, the computational resources
available, and the balance between accuracy and efficiency.

3. Experiments and Results

To evaluate the effectiveness of the proposed method, an empirical study was con-
ducted using five deep learning models based on MLP-Mixers and CNN architectures.
The models were trained and tested on two different image datasets to assess their per-
formance in image classification tasks. Two versions of each model were tested: one with
MC-Dropout and the other with VI. The models were trained for varying numbers of
epochs with early stopping criteria. However, most of the models lasted between 30 and
80 epochs, with the main difference being that MC-Dropout models tended to stop earlier
than VI models in general.

The first model utilized in this study was the MLP-Mixer model, which employed
a unique approach to image classification. In this model, the input images were divided
into 32 patches, and a custom MLP-Mixer was designed for this study. The custom MLP-
Mixer had approximately 30 million trainable parameters for both the MC-Dropout and
VI versions of the model. Unlike many other models, the MLP-Mixer was not pre-trained
on any dataset, as it was developed specifically for this study. Furthermore, it was built
entirely from dense layers, without incorporating any CNN layers. This was a deliberate
design choice, as the researchers sought to investigate the potential of dense layer networks
for image classification tasks.

The second model employed in this study was a custom CNN model composed of
four CNN layers to extract features from the input images. The CNN layers consist of
multiple filters that perform feature extraction operations such as detecting edges, textures,
and shapes. The extracted features were then fed into three dense layers, including an
output layer with four/three classes for the two given datasets. In this output layer, a
softmax activation function was used to produce a probability distribution over the four
classes. Notably, the custom CNN contained around 38 million trainable parameters for
both MC-Dropout and VI models.

The third model used in the experiments was the ResNet152, which is a widely used
and popular model for image classification. This model consists of 152 convolutional
layers and was pre-trained on the large-scale ImageNet dataset. The ResNet152 was
modified for the classification task in this study by adding three dense layers, with the
final layer being an output layer that employed a softmax activation function to generate
a probability distribution over the classes. The utilized ResNet had around 60 million
trainable parameters for both MC-Dropout and VI models.

The fourth model utilized in the experiments is based on the Inception V3 model,
which is a pre-trained model that has previously been trained on the ImageNet dataset.
This model is well-known for its remarkable ability to detect and classify objects in images,
making it a suitable choice for this study. The Inception V3 model has around 42 layers,
and three dense layers were added to the top of the pre-trained model. The output layer
consisted of four/three classes for the utilized datasets, and a softmax activation function
was employed to produce a probability distribution over these classes. Both MC-Dropout
and VI models of the Inception V3 model had approximately 23 million parameters.

The last model used in our experiments is based on the DenseNet121 architecture,
which is an efficient CNN architecture designed to mitigate the problem of vanishing
gradients and improve the flow of gradients. This architecture consists of dense blocks,
where each dense block contains multiple layers connected by direct connections, allowing
the model to use the features learned by previous layers and learn more complex repre-
sentations. The DenseNet121 is pre-trained on the ImageNet dataset and has a total of
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120 convolution layers. Three dense layers, including an output layer with four/three
classes, were added on top of the model, and a softmax activation function was used to pro-
duce a probability distribution over the four classes. The number of trainable parameters
was around 8 million for both MC-Dropout and VI models.

The last 10 layers of the ResNet, Inception, and DenseNet models were fine-tuned
using the two datasets. Fine-tuning the pre-trained models on the utilized datasets was
implemented as a means of comparing their performance with that of the custom model,
as well as the potential benefit of fine-tuning the latter on the utilized datasets used in
this study.

For all the deep learning models, the Adam optimizer was used during the training
process. The Adam optimizer is a well-known and efficient optimization algorithm for deep
learning problems and is known for its rapid convergence. We used the ReLU activation
function, which is known for its ability to introduce nonlinearity into a model and allow it
to learn more complex representations of the data. To estimate the test data uncertainty, we
took a total of 100 samples for each model.

The objective of this study was to investigate and differentiate the uncertainty present
in various deep learning models by using MC-Dropout and VI methods. To achieve this
objective, a comprehensive comparison of the two methods was conducted, and the results
were meticulously analyzed. The results obtained from the models studied are presented in
Tables 1 and 2 for the two datasets to facilitate a clear and concise comparison. This study
highlighted the significance of incorporating uncertainty into the development of machine
learning models.

Table 1. Resultfootnotes of uncertainty quantification for different deep learning models used for the
ALL dataset.

Model Mean Class Confidence &
Standard Deviation

Classes Accuracy of Model

Benign Early Pre-B Pre-B Pro-B Base Model Sampling

Custom CNN + MC-Dropout Mean 0.9031 0.9356 0.9809 0.9978
0.8973 0.8973SD 0.1546 0.1210 0.0778 0.0178

Custom CNN + VI
Mean 0.8442 0.7915 0.9246 0.9178

0.8603 0.9178SD 0.1509 0.1369 0.0741 0.0432

Inception + MC-Dropout Mean 0.9388 0.9167 0.9837 0.9661
0.9425 0.9404SD 0.1237 0.1357 0.0644 0.1038

Inception + VI Mean 0.8511 0.8856 0.9202 0.9081
0.8829 0.9404SD 0.1472 0.1081 0.0969 0.0983

DenseNet + MC-Dropout Mean 0.9825 0.9764 0.9949 0.9871
0.9774 0.9712SD 0.0600 0.0795 0.0307 0.0508

DenseNet + VI
Mean 0.9263 0.9141 0.9078 0.9551

0.9445 0.9568SD 0.0994 0.1185 0.1122 0.0525

ResNet + MC-Dropout Mean 0.7680 0.8986 0.9415 0.9552
0.6201 0.9507SD 0.1973 0.1393 0.1220 0.1148

ResNet + VI
Mean 0.4873 0.5966 0.6924 0.6944

0.4065 0.7351SD 0.1238 0.1388 0.1749 0.1545

MLP-Mixer + MC-Dropout Mean 0.8448 0.9179 0.9664 0.9542
0.8706 0.9507SD 0.1683 0.1425 0.0936 0.1037

MLP-Mixer + VI
Mean 0.7626 0.8844 0.9671 0.8852

0.8603 0.9466SD 0.2252 0.1346 0.0867 0.0952
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Table 2. Results of uncertainty quantification for different deep learning models used for the breast
cancer dataset.

Model Mean Class Confidence & Standard
Deviation

Classes Accuracy of Model

Normal Benign Malignant Base Model Sampling

Custom CNN + MC-Dropout Mean 0.9192 0.9178 0.9569
0.7264 0.7179SD 0.1481 0.1217 0.0570

Custom CNN + VI
Mean 0.8927 0.9011 0.8921

0.7350 0.7778SD 0.1511 0.1264 0.1363

Inception + MC-Dropout Mean 0.9019 0.9034 0.9383
0.7777 0.7692SD 0.1511 0.1455 0.1418

Inception + VI Mean 0.8882 0.8223 0.8279
0.7521 0.7435SD 0.1411 0.1739 0.1642

DenseNet + MC-Dropout Mean 0.9337 0.9245 0.9330
0.8290 0.8547SD 0.1151 0.0993 0.1078

DenseNet + VI
Mean 0.9061 0.8418 0.8801

0.7692 0.7607SD 0.1447 0.1685 0.1327

ResNet + MC-Dropout Mean 0.8951 0.7149 0.8194
0.5299 0.7009SD 0.1420 0.1812 0.1466

ResNet + VI
Mean 0.8313 0.7645 0.7947

0.6324 0.7692SD 0.1299 0.1451 0.1578

MLP-Mixer + MC-Dropout Mean 0.7566 0.7925 0.7880
0.6239 0.6923SD 0.2068 0.2069 0.2333

MLP-Mixer + VI
Mean 0.6598 0.6795 0.7417

0.5384 0.6325SD 0.2188 0.1467 0.1803

The results displayed in Table 1 indicate that MC-Dropout achieves higher accuracy
than VI. The mean and standard deviation of each class shows a higher level of confidence
with MC-Dropout than with VI. The decrease in accuracy with VI also indicates a lower
level of confidence in its predictions. This suggests that MC-Dropout is better at identifying
the true class probabilities, while VI tends to overgeneralize and make predictions with
less certainty. These findings are crucial in determining the appropriate model for different
tasks and applications. Interestingly, the MLP-Mixer performed better than other models,
except for DenseNet, while it was the second-worst model before sampling. This indicates
that BDL can significantly improve the performance of MLP-Mixer. Additionally, the
mean and standard deviation of each class provides insights into which classes the model
performs better or worse on.

Table 2 presents the results of the second dataset, which was a relatively small dataset.
Despite the dataset’s limited size, all models were able to efficiently capture the uncertainty
associated with both the model and the data. The results indicate that the MC-Dropout
approach tends to be more confident in its predictions compared to the VI version of
the same model. This is evident in the higher mean and lower standard deviation of
the predicted classes overall. Although the VI versions showed better accuracy in some
cases, MC-Dropout demonstrated a higher level of confidence. As expected, the MLP-
Mixers performed the worst in terms of accuracy. However, their performance improved
significantly when BDL sampling was utilized, especially with the MC-Dropout approach.
This finding is of particular interest as it suggests that MLP-Mixers can benefit greatly from
incorporating uncertainty quantification. Therefore, this study highlights the importance
of considering both accuracy and uncertainty when evaluating machine learning models
and provides valuable insights into the potential of MLP-Mixers in real-world applications.

Our experimental findings reveal a noticeable improvement in the performance of
MLP-Mixers by utilizing BDL to estimate their uncertainty. Although the MLP-Mixer did
not achieve state-of-the-art results, our findings suggest that with some modifications, it has
the potential to further enhance its performance. Additionally, we used a basic architecture
for the mixer, demonstrating its versatility. With the availability of other mixer variants, we
are optimistic that by combining them with BDL, mixer models can effectively compete
with state-of-the-art approaches, even on small to medium-sized datasets. These results
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offer promising directions for future research and highlight the potential of MLP-Mixers
with BDL for practical applications in various domains.

Figures 5 and 6 display a few examples of uncertainty quantification for the ALL
dataset using the MC-Dropout approach. To accurately quantify the uncertainty of the
predicted classes, 1000 samples were taken for each example. It should be noted that these
image examples were randomly selected, which means that image (A) in Figure 5 is different
from (A) in Figure 6, and similarly for (B) and (C). The (A) in both Figures 5 and 6 represents
an accurately classified example with very low uncertainty (high confidence). We observed
that when making predictions with low uncertainty, the mean for the true class was very
close to 1.0, while the mean for other classes was close to 0.0. In addition, the standard
deviation was very low for both true and false classes. Image (B) in both Figures 5 and 6
depicts a truly predicted class with moderately high uncertainty. Interestingly, the CNN
model tended to have a curve peak near both ends of the scale, while the MLP-Mixer
behaved very differently, with the curve peak at any point on the scale. Additionally, in
general, the MLP-Mixer demonstrated higher uncertainty compared to CNN models, which
is reflected in the results from Tables 1 and 2. Image (C) in both Figures 5 and 6 represents
a misclassified category. In Figure 5C, even though the class “early Pre-B” is not the actual
label for the associated image, it has a peak close to 1.0. Although this is an extreme case, it
shows that CNN models generally have a peak in the curve near the beginning and the end
of the scale. In Figure 6C, a very different pattern emerges, where the curves are selected at
random points instead of at the beginning or the end of the scale. Notably, Figure 6C for
MLP-Mixer has a lower mean for the incorrectly classified label compared to Figure 5C of
the CNN model.
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In addition to the above figures, we conducted further experiments on both datasets
and arrived at several more conclusions. First, we observed that MLP-Mixers tend to have a
lower mean and a higher standard deviation most of the time, indicating lower confidence
in their predictions in general. However, this can actually be beneficial because it means
that when the model has low uncertainty, we can be more confident in the accuracy of the
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prediction. Second, we found that MLP-Mixers tend to have more random curves that
can have a peak at any point on the scale, unlike CNN architectures that typically have
peaks near the beginning and end of the scale. Additionally, both CNN-based architectures
and MLP-Mixers can exhibit high uncertainty for misclassified labels, but MLP-Mixer
shows higher uncertainty in most cases. These findings further highlight the importance of
considering both accuracy and uncertainty when evaluating machine learning models.

4. Discussion

The results presented in this study suggest that incorporating uncertainty quantifica-
tion techniques, specifically BDL, can significantly enhance the performance of MLP-Mixers.
This approach not only improves the model’s accuracy but also enables quantification of
the uncertainty associated with both the models and the data. However, it is crucial to
note that while the results of this study have been compared with those of CNN models,
there are other factors to consider when using uncertainty quantification that has not been
explored in this research. To provide a more comprehensive understanding of the use of
uncertainty quantification, it is essential to consider the following additional points.

• In the context of BDL, it is frequently observed that a model’s performance declines
when the mean of the predicted true classes falls below a certain threshold, which in
this study’s datasets was around 50%. This situation is characterized by a decrease
in the model’s standard deviation, indicating a failure to capture the associated un-
certainty. It is worth noting that this observation does not necessarily imply a failure
of the BDL, but rather indicates that the model has failed to effectively generalize
the results and predict each class accurately. In such cases, it is recommended to
explore alternative methods or models that may be more suitable to the data and
task at hand. This approach may involve adjusting the model’s hyperparameters or
selecting a different model architecture altogether. Additionally, it may be necessary
to reconsider the data preprocessing steps or feature engineering techniques used
in the model development process. Therefore, it is important to note that the iden-
tification of poor-performing models and the subsequent exploration of alternative
approaches are crucial steps in the iterative model development process. It is through
this iterative process that one can gain a better understanding of the data, model,
and associated uncertainties, ultimately leading to improved model performance and
increased confidence in the resulting predictions;

• In BDL, when a model is presented with unfamiliar data, the associated posterior
distributions become more uncertain, resulting in higher uncertainty estimates. This
increased uncertainty indicates that the network is less confident in its predictions, and
it can serve as a useful tool for identifying abnormal or unusable data that significantly
deviate from the training dataset. By utilizing the model uncertainty estimates to
identify such data, BDL models, particularly MLP-Mixer models, can deliver improved
performance and more reliable results across various applications. This approach
to leveraging uncertainty estimates to detect abnormal data aligns with the wider
concept of model-based anomaly detection, which has proven successful in various
applications. Additionally, by quantifying the associated uncertainty, BDL models
can provide a valuable tool for identifying data points that are on the edge of the
model’s training distribution. This can serve as a foundation for further exploring the
data-generating process and improving the model’s overall generalization ability;

• It is important to understand that a perfect score on a dataset does not necessarily imply
perfect confidence or zero uncertainty in a model’s predictions. Our research findings,
as presented in Tables 1 and 2, demonstrate this fact. However, some publications have
misinterpreted the relationship between a perfect score and uncertainty. It is important
to note that the likelihood of a model having zero uncertainty or standard deviation
is extremely low and that this situation can only occur under extreme circumstances.
This highlights the fact that even when a model performs exceptionally well on a
dataset, some degree of uncertainty remains in its predictions due to various factors
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such as model bias, incomplete information, and data variability. It is, therefore,
essential to consider the uncertainty associated with a model’s predictions, as it can
provide valuable insights into the reliability of its results and potential areas for
improvement. Failure to account for such uncertainty can lead to overconfidence
in a model’s predictions, which can be detrimental in critical applications such as
healthcare. Researchers and practitioners must be aware of the presence of uncertainty
and focus on developing methods to quantify and account for it. By doing so, we can
improve the overall reliability and robustness of deep learning models and ensure
their effective application across a wide range of fields;

• In the field of machine learning, it is commonly held that using fully Bayesian methods
in deep learning might not always lead to better results compared to approximate
methods. This is due to the fact that fully Bayesian methods may not be effective
with all types of data, particularly in the case of image data, where images can vary
significantly from one another. In addition, using fully Bayesian methods can be
computationally demanding, especially with models that have a large number of pa-
rameters to learn. Therefore, when deciding between fully Bayesian and approximate
methods, it is important to consider factors such as the size of the data, the computing
resources available, and the desired level of model complexity. Considering these
factors can aid in selecting the most appropriate method for each specific task. Conse-
quently, full BDL has not received widespread acceptance among machine learning
researchers, particularly in the field of computer vision;

• The MLP-Mixer is known for its relatively limited interaction with neighboring neu-
rons compared to CNNs. This limited interaction can result in decreased performance
when working with smaller datasets, as the model may struggle to capture the com-
plex patterns and relationships present in the data. However, for very large datasets,
MLP-Mixer can perform equally well as CNN models while being more computa-
tionally efficient. Therefore, it is important to carefully consider the strengths and
limitations of MLP-Mixers when choosing an architecture for a given task, especially
when working with smaller datasets or in environments with limited computational
resources. Researchers have developed different versions of MLP-Mixer to increase
interaction between neighboring regions while decreasing interaction between further
away regions [10]. Our findings suggest that incorporating uncertainty quantification
using BDL can significantly enhance the performance of MLP-Mixers, particularly for
small and medium-sized datasets;

• Unlike CNN models that use filters for uncertainty quantification, MLP-Mixers utilize
regions of images or feature maps, offering a more comprehensive analysis of the data.
This approach provides a more accurate representation of uncertainty, which can lead
to better performance in certain applications;

• Although BDL often results in high estimated uncertainty for incorrectly assigned
classes, it may also produce high uncertainty for correctly assigned classes as well.
This phenomenon is particularly common among classes that are closely related.
For example, in the context of cancer classification (Table 2), the normal and benign
classes may both have high uncertainty, while the malignant class has low uncertainty.
Alternatively, the benign and malignant classes may both exhibit high uncertainty,
while the normal class has low uncertainty. However, it is less common for both
the normal and malignant classes to show high uncertainty, while the benign class
has low uncertainty, as these two classes possess noticeably distinct features that
distinguish them from each other. Therefore, understanding the underlying factors
that contribute to the uncertainty estimates of a model is crucial for interpreting and
evaluating its performance. Additionally, taking into account the inherent uncertainty
associated with a model’s predictions can provide valuable insights into the reliability
and robustness of its results, especially in applications where misclassification can
have severe consequences.
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5. Conclusions

This paper presented a study on the use of uncertainty quantification in MLP-Mixers
for classifying small datasets with BDL. The research compared two versions of MLP-
Mixers that used MC-Dropout and VI with four different CNN models. Similarly, two
versions of MC-Dropout and VI were implemented for each CNN model. The objective of
this study was to investigate the effectiveness of uncertainty quantification in MLP-Mixers,
rather than achieving state-of-the-art results. Two small medical datasets, which differed in
various criteria, were used to evaluate, and compare, the performance of the MLP-Mixers
with the other CNN models. The results of the study revealed that the MLP-Mixers did not
surpass all the other models together; however, uncertainty quantification could greatly
improve the performance of MLP-Mixers, particularly when using MC-Dropout. This was
not consistently observed with the CNN models. The study highlights the importance of
considering uncertainty quantification in MLP-Mixers, especially when working with small
datasets. Future research should investigate the potential of preprocessing techniques, such
as augmentation and resampling, to enhance the performance of uncertainty quantification
in MLP-Mixers models.
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