
Citation: Cai, Q.; Niu, L.; Shang, X.;

Ding, H. A Self-Supervised

Tree-Structured Framework for

Fine-Grained Classification. Appl. Sci.

2023, 13, 4453. https://doi.org/

10.3390/app13074453

Academic Editor: Silvia Liberata

Ullo

Received: 28 February 2023

Revised: 27 March 2023

Accepted: 27 March 2023

Published: 31 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Self-Supervised Tree-Structured Framework for
Fine-Grained Classification
Qihang Cai , Lei Niu * , Xibin Shang and Heng Ding

Central China Normal University Wollongong Joint Institute, Faculty of Artificial Intelligence in Education,
Central China Normal University, Wuhan 430079, China
* Correspondence: lniu@ccnu.edu.cn

Abstract: In computer vision, fine-grained classification has become an important issue in recognizing
objects with slight visual differences. Usually, it is challenging to generate good performance
when solving fine-grained classification problems using traditional convolutional neural networks.
To improve the accuracy and training time of convolutional neural networks in solving fine-grained
classification problems, this paper proposes a tree-structured framework by eliminating the effect
of differences between clusters. The contributions of the proposed method include the following
three aspects: (1) a self-supervised method that automatically creates a classification tree, eliminating
the need for manual labeling; (2) a machine-learning matcher which determines the cluster to
which an item belongs, minimizing the impact of inter-cluster variations on classification; and (3) a
pruning criterion which filters the tree-structured classifier, retaining only the models with superior
classification performance. The experimental evaluation of the proposed tree-structured framework
demonstrates its effectiveness in reducing training time and improving the accuracy of fine-grained
classification across various datasets in comparison with conventional convolutional neural network
models. Specifically, for the CUB 200 2011, FGVC aircraft, and Stanford car datasets, the proposed
method achieves a reduction in training time of 32.91%, 35.87%, and 14.48%, and improves the
accuracy of fine-grained classification by 1.17%, 2.01%, and 0.59%, respectively.

Keywords: fine-grained classification; tree-structured framework; machine-learning matcher;
convolutional neural network

1. Introduction

With the continuous development of deep learning algorithms, machines are now
able to simulate human visual systems in order to recognize objects. Fine-grained visual
recognition has become a critical issue in the area of recognizing objects whose main task
is to recognize subclasses from several clusters. The term “cluster” refers to a grouping
of objects that share a particular feature, while a “subclass” refers to breeds within the
same cluster. Figures 1 and 2 illustrate clusters of planes, respectively. The aircraft in
Figure 1 are passenger planes, and the aircraft in Figure 2 are warplanes. Due to clear
differences in appearance, it is easy to distinguish between the clusters of warplanes and
passenger planes. However, precisely distinguishing between subclasses within the same
cluster presents a challenge due to the small visual differences; for example, differentiating
Typhoons from other types of warplanes shown in Figure 2 is particularly difficult.

Most contemporary researchers have focused on extracting local discriminative fea-
tures from images [1], i.e., searching for the most prominent parts of the image. To achieve
this, various methods have been developed, such as part-based convolutional neural
networks [2], fine-grained three-dimensional networks [3], and feedback-control neural
networks [4]. In recent years, convolutional neural networks (CNNs) have gained popu-
larity in solving fine-grained classification problems [5]. To extract features, researchers
have proposed innovative techniques such as a recurrent attention convolutional neural
network [6] and a DenseNet-based classification framework [7].

Appl. Sci. 2023, 13, 4453. https://doi.org/10.3390/app13074453 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074453
https://doi.org/10.3390/app13074453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3796-2903
https://orcid.org/0009-0009-6716-7597
https://doi.org/10.3390/app13074453
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074453?type=check_update&version=2


Appl. Sci. 2023, 13, 4453 2 of 19

(a) 757-200 (b) A340-600 (c) DC-10

Figure 1. Subclass samples of passenger planes cluster.

(a) Typhoon (b) F-16AB (c) Tornado

Figure 2. Subclass samples of warplanes cluster.

Moreover, solving fine-grained classification problems using traditional CNNs can be
challenging. Extracted features often correlate with the image quality and the similarity
of samples in the dataset, leading to suboptimal performance. To improve classification
accuracy, many researchers focus on removing image noise, such as the background, to
enhance image quality [8]. In this paper, we propose a novel framework for fine-grained
classification that eliminates the effect of cluster similarity, which is distinct from traditional
noise elimination methods. A dataset may contain different clusters, such as warplanes
and passenger planes. However, when all samples (subclasses from various clusters) are
combined for classification, a CNN classifier must differentiate not only the cluster but also
the subclass. This is a complex task because the correlation between different clusters may
affect the extracted features, leading to an inaccurate classification. To address this issue,
it is essential to identify the belonging cluster for each subclass before the classification.
For example, the 757–200 aircraft shown in Figure 1 should be classified into its belonging
cluster (i.e., passenger planes) before further classification.

This paper advances a novel tree-structured framework with the objective of enhancing
classification accuracy and mitigating training time in comparison to CNNs for fine-grained
classification tasks. The proposed framework determines the belonging cluster before clas-
sification, which can help to eliminate the effect of the similarity between different clusters.
The paper makes several contributions: (1) a self-supervised method that can automatically
construct an initial classification tree based on image features, which distinguishes the be-
longing cluster and eliminates the need for manual labeling; (2) a normal machine-learning
matcher which acts as a classifier that utilizes machine-learning methods to assign objects to
the belonging clusters, thus minimizing the impact of clusters on the classification process; and
(3) a pruning criterion is proposed to filter the classifier with better classification performance,
thereby reducing the computational cost. The experimental results demonstrate that the
proposed tree-structured classifier improves the accuracy and training time of fine-grained
classification compared to traditional CNN classifiers.

The paper is organized as follows. Section 2 provides a discussion of related work.
Section 3 introduces a method for the proposed tree-structured classifier. Section 4 discusses
the experiments. Section 5 concludes the paper.

2. Related Work

Fine-grained image classification is a task that involves identifying subtle visual
characteristics of subclasses within a cluster, which generates significant interest among
researchers. Several approaches are proposed to address the problem of fine-grained
classification. The mainstream approach is “landmark selection,” i.e., extracting local dis-



Appl. Sci. 2023, 13, 4453 3 of 19

criminative features. For instance, Zhang et al. [9] propose an approach that autonomously
identifies informative regions using an object localization module, achieving high classifi-
cation accuracy without the need for partial manual annotation. Breiki et al. [10] utilize a
self-supervised model to automatically detect and annotate informative features in images,
leading to improved classification accuracy. Lai et al. [11] segment images into multiple
scales to reduce the adverse effect of background information and extract more precise
features. In general, the extraction of discriminative features necessitates a substantial
amount of computational resources. In contrast, this paper proposes a hierarchical structure
to eliminate the influence of different clusters on feature extraction with fewer resources.
This section presents a review of three types of related works: (1) feature extraction for
entire objects using CNNs, (2) hierarchical classification framework, and (3) hierarchical
fine-grained classification.

The extraction of features for entire objects focuses on extracting useful information
from the global image by generating a multi-scale comparison of features [12]. CNNs are
helpful tools to acquire discriminative features of entire objectives. Zhang et al. [12] use a
CNN with proposed multi-max pooling to extract the information of entire objects. Through
clustering algorithms, features with high differentiation are selected. Wang et al. [13] apply
DenseNet-121, 169, and 201 to extract the features of multiple sclerosis. However, due
to the similarity of subclasses, there is still room to improve the accuracy of fine-grained
classification. Hu et al. [14] add a spatially weighted pooling layer of CNNs for better
feature extraction. These methods focus on extracting discriminative features rather than
dealing with the effect of the similarity between different clusters on feature extraction.

The hierarchical classification framework has seen a surge of work in recent years,
e.g., speech recognition, product selection, and text classification. The hierarchical classifica-
tion framework mainly has two effects: (1) the extraction of useful features, e.g., hierarchical
neural networks [15], and hierarchical graph neural networks [16], and (2) the simplification
of multiclassification problems into a few small classification problems, which is the basic
idea of this paper. Daume et al. [17] automatically build a tree hierarchy based on the
recall of test samples. Although the classifier based on the recall hierarchy improves the
speed of classification, the accuracy slightly decreases. Furthermore, more approaches
to building the hierarchical classifier are based on the features of the samples [18–20].
Morin et al. [18] construct a binary hierarchical classifier based on prior knowledge, which
is extracted from the semantic feature by WordNet. The study only discusses the effect of
the binary hierarchical classifier in speech recognition but does not explain the condition
in which the tree hierarchy stops growing and discusses the outcome of the tree hierarchy
with other numbers of child nodes. Based on extracted features, Yu et al. [20] construct
a hierarchical classifier using machine-learning clustering, which can narrow down the
candidate set from an enormous output space and find the most relevant items. However,
the authors do not discuss the performance of the hierarchical classifier constructed with
different machine-learning approaches. In general, most studies do not discuss the effect of
autonomous and self-supervised hierarchical frameworks in fine-grained classification.

Hierarchical fine-grained classification improves the accuracy of fine-grained clas-
sification by building hierarchies for classification. Based on object features, the idea
of hierarchical classification classifies the objects into different clusters, and each cluster
has high similarities. As the number of levels increases, the similarity in each cluster
increases [21]. Goel et al. [22] create a binary tree hierarchy using a max-margin clustering
strategy. A metric learning strategy is applied to learn the difference between objects in met-
ric space. In [22], a binary tree hierarchy is built based on the visual features rather than the
features extracted by CNNs, i.e., manual labeling is required. Similarly, Bameri et al. [23]
propose a hierarchical method for classification based on the phylogenetic information of
birds, which means that additional information is needed when processing the dataset. In
the above approaches [22,23], manual calibration is required to build the tree hierarchy,
which requires various efforts.



Appl. Sci. 2023, 13, 4453 4 of 19

In summary, the current literature focuses on extracting discriminative features that
require significant computational costs when extracting features of entire objects. However,
Tanno et al. show that the tree hierarchy requires fewer costs in their work [15]. Meanwhile,
researchers have investigated the effect of hierarchical structures in neural networks ex-
tensively. However, little work has been carried out on autonomous and self-supervised
hierarchical frameworks in fine-grained classification. Furthermore, manual marking is
usually the basis for fine-grained hierarchical classification, which requires high labor costs,
and there is little research on self-supervised methods. Therefore, it is worth constructing
accurate, fine-grained, self-supervised hierarchical classifications with entire features to
reduce the effect of the similarity between different clusters.

3. Proposed Tree-Structured Framework for Fine-Grained Classification

In the pursuit of developing a framework for fine-grained classification, we draw
inspiration from the conventional hierarchical classification approach, which involves con-
structing a tree hierarchy of objects based on their features. The effectiveness and accuracy
of traditional hierarchical classification heavily depend on constructing an accurate and
well-structured tree hierarchy. This process typically involves two stages: (i) utilizing
relevant background knowledge to establish a reasonable tree hierarchy and (ii) manually
labeling images with the appropriate cluster. However, the manually constructed tree hier-
archy may not be applicable to general fine-grained classification problems, as it may be
challenging to determine the optimal tree structure without prior knowledge, and labeling
objects is a time-consuming task. To overcome these limitations, this study proposes an
automated and modular framework for solving general fine-grained classification prob-
lems, as depicted in Figure 3. The framework entails two phases: initial classification tree
construction and tree-structured classifier building.

Figure 3. The process of constructing a tree-structured classifier.

1. Initial classification tree construction: This step applies a recursive method to con-
struct an initial classification tree through a clustering algorithm. This helps to group
similar subclasses together, achieving the effect of automatic hierarchy building.
As shown in Figure 3, the proposed approach classifies subclasses into different clus-
ters based on their similarity in Level n. Then, the clusters of Level n are classified
into Level n− 1 clusters.

2. Tree-structured classifier building: In this step, a machine-learning matcher is devel-
oped to predict the belonging cluster. Then, a pruning criterion is applied to remove
useless clusters from the tree hierarchy, resulting in a classifier with a better classifica-



Appl. Sci. 2023, 13, 4453 5 of 19

tion performance. As shown in Figure 3, the red box represents the useless clusters
that have been pruned. Finally, within the leaf cluster, a CNN model is used to predict
the subclass.

3.1. Initial Classification Tree Construction

The initial classification tree constructed based on a clustering algorithm has several
advantages. First, the clusters are constructed based on the similarity of subclasses, meaning
that all subclasses in each cluster share certain common properties, which is an important
factor that can help the machine-learning matcher to accurately predict the belonging
cluster. Furthermore, the size of the output space in cluster i is ni, which is much smaller
than the size of the overall output space o (ni << o) [20]. This greatly reduces the cost
of computation and improves the efficiency of the classification process. This section
introduces the process of constructing a well-structured initial classification tree.

As the basis of initial classification tree construction, features of images can be extracted
with pre-trained models [24], fine-tuned models [25], and so on. Furthermore, CNNs, e.g.,
ResNet [26], are one of the mainstream tools for extracting image features. In this paper, a
fine-tuned CNN model is utilized to extract features to represent the images.

Once the image features are extracted, an initial classification tree can be constructed
through a clustering algorithm such as K-means++ [27]. The purpose of the clustering
algorithm is to classify features into the belonging cluster at each level. Given the set of
image features Fn−1

i = {xn−1, 1
i , xn−1, 2

i , . . . , xn−1, ni
i } belonging to a cluster i at level n− 1

(Ci,n−1), we aim to determine the belonging cluster C = {Cn
1 , Cn

2 , . . . , Cn
k } at Level n for

Fn−1
i . Below, an objective function of the clustering algorithm is shown.

{Cn
l | l = 1, 2, . . . , k}

s.t.
{

Cn
l′
⋂

l′ 6=l Cn
l = ∅

Fn−1
i =

⋃k
l=1 Cn

l

(1)

Figure 4 illustrates an example of constructing one part of the initial classification tree,
where Feature Fn−1

i is assigned to Cluster Cn−1
i . Subsequently, the structure of Level n is

constructed by applying the clustering algorithm.

Figure 4. A part of the initial classification tree constructed with the clustering algorithm.

Now, the belonging cluster for each image feature has been obtained. However, usually,
each subclass contains various images in the data. Hence, it is necessary to determine the
belonging cluster for each subclass. Algorithm 1 introduces the process of determining the
belonging classes through the voting strategy.



Appl. Sci. 2023, 13, 4453 6 of 19

Algorithm 1 Determining the belonging classes for the subclasses.

Input: Extracted features from each image in the training set (denoted as F); Number of the
subclasses (denoted as nsub); Number of clusters split from the cluster in the previous
level (denoted as nchd)

Output: belonging cluster for each subclass
1: clustering algorithm applied to segment F in nchd clusters
2: for i = 1 to nsub
3: for j = 1 to nchd
4: count the number of image features in each cluster Ck, where k ∈ [1, nchd] (voting)
5: the highest number of votes is selected as the belonging cluster
6: end for
7: end for

Algorithm 1 determines the belonging clusters for subclasses according to image
features. First, the inputs are specified as the extracted features from each image, the
total number of the subclasses, and desired number of clusters split from the cluster in
the previous level. Then, a clustering algorithm is applied to classify the image features
(Line 1). The number of image features in each cluster is calculated for each subclass
(Line 4). Following the principle of majority rule, the belonging cluster for each subclass
is determined based on the highest number of votes (Line 5). The algorithm stops until it
determines the belonging cluster for all subclasses.

Once belonging clusters of the subclasses have been determined, we can dynamically
construct the initial classification tree by performing a preorder traversal, which allows us
to decide the number of levels in the classification tree and the number of clusters split
from the cluster in the previous level. The construction process is shown in Algorithm 2.

Algorithm 2 Construction of the initial classification tree.

Input: Expected number of levels in the classification tree (denoted as nl); Number of
clusters split from the cluster in the previous level (denoted as nchd); Extracted features
for each image (denoted as F);

Output: an initial classification tree (denoted as tint)
1: function CreateClassificationTree (feature, cluster)
2: while levels of classification tree < nl do
3: determine the belonging cluster for the subclass (Algorithm 1)
4: for i = 1 to nchd do
5: cluster← cluster i;
6: feature← feature of cluster i in F;
7: CreateClassificationTree (feature, node)
8: end for
9: end while

10: end function

In Algorithm 2, the initial classification tree is constructed recursively based on the
image features. First, the inputs are specified as the expected number of levels in the
classification tree, the number of clusters split from the cluster in the previous level, and
extracted features for each image. A clustering algorithm is used to segment clusters of
image features, and majority voting is used to determine a belonging cluster for each
subclass (Line 3). Construction of initial classification trees is built using preorder traversal
with recursion (Lines 2–9). The cluster is set to the current cluster i (Line 5), and the feature
is updated to the values in the current cluster i (Line 6). The recursion ends and outputs the
initial classification tree only when the expected number of levels and the desired number
of clusters resulting from the split in the previous level have been reached.



Appl. Sci. 2023, 13, 4453 7 of 19

3.2. Tree-Structured Classifier Building

In the previous section, an initial classification tree was constructed, which could
classify each subclass into the belonging class. This section focuses on building a tree-
structured classifier with higher accuracy.

As one of the crucial components in the tree-structured classifier, machine-learning
matchers are applied to match image features to the belonging cluster in the different levels
of the classification tree. Because the final subclass is limited to the cluster returned by the
matcher, constructing an effective matcher function is crucial to the accuracy of the image
classification. Typically, the dimensionality of the image feature F is higher than that of
the cluster labels, which means that it is essential to construct a general matcher function,
denoted as g(·), that can find associations between image features xj

i and the corresponding

clusters Cj
i in Level j, as shown in Equation (2). Cj

i is the cluster with the highest probability

in Cj
k as judged by g(·).

Cj
i = arg max

xj
i∈F Cj

k∈Cj

g(xj
i , Cj

k) (2)

Figure 5 illustrates an example of matching an image feature to its belonging cluster.
The input image feature is passed through the tree, and a machine-learning matcher
determines the belonging cluster (denoted as the red node).

Figure 5. Matching an image feature to its belonging cluster.

Now, it is able to predict the belonging cluster for each image. Then, it is necessary
to determine subclasses for images with higher accuracy, i.e., the primary objective of
this paper is to develop tree classifiers that can achieve higher accuracy. The theory of
recall trees [17] shares a similar goal, aiming to ensure that each level of the tree-structured
classifier enhances classification accuracy. According to Daume et al.’s findings [17], the
accuracy of a tree classifier increases up to a certain threshold as the number of levels
increases. However, further increasing the tree’s levels beyond this threshold can actually
decrease accuracy. As a result, it is crucial to eliminate clusters that have a negative impact
on the tree-structured classifier’s accuracy.



Appl. Sci. 2023, 13, 4453 8 of 19

In this section, we present an algorithm (Algorithm 3) that can create a tree-structured
classifier with improved accuracy by eliminating invalid clusters. Prior to that, it briefly
introduces a condition for the tree hierarchy to stop growing, i.e., the pruning criterion.

Pruning criterion: If the accuracy of a cluster is greater than or equal to the total
accuracy of all child clusters, as illustrated in Equation (3), then the child clusters are
considered invalid and are deleted from the tree-structured classifier.

∃ Cj−1
i , Cj

s : f (Cj−1
i ) ≥ α

k

∑
s=1

nj
s

nj−1
i

f (Cj
s) (3)

In Equation (3), Cj−1
i refers to Cluster i in Level j− 1, Cj

s refers to child cluster s in
Level j, f (·) refers to the function used to calculate the classification accuracy within a
cluster, k refers to the number of child clusters, α refers to the accuracy on prediction of
the cluster to child clusters by the machine-learning matcher, nj

s refers to the number of
subclasses in cluster Cj

s, and nj−1
i refers to the number of subclasses in cluster Cj−1

i .
Figure 6 shows an example of a pruned classification tree, which is a binary tree with

four levels. The clusters marked in red in Figure 6 are directly deleted based on the pruning
criterion, as the accuracy of Cluster 1 is greater than or equal to the accuracy of its child
clusters, i.e., total accuracy of Cluster 3 and Cluster 4.

Figure 6. An example of classification tree with pruning.

The conditions for stopping the growth of the tree hierarchy have been introduced.
Next, Algorithm 3 demonstrates the process of constructing a tree-structured classifier
using a hierarchical traversal method to remove unnecessary clusters. Furthermore, CNN
classifiers are applied to perform fine-grained classification in each leaf cluster, e.g., clusters
marked in blue in Figure 6.



Appl. Sci. 2023, 13, 4453 9 of 19

Algorithm 3 Tree-structured classifier building.

Input: an initial classification tree (denoted as tint); machine-learning matcher (denoted as
g(·));

Output: A tree-structured classifier
1: function CreateTreeStructuredClassifier (tint, g(·))
2: Initialize a queue (q)
3: Put the root cluster of tint into q
4: While (q is not empty) do
5: Fetch the head node (nh) of q
6: Calculate the accuracy of nh (acc(nh))
7: Calculate the comprehensive accuracy of all child clusters of nh (acc(nchd))
8: if acc(nh) < acc(nchd)
9: Put all child nodes of nh into q

10: end if
11: end while
12: apply CNN classifiers for classification in leaf nodes
13: end function

Algorithm 3 constructs a tree-structured classifier and removes useless clusters through
a hierarchical traversal approach. The inputs consist of an initial classification tree and
machine-learning matchers. The process starts by initializing an empty queue and placing
the root node of the tree in the queue (Lines 1–2). The construction of the tree-structured
classifier is built using the hierarchical traversal method (Lines 3–11). During the traversal
process, the head node of the queue is fetched (Line 5), and the classification accuracy
is calculated (Line 6). Next, Algorithm 3 iterates over and calculates the comprehensive
classification accuracy of all child nodes (Lines 7). According to the pruning criterion, it is
determined whether the classification accuracy increases with the increase of levels. If the
accuracy increases, the child nodes are placed in the queue. Finally, for the leaf nodes in the
pruned classification tree, CNN classifiers are applied to perform fine-grained classification
in each cluster (Line 12).

This section presents a self-supervised framework for automatically constructing a
general tree-structured classifier for fine-grained classification without requiring manual
labeling. The process of construction involves classifying each subclass into the belonging
cluster based on similarity to eliminate the effect of cluster similarity in feature extraction.
Then, a machine-learning classifier is trained to accurately predict the images’ belonging
cluster using the extracted features. The pruning criterion is proposed to improve the
accuracy of the tree-structured classifier by eliminating invalid clusters. Finally, the CNN
models are used to identify the belonging subclass of each object in the leaf cluster of the
tree-structured classifier.

4. Experiment

This section presents four experiments to showcase the performance of the proposed
tree-structured framework with diverse structures on different datasets. Experiment aims
to explore the impact of the tree-structured classifier’s structure on the results and illustrate
the necessity of the proposed pruning criterion. Then, the construction of the tree-structured
classifier relies on the clustering algorithm and the machine-learning matcher, and the best-
performing clustering algorithm and machine-learning matcher are determined through
Experiments 2 and 3. Lastly, the purpose of Experiment 4 is to showcase the effective-
ness and robustness of the proposed framework, utilizing the superior performance of
the k-means++ algorithms and machine-learning matchers identified in Experiments 2
and 3. Specifically, the main objective of Experiment 4 is to investigate whether the pro-
posed framework can enhance accuracy and reduce training time on different datasets in
comparison to different traditional CNN models.



Appl. Sci. 2023, 13, 4453 10 of 19

4.1. Experimental Setting

To evaluate the effectiveness of the proposed approach, this paper assesses the perfor-
mance of the proposed tree-structured classifier with different structures across different
datasets. In this subsection, we provide an overview of the experimental setup from three
perspectives: (1) datasets, (2) metric, and (3) parameter settings.

4.1.1. Datasets

The efficacy of the tree-structured classifier is assessed by evaluating its performance
on benchmark datasets for fine-grained visual classification of aircraft, birds, and cars.
These datasets are FGVC aircraft [28], CUB 200 2011 [29], and Stanford car [30], respectively.
Notably, these datasets are established benchmarks for fine-grained aircraft classification.
The aircraft dataset consists of 10,000 images and encompasses 100 subclasses, the bird
dataset comprises 11,788 images and contains 200 subclasses, and the car dataset comprises
16,191 images and 196 subclasses. Furthermore, the datasets are uniformly segregated into
three sets, namely, training, validation, and testing, with a ratio of approximately 1:1:1.

4.1.2. Metric

Accuracy: To evaluate the performance of the model, the accuracy of the model is
defined in Equation (4).

c =
nchd

∑
k=1

m

∏
i=1

αi
ni
N

Ra

R
(4)

In Equation (4), αi refers to the accuracy of matching the cluster to child clusters on
Level i, nchd refers to the number of clusters split from the cluster in the previous level, m
refers to the level of a leaf cluster in a tree-structured classifier, ni refers to the number of
subclasses in cluster i, N refers to the number of total subclasses, Ra refers to the number of
images accurately classified in cluster i, and R refers to the number of images in cluster i.

Training Time: Given that the training of CNN models is parallel in each layer, the
training time of each layer in the tree classifier is determined by the maximum of the
training time of the CNN model (max(tk, j

c )), the training time of the machine-learning
matcher (tma

m ), and the training time to divide clusters (tk
m). The overall training time (t) is

defined in Equation (5).

t =
m

∑
k=1

(max(tk, j
c ) + tma

m + tk
m) where k ∈ [1, nchd] (5)

In Equation (5), m refers to the level of a leaf cluster in a tree-structured classifier, and
nchd refers to the number of clusters split from the cluster in the previous level.

4.1.3. Parameter Settings

Table 1 shows the parameter settings of k-means++ applied in the experiments.

Table 1. Parameter settings of k-means++.

Parameter Setting Value Parameter Setting Value

Maximal number of
iterations 100 Number of replicates 1

Start mode sample Threshold for change
in the cost function 10−4

Figure 7 illustrates the structure of the CNN model utilized in all experiments. It
comprises a CNN model (ResNet, Inception, or MobileNet) and three fully connected layers
with either relu or softmax activation functions. Additionally, Table 2 provides a detailed



Appl. Sci. 2023, 13, 4453 11 of 19

overview of the parameter settings for the CNN model. Furthermore, Table 3 shows the
parameter settings for Random Forest, Naive Bayes, and SVM in the experiments.

Figure 7. The structure of the CNN model.

Table 2. Parameter settings for the CNN model.

Parameter Setting Value Parameter Setting Value

EPOCHS 80 optimizer SGD

steps per epoch Number of
subclass/16 loss categorical

cross-entropy
verbose 1 metrics accuracy

Table 3. Parameter settings for machine-learning matchers.

Machine
Learning
Matcher

Parameter Setting Value Parameter Setting Value

Random
forest

number of trees
in the forest 500

bootstrap sampling
for growing trees True

minimum size
of terminal nodes 1

maximum number
of terminal nodes NULL

Naive
Bayes

smallest possible
positive number e−10 frequency-based

discretization False

SVM

type C-classification coef0 1

cost 10 gamma 0.0009

probability Ture – –

4.2. Experimental Results

This subsection outlines the training and testing phases based on the initially con-
structed classification tree. Subsequently, the classification accuracy of various tree-structured
classifiers with different structures is assessed.



Appl. Sci. 2023, 13, 4453 12 of 19

Training and Testing Phase

Training Phase: The training phase encompasses two primary steps, which are illus-
trated in Figure 8.

1. Initial classification tree construction: Algorithm 2 is employed to construct an initial
classification tree, where the K-means++ clustering algorithm is utilized.

2. Training to predict class: Machine-learning matchers are trained for each level of
the classification tree to associate images with their corresponding clusters. The tree-
structured classifier is built using Algorithm 3, which utilizes the initial classification
tree obtained in Step 1 and the trained machine-learning matchers.

Figure 8. The diagram of the training phase of the tree-structured classifier.

Testing Phase: The testing phase, based on the trained tree-structured classifier, com-
prises the following two primary steps.

1. Cluster matching: Based on the extracted image features, a machine-learning matcher
is employed to match the belonging cluster, i.e., the leaf cluster.

2. Subclass prediction: The CNN classifier is applied to predict the belonging subclass
in the leaf cluster.

4.3. Conducted Experiments and Results

To assess the effectiveness of the proposed approach, we executed four experiments
and presented their outcomes as follows.

4.3.1. Experiment 1

Experiment 1 aims to examine the influence of child clusters on the training time and
accuracy of the bird dataset. A tree-structured classifier with varying numbers of child
clusters (i.e., 2, 3, 4, and 5) is employed. The accuracy and training time of the classifier
are being evaluated to assess the impact of child clusters on the classification performance
while holding other variables constant. Specifically, a Support Vector Machine (SVM) with
a linear kernel function is used as the machine-learning matcher, ResNet [26] is utilized as
the CNN model, and a k-means++ algorithm with Euclidean distance is implemented for
clustering. Table 4 presents the impact of the number of child nodes on both classification
accuracy and training time. To begin with, in order to showcase the effect of training the
proposed model, Figure 9 is provided, which displays partial images of the training and
validation loss.



Appl. Sci. 2023, 13, 4453 13 of 19

(a) Two child clusters (b) Three child clusters (c) Four child clusters (d) Five child clusters
Figure 9. Training and validation loss of proposed classifiers with different child clusters.

Table 4. Performance of proposed method with different child clusters.

Number of
Child Clusters

Traditional
ResNet

Classifier
Accuracy

Proposed
Classifier
Accuracy

Traditional
ResNet

Classifier
Training Time

Proposed
Classifier

Training Time

2

68.63%

69.80%

1480.41 s

1395.08 s
3 70.15% 993.25 s
4 69.94% 927.64 s
5 68.50% 873.20 s

Table 4 presents the classification accuracy of the bird dataset using the ResNet model
without the proposed method, which is 68.63%. However, Table 4 shows that the proposed
method enhances the accuracy of classification trees with child clusters 2, 3, 4, and 5
by 1.17%, 1.52%, 1.31%, and −0.13%, respectively. These results suggest that the tree-
structured classifier with three child clusters performs better in classification than those
with other child clusters. Conversely, the accuracy of classification decreases when the
number of child clusters is 4 or 5. Even when the number of child clusters is 5, there is a
negative growth in classification accuracy. These results indicate that the accuracy of a tree
classifier reaches a certain threshold and then declines as the number of clusters increases.
Furthermore, Table 4 displays the training time obtained using ResNet, which amounts
to 1480.41 seconds. The present study compares the performance of a proposed method,
which consists of 2, 3, 4, and 5 child clusters, with the conventional ResNet architecture
in terms of training time. According to the results, the proposed method outperforms the
conventional ResNet architecture, with corresponding reductions in training time of 5.76%,
32.91%, 37.34%, and 41.01%, respectively. Furthermore, an increasing trend in the reduction
of training time with an increase in the number of child clusters is observed, indicating the
effectiveness of the proposed approach.

4.3.2. Experiment 2

To assess the impact of different distance calculation methods in clustering algorithms
on the accuracy and training time of tree classifiers on the bird dataset, Experiment 2
evaluates the training time and classification accuracy of clustering algorithms using three
different distance calculation methods: Euclidean distance [31], Manhattan distance [31],
and correlation distance [31]. While keeping other variables constant, the experiment
employs a machine-learning matcher using SVM with a linear kernel function and a CNN
model using ResNet. Additionally, the number of child clusters is fixed at three. In Table 5,
the impact of utilizing k-means++ with varying distance calculation methods is presented.
Initially, to illustrate the impact of the proposed classifier model, Figure 10 illustrates
partial figures of the training and validation losses of the images using different distance
calculation methods.

(a) Euclidean distance (b) Manhattan distance (c) Correlation distance

Figure 10. Training and validation loss of proposed classifiers using different distance calculation.



Appl. Sci. 2023, 13, 4453 14 of 19

Table 5. Performance of proposed method using different distance calculation methods.

Distance
Calculation

Method

Traditional
ResNet

Classifier
Accuracy

Proposed
Classifier
Accuracy

Traditional
ResNet

Classifier
Training Time

Proposed
Classifier

Training Time

Euclidean
distance 68.63%

70.15%
1480.41 s

993.25 s

Manhattan
distance 70.34% 1090.64 s

Correlation
distance 69.03% 849.5043 s

The classification accuracy attained by the traditional ResNet model on the bird
dataset is 68.63%, as indicated in Table 5. Furthermore, Table 5 demonstrates that the
proposed method enhances the accuracy of classification trees with different distance
calculation methods, namely, Euclidean distance, Manhattan distance, and correlation
distance, by 1.52%, 1.71 %, and 1.33%, respectively. The results indicate that k-means++
with Manhattan distance can produce better classification results, while correlation distance
exhibits the worst accuracy. Generally, k-means++ with different distance calculation
methods has improved classification accuracy, which validates the effectiveness of the
proposed method. However, the lacking performance of correlation distance might be
related to its purpose of calculating the distance, which measures the linear relationship
between two variables. On the other hand, Euclidean distance and Manhattan distance are
similar since they both measure distance between variables in multi-dimensional space.
Hence, during the construction of the initial classification tree, k-means++ with correlation
distance places more emphasis on the linear relationship between two variables, which
leads to the suboptimal performance of the generated cluster. In terms of training time, the
proposed classifier model shows a reduction in training time of 32.91%, 26.33%, and 42.62%,
respectively, compared to the conventional Resnet architecture using different distance
calculation methods, namely, Euclidean distance, Manhattan distance, and correlation
distance. Based on the experimental results, it is concluded that while k-means++ using
correlation distance does not result in a significant improvement in accuracy, it requires
the least amount of training time. On the other hand, k-means++ with Manhattan distance
has the highest accuracy, but it needs the longest training time. The authors suggest that
researchers may consider selecting the appropriate k-means++ with different distance
calculation methods based on a combination of accuracy and training time.

4.3.3. Experiment 3

To evaluate the impact of various machine-learning matchers on classification accuracy
and training time, Experiment 3 tests the performance of three commonly used classifiers
for high-dimensional data classification—Bayesian, Random Forest, and SVM—on the bird
dataset. This experiment utilizes three classifiers—Naive Bayes, Random Forest, and SVM—
with linear, polynomial, radial, and sigmoid kernel functions. While holding the following
variables constant, the ResNet architecture is employed as the CNN model, and the k-
means++ algorithm with Euclidean distance is utilized for clustering, with a fixed number
of three child clusters. Figure 11 delineates not only the structure of Experiment 1 and
the quantity of subclusters within each cluster but also emphasizes the machine-learning
matchers (identified in blue) that are tested in Experiment 3. Moreover, Table 6 presents the
accuracy and training time of the evaluated machine-learning matchers. Table 6 denotes the
tested machine-learning matcher as “A–B”, where A signifies the number of child clusters
of the tree-structured classifier, and B denotes the layer in the tree-structured classifier
where the machine-learning matcher is situated.



Appl. Sci. 2023, 13, 4453 15 of 19

Figure 11. Structures of the proposed classifier and tested matchers.

Table 6. Performance of tested matchers varies with different machine-learning classifiers.

Machine-
Learning
Matcher

Tested
Matcher Accuracy Training

Time

Machine-
Learning
Matcher

Tested
Matcher Accuracy Training

Time

SVM (linear)

2-1 100% 71.20 s

SVM (radial)

2-1 99.90% 117.01 s
2-2 100% 19.41 s 2-2 98.55% 30.01 s
3-1 100% 91.77 s 3-1 98.55% 132.89 s
4-1 99.98% 100.73 s 4-1 96.85% 137.91 s
5-1 99.97% 107.26 s 5-1 96.68% 150.48 s

SVM (poly)

2-1 100% 98.86 s

SVM (sigmoid)

2-1 92.29% 95.61 s
2-2 99.96% 24.41 s 2-2 94.18% 27.14 s
3-1 99.85% 113.06 s 3-1 89.70% 115.24 s
4-1 99.54% 116.40 s 4-1 97.67% 124.69 s
5-1 99.37% 126.23 s 5-1 88.63% 150.90 s

Naive Bayes

2-1 91.37% 0.86 s

Random forest

2-1 98.50% 209.74 s
2-2 93.14% 0.64 s 2-2 97.18% 101.35 s
3-1 88.56% 1.13 s 3-1 96.22% 225.83 s
4-1 85.64% 1.31 s 4-1 95.20% 233.55 s
5-1 84.22% 1.51 s 5-1 94.34% 234.48 s

Table 6 indicates that the SVM with linear kernel function is the best classifier, whereas
the SVM with sigmoid kernel function and Naive Bayes have poorer accuracy. This is due to
Cover’s Theorem [32], which suggests that almost all classification problems can be linearly
separated in high-dimensional spaces. Hence, the SVM with linear kernel function achieves
better accuracy. Additionally, as presented in Table 6, the accuracy of the matcher decreases
gradually as the number of nodes increases. For instance, while the accuracy of matcher
2-1 (a machine-learning matcher in a tree-structured classifier with two child clusters in the



Appl. Sci. 2023, 13, 4453 16 of 19

first layer, as illustrated in Figure 11) using an SVM with sigmoid kernel function is 92.29%,
the accuracy of matcher 5-1 (a machine-learning matcher in a tree-structured classifier with
five child clusters in the first layer, as illustrated in Figure 11) drops to 88.63%. It is expected
that the difficulty of classification increases with the classification type, resulting in lower
accuracy. Likewise, with regard to training time, it can be observed that the training time
for all machine-learning classifiers augments as the number of child clusters increases,
which implies an increase in the number of categories for classification, such as a binary
problem with two child clusters. Notably, the least training time required was for an SVM
with a linear kernel function compared to SVM with different kernel functions. Based on
accuracy and training time, the authors arrive at the conclusion that SVM with a linear
kernel function is the best-performing machine-learning matcher.

4.3.4. Experiment 4

To assess the robustness of the proposed method, Experiment 4 measures the per-
formance of various tree-structured classifiers using different CNN models on different
datasets, including aircraft [28], birds [29], and cars [30]. The performance of the proposed
method is compared with different traditional CNN models, including ResNet [26], In-
ception [33], and MobileNet [34]. While holding the following variables constant, SVM
with a linear kernel function is used as the machine-learning matcher, and the k-means++
algorithm with Euclidean distance is utilized for clustering. Table 7 illustrates the clas-
sification accuracy obtained using different structures across diverse datasets. Initially,
to demonstrate the effect of training the proposed model on diverse datasets, Figure 12
depicts the parts of training and validation loss figures.

(a) Bird dataset (b) Aircraft dataset (c) Car dataset
Figure 12. Training and validation loss of proposed classifiers using different datasets.

Table 7. Performance of proposed method on various datasets with different child clusters.

Datasets Applied
Model

Number
of Child
Clusters

Proposed
Classifier
Accuracy

Traditional
CNN

Classifier
Accuracy

Proposed
Classifier
Training

Time

Traditional
CNN

Training
Time

Bird ResNet 3 70.15% 68.63% 993.25 s 1480.41 s
Aircraft MobileNet 3 74.20% 72.19% 1962.21 s 3060.01 s

Car Inception 2 82.83% 83.42% 3435.48 s 4017.29 s

Table 7 displays the classification accuracy achieved with different structures on var-
ious datasets. For instance, using MobileNet to build a tree-structured classifier yields a
2.01% improvement in accuracy. The results indicate that, compared to traditional ResNet,
MobileNet, and Inception models, the proposed classifier enhances the classification accu-
racy of multiple datasets by 1.17%, 2.01%, and 0.59% on the bird, aircraft, and car datasets,
respectively. Overall, the proposed tree-structured framework improves classification
accuracy in comparison to traditional CNN models. Furthermore, in the airplane dataset,
the number of child clusters in the tree-structured classifier is three, resulting in a 2.01%
improvement in accuracy. However, in the car dataset, the number of child clusters is
two, and the improved accuracy is only 0.59%, which is not particularly significant. This
supports the conclusion of Experiment 1, where the use of three child clusters exhibits
better classification results. Additionally, the result shows that the proposed tree-structured



Appl. Sci. 2023, 13, 4453 17 of 19

classifier can considerably reduce the training time compared to the traditional CNN model.
This is reflected in a 32.91%, 35.87%, and 14.48% reduction in training time of the bird,
aircraft, and car datasets, respectively, compared to the traditional ResNet, MobileNet, and
Inception models.

In summary, the aforementioned four experimental outcomes suggest that the pro-
posed approach improves the accuracy and training time of classification in various datasets
relative to conventional CNN models. Furthermore, the tree-structured classifier with three
clusters yields superior accuracy compared to other configurations, while the training time
of the model decreases as the number of child clusters increases. Moreover, the experiments
indicate that the accuracy of a tree classifier rises to a certain limit as the number of clusters
increases and subsequently decreases, emphasizing the importance of the proposed prun-
ing criterion. Finally, the experimental results show that SVMs with linear kernel functions
attain higher classification accuracy, which aligns with Cover’s Theorem.

5. Conclusions

Fine-grained classification is a challenging problem in computer vision research. To
address this issue, this paper proposes a self-supervised tree-structured framework that
achieves accurate classification by mitigating the impact of the differences between clus-
ters. The process of constructing a tree-structured classifier involves the following steps:
(1) automatically constructing an initial classification tree using a clustering algorithm that
groups similar subclasses and (2) building the tree-structured classifier by applying the
proposed pruning criteria to eliminate unnecessary clusters from the tree hierarchy. By
evaluating the classification accuracy and training time of the tree-structured classifier on
diverse structures and datasets, this study demonstrates the robustness of the proposed
method. The experimental results indicate that the proposed tree-structured classifier sig-
nificantly enhances fine-grained classification accuracy and reduces training time relative
to traditional CNN models.

Author Contributions: Conceptualization, Q.C. and L.N.; methodology, Q.C.; software, Q.C.; valida-
tion, Q.C., X.S., and H.D.; formal analysis, Q.C.; resources, L.N.; data curation, Q.C.; writing—original
draft preparation, Q.C.; writing—review and editing, L.N.; visualization, Q.C.; supervision, L.N.;
project administration, L.N.; funding acquisition, L.N. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was partially supported by the National Natural Science Foundation of China
(No. 62006090) and Research Funds of Central China Normal University (CCNU) under Grants
31101222211 and 31101222212.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This paper uses publicly available datasets, CUB-200-2011 is available
at https://www.vision.caltech.edu/datasets/cub_200_2011/ (accessed on 27 February 2023); FGVC
Aircraft is available at https://www.kaggle.com/datasets/seryouxblaster764/fgvc-aircraft; Stanford
car is available at http://ai.stanford.edu/~jkrause/cars/car_dataset (accessed on 27 February 2023).

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Ning, X.; Gong, K.; Li, W.; Zhang, L.; Bai, X.; Tian, S. Feature refinement and filter network for person re-identification. IEEE

Trans. Circ. Syst. Video Technol. 2020, 31, 3391–3402. [CrossRef]
2. Han, J.; Yao, X.; Cheng, G.; Feng, X.; Xu, D. P-CNN: Part-based convolutional neural networks for fine-grained visual

categorization. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 44, 579–590. [CrossRef] [PubMed]
3. Liu, X.; Han, Z.; Liu, Y.S.; Zwicker, M. Fine-grained 3D shape classification with hierarchical part-view attention. IEEE Trans.

Image Process. 2021, 30, 1744–1758. [CrossRef] [PubMed]
4. Lin, D.; Shen, X.; Lu, C.; Jia, J. Deep lac: Deep localization, alignment and classification for fine-grained recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–15 June 2015; pp. 1666–1674.

https://www.vision.caltech.edu/datasets/cub_200_2011/
https://www.kaggle.com/ datasets/seryouxblaster764/fgvc-aircraft
http://ai.stanford.edu/~jkrause/cars/car_dataset
http://doi.org/10.1109/TCSVT.2020.3043026
http://dx.doi.org/10.1109/TPAMI.2019.2933510
http://www.ncbi.nlm.nih.gov/pubmed/31398107
http://dx.doi.org/10.1109/TIP.2020.3048623
http://www.ncbi.nlm.nih.gov/pubmed/33417547


Appl. Sci. 2023, 13, 4453 18 of 19

5. Wang, Q.; Xie, J.; Zuo, W.; Zhang, L.; Li, P. Deep cnns meet global covariance pooling: Better representation and generalization.
IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2582–2597. [CrossRef] [PubMed]

6. Lu, Z.; Yang, Z. Image recognition based on improved recurrent attention network. In Proceedings of the 2021 4th International
Conference on Robotics, Control and Automation Engineering (RCAE), Wuhan, China, 4–6 November 2021; IEEE: Piscataway, NJ,
USA, 2021; pp. 31–35.

7. Liu, Z.; Agu, E.; Pedersen, P.; Lindsay, C.; Tulu, B.; Strong, D. Comprehensive assessment of fine-grained wound images using a
patch-based CNN with context-preserving attention. IEEE Open J. Eng. Med. Biol. 2021, 2, 224–234. [CrossRef] [PubMed]

8. Wei, X.S.; Luo, J.H.; Wu, J.; Zhou, Z.H. Selective convolutional descriptor aggregation for fine-grained image retrieval. IEEE
Trans. Image Proc. 2017, 26, 2868–2881. [CrossRef] [PubMed]

9. Zhang, F.; Li, M.; Zhai, G.; Liu, Y. Multi-branch and multi-scale attention learning for fine-grained visual categorization.
In Proceedings of the MultiMedia Modeling: 27th International Conference, MMM 2021, Part I 27, Prague, Czech Republic,
22–24 June 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 136–147.

10. Breiki, F.A.; Ridzuan, M.; Grandhe, R. Self-supervised learning for fine-grained image classification. arXiv 2021, arXiv:2107.13973.
11. Lai, D.; Tian, W.; Chen, L. Improving classification with semi-supervised and fine-grained learning. Pattern Recognit. 2019,

88, 547–556. [CrossRef]
12. Zhang, Y.; Wei, X.S.; Wu, J.; Cai, J.; Lu, J.; Nguyen, V.A.; Do, M.N. Weakly supervised fine-grained categorization with part-based

image representation. IEEE Trans. Image Proc. 2016, 25, 1713–1725. [CrossRef] [PubMed]
13. Wang, S.H.; Zhang, Y.D. DenseNet-201-based deep neural network with composite learning factor and precomputation for

multiple sclerosis classification. ACM Trans. Multimed. Comp. Commun. Appl. (TOMM) 2020, 16, 1–19. [CrossRef]
14. Hu, Q.; Wang, H.; Li, T.; Shen, C. Deep CNNs with spatially weighted pooling for fine-grained car recognition. IEEE Trans. Intell.

Transp. Syst. 2017, 18, 3147–3156. [CrossRef]
15. Tanno, R.; Arulkumaran, K.; Alexander, D.; Criminisi, A.; Nori, A. Adaptive neural trees. In Proceedings of the International

Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6166–6175.
16. Chien, E.; Chang, W.C.; Hsieh, C.J.; Yu, H.F.; Zhang, J.; Milenkovic, O.; Dhillon, I.S. Node feature extraction by self-supervised

multi-scale neighborhood prediction. arXiv 2021, arXiv:2111.00064.
17. Daumé, H., III; Karampatziakis, N.; Langford, J.; Mineiro, P. Logarithmic time one-against-some. In Proceedings of the

International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 923–932.
18. Morin, F.; Bengio, Y. Hierarchical probabilistic neural network language model. In Proceedings of the International Workshop on

Artificial Intelligence and Statistics, PMLR, Barbados, Caribbean, 6–8 January 2005; pp. 246–252.
19. Baharav, T.Z.; Jiang, D.L.; Kolluri, K.; Sanghavi, S.; Dhillon, I.S. Enabling efficiency-precision trade-offs for label trees in extreme

classification. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Online,
1–5 November 2021; pp. 3717–3726.

20. Yu, H.F.; Zhang, J.; Chang, W.C.; Jiang, J.Y.; Li, W.; Hsieh, C.J. Pecos: Prediction for enormous and correlated output spaces.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA,
14–18 August, 2022; pp. 4848–4849.

21. Sadeghi, Z.; Araabi, B.N.; Ahmadabadi, M.N. A computational approach towards visual object recognition at taxonomic levels of
concepts. Comp. Intell. Neurosci. 2015, 2015, 72–72. [CrossRef] [PubMed]

22. Goel, A.; Banerjee, B.; Pižurica, A. Hierarchical metric learning for optical remote sensing scene categorization. IEEE Geosci.
Remote Sens. Lett. 2018, 16, 952–956. [CrossRef]

23. Bameri, F.; Pourreza, H.R.; Taherinia, A.H.; Aliabadian, M.; Mortezapour, H.R.; Abdilzadeh, R. TMTCPT: The Tree Method
based on the Taxonomic Categorization and the Phylogenetic Tree for fine-grained categorization. Biosystems 2020, 195, 104137.
[CrossRef] [PubMed]

24. Hasan, M.S. An application of pre-trained CNN for image classification. In Proceedings of the 2017 20th International Conference
of Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 22–24 December 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 1–6.

25. Dechev, D.; Ahn, T.H. Using sst/macro for effective analysis of mpi-based applications: Evaluating large-scale genomic sequence
search. IEEE Access 2013, 1, 428–435. [CrossRef]

26. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
CComputer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

27. Arthur, D.; Vassilvitskii, S. k-Means++: The Advantages of Careful Seeding; Technical Report; Stanford University: Stanford, CA,
USA, 2006.

28. Maji, S.; Rahtu, E.; Kannala, J.; Blaschko, M.; Vedaldi, A. Fine-grained visual classification of aircraft. arXiv 2013, arXiv:1306.5151.
29. Wah, C.; Branson, S.; Welinder, P.; Perona, P.; Belongie, S. The Caltech-Ucsd Birds-200-2011 Dataset; California Institute of

Technology: California, CA, USA, 2011.
30. Krause, J.; Stark, M.; Deng, J.; Fei-Fei, L. 3d object representations for fine-grained categorization. In Proceedings of the IEEE

International Conference on Computer Vision Workshops, Washington, DC, USA, 2–8 December 2013; pp. 554–561.
31. Bora, M.; Jyoti, D.; Gupta, D.; Kumar, A. Effect of different distance measures on the performance of K-means algorithm: an

experimental study in Matlab. arXiv 2014, arXiv:1405.7471.
32. Berge, C. Two theorems in graph theory. Proc. Nat. Acad. Sci. USA 1957, 43, 842–844. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TPAMI.2020.2974833
http://www.ncbi.nlm.nih.gov/pubmed/32086198
http://dx.doi.org/10.1109/OJEMB.2021.3092207
http://www.ncbi.nlm.nih.gov/pubmed/34532712
http://dx.doi.org/10.1109/TIP.2017.2688133
http://www.ncbi.nlm.nih.gov/pubmed/28368819
http://dx.doi.org/10.1016/j.patcog.2018.12.002
http://dx.doi.org/10.1109/TIP.2016.2531289
http://www.ncbi.nlm.nih.gov/pubmed/26890872
http://dx.doi.org/10.1145/3341095
http://dx.doi.org/10.1109/TITS.2017.2679114
http://dx.doi.org/10.1155/2015/905421
http://www.ncbi.nlm.nih.gov/pubmed/26185494
http://dx.doi.org/10.1109/LGRS.2018.2884675
http://dx.doi.org/10.1016/j.biosystems.2020.104137
http://www.ncbi.nlm.nih.gov/pubmed/32360318
http://dx.doi.org/10.1109/ACCESS.2013.2272434
http://dx.doi.org/10.1073/pnas.43.9.842
http://www.ncbi.nlm.nih.gov/pubmed/16590096


Appl. Sci. 2023, 13, 4453 19 of 19

33. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

34. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Work
	Proposed Tree-Structured Framework for Fine-Grained Classification
	Initial Classification Tree Construction
	Tree-Structured Classifier Building

	Experiment
	Experimental Setting
	Datasets
	Metric
	Parameter Settings

	Experimental Results
	Conducted Experiments and Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4


	Conclusions
	References

