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Abstract: Cross-domain recommendation systems frequently require the use of rich source domain
information to improve recommendations in the target domain, thereby resolving the data sparsity
and cold-start problems, whereas the majority of existing approaches frequently require the central-
ized storage of user data, which poses a substantial risk of privacy breaches. Compared to traditional
recommendation systems with centralized data, federated recommendation systems with multiple
clients trained collaboratively have significant privacy benefits in terms of user data. While users’
interests are often personalized, meta-learning can be used to learn users’ personalized preferences,
and personalized preferences can help models make recommendations in cold-start scenarios. We use
meta-learning to learn the personalized preferences of cold-start users. Therefore, we offer a unique
meta-learning-based federated personalized cross-domain recommendation model that discovers
the personalized preferences for cold-start users via a server-side meta-recommendation module. To
avoid compromising user privacy, an attention mechanism is used on each client to find transferable
features that contribute to knowledge transfer while obtaining embeddings of users and items; each
client then uploads the weights to the server. The server accumulates weights and delivers them
to clients for update. Compared to traditional recommendation system models, our model can
effectively protect user privacy while solving the user cold-start problem, as we use an attention
mechanism in the local embedding module to mine the source domain for transferable features that
contribute to knowledge transfer. Extensive trials on real-world datasets have demonstrated that our
technique effectively guarantees speed while protecting user privacy.

Keywords: meta-learning; federated learning; cross-domain recommendation; attention

1. Introduction

In the Internet era, recommendation systems play a significant function, and in recent
years, they have played an increasingly vital part in mobile apps. Following a period of
study, the performance of recommendation systems has been greatly improved. Tradi-
tional recommendation systems are often based on a single domain for recommendations;
however, user interests are rarely single and often extend to different application areas.
The cold-start problem is a challenge for recommendation systems. Additionally, because
traditional recommendation systems need to upload private data to a central server for
training, this inevitably impacts on the privacy of the user.

To safeguard user privacy, we need a model that does not communicate data across
the source and target domains. Federated learning can learn a shared global model from
multiple independent clients but without sharing data, and it can be effective in protecting
user privacy. However, real-world information is frequently diverse, and the size and
sparsity of data on different clients may be inconsistent, and learning a single global model
cannot meet real-world data requirements.

Existing traditional recommendation systems suffer from user privacy problems, cold-
start problems, and user personalization problems. However, personalized federated
learning allows each client to fine-tune the model based on their own data. The main
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research problem of our paper is how to prevent user privacy leakage in a cold-start scenario
of a cross-domain recommendation system while achieving personalized recommendations
for users. How to prevent user privacy leakage is the focus of our research. We combine
federated learning with recommendation systems to protect users’ private data while
using meta-learning for personalized recommendations, an approach that addresses the
problem of privacy breaches in traditional recommendation systems. The novelty of our
approach is that we use a meta-network to generate transferable embeddings for cold-
start users, rather than building a model on each client. Cold-start users do not have
interaction items in the target domain, so they need to make use of interaction items in
the source domain, and we use an attention mechanism [1] in the process of obtaining
user and item embeddings to help find transferable features that contribute to knowledge
transfer. Based on these, we propose a novel meta-learning based federated personalized
cross-domain recommendation model called MFPCDR to solve the user cold-start problem
while protecting the user’s private data.

The MFPCDR’s core concept is as follows: (i) The central server is responsible for
maintaining a globally shared recommendation model, and the user behavior data are
stored on the client machine. We upload a random set of local model weights to the server to
ensure that user data does not leave the local domain to effectively protect user privacy. The
central server then updates the parameters and returns the updated parameters to the client
in order to update the global recommendation model. (ii) After obtaining the embeddings,
the central server obtains the personalized transformed user embeddings by obtaining the
interest preferences between the source and target domains via the meta-recommendation
module, i.e., by discovering the potential relationships between the interest preferences of
overlapping users in the domain. (iii) After using the meta-recommendation module, we
can obtain the personalized converted user embeddings of cold-started users in the target
domain and then propose new users in the target domain based on the prediction scores,
thereby solving the cold-start problem while maintaining user privacy.

The following are the primary contributions of this paper.

(1) We propose MFPCDR, a federated personalized cross-domain recommendation model
based on meta-learning that employs a federated learning technique to keep user data
on the client computer in order to secure the user’s private data effectively.

(2) We use meta-networks in the meta-recommendation module to learn personalized
transferable embeddings of cold-start users, enabling personalized transfer of user
preferences across domain recommendations to solve the user cold-start problem.

(3) We used an attention mechanism in the local embedding module to mine the source
domain for transferable features that contribute to knowledge transfer and better
obtain item embeddings.

(4) We conducted extensive experiments on real-world datasets to demonstrate the
effectiveness of our approach in terms of recommendation performance and pri-
vacy preservation.

2. Related Work

In this part, we address important prior research, such as meta-learning, federated
learning for recommendation, and cross-domain recommendation.

2.1. Meta-Learning

Meta-learning, often known as learning to learn, is the act of enhancing learning
algorithms across many learning stages with the goal of rapidly acquiring new concepts or
abilities with limited sample data. The meta-learning paradigm may be generalized to a new
task following training on many tasks. In the base learning process, the learning algorithm
solves a task defined by the dataset and the goal. Optimizer-based meta-learning [2],
model-based meta-learning [3], metric-based meta-learning [4], data augmentation-based
meta-learning, and reinforcement learning based meta-learning [5] are the five current
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classifications of meta-learning. Meta-learning has been shown to be effective in image
classification [6], recommendation systems, and small sample learning [7].

Boris N. Oreshkin et al. [8] suggested metric scaling to enhance the performance of
meta-learning in handling few-sample classification problems, but pairwise comparisons
can be computationally expensive when the task becomes large. Finn et al. [9] proposed
separating the gradient descent process from the optimized loss function task data to
improve the generalization capability of meta-learning, but this suffers from overfitting
problems. Ravi S et al. [10] proposed combining meta. Gordon J et al. [11] gave a proba-
bilistic interpretation of meta-learning and proposed new algorithmic examples. Few of
them target recommendation systems, which are a complex task.

A number of recent studies have introduced meta-learning to recommendation sys-
tems. Zhang et al. [12] propose a sequential meta-learning approach for any differentiable
model, which solves the problem of overfitting and forgetting due to the small size of
new data containing little information about long-term user preferences, but it does not
learn the preferences of new users well. Wei et al. [13] offer the CLOVER meta-learning
framework to ensure that meta-learning recommendation models are thorough and fair.
Mecos is a meta-learning-based cold-start sequential recommendation framework proposed
by Zheng et al. [14] to alleviate the item cold-start problem in sequential recommendation.
Mecos can extract user preferences from limited interactions and match target cold-start
items with potential users, but it tends to ignore cold items. Yang et al. [15] proposed
MetaKRes, a collaborative meta-knowledge augmented recommendation system that uses
convolutional encoders to transfer knowledge obtained from knowledge graphs and user
preferences, but is unable to personalize recommendations for users.

In contrast to these approaches, we personalize recommendations to cold-start users by
learning personalized transferable embeddings of cold-start users through a meta-network
in the meta-recommendation module on the server.

2.2. Cross-Domain Recommendation

CDR leverages greater source domain information to increase recommendation per-
formance in sparse domains in order to tackle the long-standing data sparsity problem
in recommendation systems. The cold-start user recommendation workflow across do-
mains is shown in Figure 1, where the model learns features for overlapping users in
the source and target domains to obtain a mapping of user preferences and then makes
recommendations in the target domain based on the mapping of user preferences. CDR
jointly mines information from two datasets to better construct their relevance and present
more meaningful recommendation results. Cross-domain recommendation systems can
be classified into two broad categories based on the type of method: mapping-based
cross-domain recommendation techniques and multi-domain recommendation algorithms
trained cooperatively. In the collaborative multi-domain cross-domain recommendation
technique CMF [16], for instance, data from the source and target domains are combined
for matrix decomposition, and knowledge transfer is achieved by exchanging intermediate
vectors, but the hidden vectors it decomposes are all consistent; therefore, it cannot achieve
efficient knowledge transfer. CoNet [17] considers cross-domain recommendation in a
neural network by introducing a cross-connection to achieve dual knowledge transfer;
however, a substantial quantity of data is necessary to train the network, and the quality
of the suggestions is contingent on the historical datasets. HYPNER [18] improves the
quality of recommendations by combining collaborative filtering-based and content-based
filtering methods.

Learning user preferences across domains are the topic of a second set of CDR ap-
proaches. In the mapping-based cross-domain recommendation approach, CST [19] mi-
grates user and item knowledge into the auxiliary data and migrates the principal coordi-
nates of people and things discovered in the auxiliary data matrix into the target domain;
however, it consumes more memory and is slower to compute. OCA [20] addresses the
effects of data sparsity through ordered clustering. EMCDR [21] determines that the same
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user representation in multiple domains or the same object representation are related;
hence, it represents this relationship using a display mapping function but amplifies the
sparsity of the data when learning the linkage. In real life, where only a small percentage of
users or items are shared between two domains, SSCDR [22] proposes a semi-supervised
approach that uses data from non-shared users to learn the mapping function; however,
semi-supervised methods often require training the network from scratch, which can be
time-consuming. Some approaches explicitly model user preferences. CATN [23] learns
cross-domain layer correlations by extracting multiple layers for each user and item from
the review document and using an attention mechanism, but it cannot capture location
information and cannot learn sequential relationships in a sequence. EnsVAE [24] uses
embedding-based representations and stacked ensemble learning techniques to reduce user
preference for items that are often rated by users. Chen et al. [25] consider the issue of user
privacy in the context of cross-domain. Drif et al. [26] proposed an ensemble variational
autoencoder framework for recommendation to improve the accuracy of recommendation
systems. Because user preferences are personalized, Zhu et al. [27] propose to use meta-
networks to model personalized user preferences. We are inspired by this to model user
preferences in the model.
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However, the CDR methods mentioned above, which require data to be stored on a
central server, do not take privacy protection into account, and there is a risk of attack in
their uploading of user behavioral data to the central server. Users’ behavioral data are
sensitive, and doing this poses a significant risk of a privacy breach.

2.3. Federated Learning for Recommendation System

Matrix decomposition is widely used because it can learn latent factors. He et al. [28]
argue that matrix decomposition cannot learn deep information in latent features. Therefore,
we propose the NCF framework to increase the capacity to mine deep user knowledge by re-
placing the inner product with a neural network capable of learning arbitrary functions from
the input; however, it is difficult to query the side features of items. Ammad et al. [29] first
explored the federated environment to explore recommendation systems, implementing a
personalized recommendation system based on implicit user feedback under federation
learning. In their model the main machine semester model is distributed to the client for
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training and then model updates are performed on the server without the user data leaving
the client, but data noise is added and the degree of preference is not expressed.

Several recent studies have advanced the application of federation learning to recom-
mendation systems in a deeper way. Lin et al. [30] propose the FedRec framework for rating
prediction with explicit feedback in the context of generalized federated recommendation
frameworks by federating a number of decomposition-based recommendation models in
a batch and random manner, randomly sampling unrated items, and assigning virtual
ratings. This approach can obfuscate the server from accurately identifying the user’s
preferences for items to protect the user’s privacy but introduces additional noise in the
interaction, increasing computational and access costs. Liang et al. [31] improved FedRec
by proposing a lossless federated recommendation method, FedRec++, which proposes
to use a randomly sampled denoised client to collect noisy gradients from a normal client
and then upload them. FedFast [32] optimizes the selection of client updates and the
aggregation of parameters to achieve convergence more quickly. MetaMF [33] learns a
small personalized model for each client through a meta-learning approach while learning
the same updates as the selected clients on the server side. Collaborative signals and a
meta-recommendation system are built, and then a scoring prediction model is built on the
client side to generate item embeddings to achieve accurate recommendations.

The above approach applies federal learning to recommendation systems to effectively
protect user privacy, and we learn from the federal learning approach and apply it to
our model.

3. Model
3.1. Problem Formulation

The objective of the federated personalized cross-domain recommendation model
based on meta-learning is to forecast the ratings of goods by cold-start users in the
target domain. There is a source domain and a target domain, each with a user set
U = {u1, u2, . . . uM}, and an item set T = {t1, t2, . . . tN}, and a rating matrix R, where
M and N are, respectively, the number of users and items. For ease of differentiation, we
denote the source domain user set, item set, and rating matrix as Us, Ts, Rs, where Rs = ys

i,j
denotes a user’s rating of an item, and the user set, item set, and rating matrix in the
target domain as Ut, Tt, Rt. We define the overlapping users between the two domains as
Ul = Us ∩Ut, and there are no shared items between the two domains, and therefore Ts

and Tt do not intersect.
We convert users and items into embeddings, where the embedding of user ud

i and
item td

i is denoted as pd
u ∈ Rk and qd

v ∈ Rk, where k represents the dimension of embedding
and d ∈ {s, t} is the domain label. For each user ui, the series of sequential interactions
in the origin is given as Sui =

{
ts
1, ts

2, . . . ts
n
}

, where N is the number of interaction items
and N is less than M. Uc is represented as only users who have ratings in Us, using Ul

as a vehicle for knowledge transfer from the source domain to the target domain, and
therefore forecasting the target domain’s Uc′s rating. Let us take a real-world example
to make the problem we are solving more understandable. We want to build a book
recommendation system to recommend books of interest to users. However, we do not
have a user’s book interest dataset; we only have a user’s music interest dataset, and there
are some overlapping users in the user’s book interest dataset and the user’s music interest
dataset. We take the user’s music interest dataset as the source domain and the book
interest dataset as the target domain. Both the music interest dataset and the book interest
dataset have a user set, an item set, and a rating matrix. An overlapping user is a user who
exists in both the music interest dataset and the book interest dataset but only has a rating
for the music interest dataset. We need to use the overlapping users’ ratings on the music
interest data to learn the preferences of the overlapping users, and then we can use the
overlapping users’ preferences to make recommendations to them in the book interest data
set, thus solving the cold-start problem. This is similar to shopping with Amazon: after we
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have browsed some books that we are interested in, Amazon will recommend other items
that are related to our interests.

3.2. Local Embedding Module

In the local embedding layer, we use a federated learning approach inspired by the
approach proposed by Yan et al. [34], where the client is each user involved in the training
of the model and the central server needs to learn to update a local learning model to
obtain a representation vector of users and items. Yan et al. used the GMF method, a
matrix decomposition-based algorithm for recommender systems, to make predictions
by decomposing the user-item interaction matrix into the product of two low-latitude
matrices. We use GMF as a representation learning model to obtain user embeddings
and item embeddings. GMF adds a fully connected layer for better learning of non-linear
information compared to the traditional MF [35]. Unlike the normal GMF approach, we use
an attention mechanism to learn item embeddings with weight. In each training session, a
random number of clients are given the representation learning model for local training by
the central server. The clients utilize their data to locally train the model and then submit
the model’s parameters to the central server for updating. The central server accumulates
model parameter information and updates the global model.

During the initialization phase, the central server picks a proportion of clients at
random and distributes the model to them for training without the data leaving the local
region; the clients simply train the model and submit the model parameters. The local
model training phase is then completed by using GMF and obtaining embeddings of users
and projects. Using the example of user u and item t from the source domain, the user
embedding and item embedding may be denoted as ps

u ∈ Rk and qs
v ∈ Rk respectively,

where k represents the dimension of the embedding. Similarly, the user embedding and
item embedding in the target domain can be denoted as pt

u ∈ Rk and qt
v ∈ Rk, respectively.

We inner-product the user embedding and the item embedding and afterwards input
them into the fully connected layer of the GMF to produce the prediction scores, in the
method indicated in Figure 2, with the following equation:

ŷs
u,v = hT(ps

u ⊗ qs
v) (1)

where hT indicates the weight of the fully connected layer.
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In the global model aggregation phase, taking the user side as an example, the weights
and other parameters on the client side must be uploaded to the central server for aggre-
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gation. The central server uses Fedavg [36] as the aggregation algorithm to federate the
parameters, and the aggregation process can be expressed as follows:

W =

∑
u∈Utrain

|Du| ·Wu

∑u∈Utrain
|Dc|

(2)

where Wu denotes the weight of the user u on the server side, Utrain denotes the set of
users participating in this round of training, Dc denotes the user dataset of the local model,
and Du denotes the dataset of user u. The central server distributes the aggregated model
weights to the client models participating in this round before moving on to the subsequent
round of training until the model converges.

3.3. Meta-Recommendation Module

In the meta-recommendation module, we must discover a user’s personalized prefer-
ence function and collect the user’s personalized transferable preferences from interacting
users. Since cold-start users lack interaction words in the target domain, we must discover
transferable characteristics that contribute to knowledge transfer by utilizing interaction
terms from the source domain. The attention technique [37] enables various sections to
contribute differently to a single compressed representation. We used the idea of atten-
tion mechanism, firstly, to calculate the attention weights for each feature pair and their
similarity, in the form of a dot product. Then, for each feature, its similarity to all other
features is normalized by Softmax [38] to obtain the attention weight of that feature to
the other features. Next, the interaction vector is calculated and the sum of all features is
weighted using the attention weights to obtain the attention-weighted interaction vector.
We do this because we discover that, for the target domain, irrelevant items contribute
little to learning the user’s personalized preference function; hence, the attention fraction
in the item embedding is learnt via an attention network, which may be represented by the
following formula:

oi,j =
exp(o′i,j)

∑tsl ∈Sui
exp(o′l)

o′i,j = g(qv, θ)
(3)

where oi,j is the attention score, normalized by Softmax to help find useful interaction items
for cold-start users. g(·) denotes the attention network, θ denotes the parameters of the
attention network, and the attention network is represented by feedforward networks.

Different items contribute differently to the learning of personalized transferable
preferences, and we apply the attention method to item embedding by conducting a
weighted summation, and the transferable embedding of users’ personalized preferences
can be represented by the formula as follows:

pui = ∑
ts
j∈Sui

oi,jqs
v (4)

where pui ∈ Rk denotes the personalized transferable embedding of user ui, oi,j is the
attention score of the item, and the attention score size is used as a judge of the importance
of the item embedding qs

v in predicting the personalized preference function. Afterwards,
we can use the personalized transferable features as an input to the meta-network to learn
the personalized preference function.

Users’ preferences are often personalized, with different users having different pref-
erences. We find that users’ preference features in the source domain are transferable; for
example, users who like martial arts novels tend to choose martial arts movies to watch
when they watch movies. We use a meta-network to learn users’ personalized transferable
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preferences, taking as input the transferable embeddings of users’ personalized preferences,
and the meta-network can be represented by the following equation:

mui = f (pui , ϕ) (5)

where f () is the meta-network and ϕ is the parameters of the meta-network. We use a feed-
forward network to represent the meta-network and express the personalized preference
function by the formula as follows:

hui (mui , ∂) (6)

where mui is the vector and ∂ is the parameter of the personalized preference function. We
learn from the approach of Zhu et al. and use a linear layer as the personalization preference
function. The personalization preference function is responsible for generating different
user embeddings for different users, and we personalize the converted user embeddings
for cold-start users by means of the formula as follows:

p̂u = hui (mui , ps
ui
) (7)

where p̂u represents the personalized transmitted embedding of the cold-start user and ps
ui

represents the embedded user ui in the source domain. In the prediction module, we can
then utilize the cold-start user’s transferred embedding and the item embedding in the
target domain to generate suggestions for the cold-start user.

3.4. Prediction Module

After the local embedding module and the meta-recommendation module, we may
generate predictions for cold-start users based on their personalized transformed user
embedding and the item embedding in the target domain and then after the inner product
of the following equation:

ŷu,v = p̂u ⊗ qt
v (8)

where p̂u is the user embedding after conversion of the cold-start user to a personalized
user and qt

v is the item embedding in the target domain. We provide cold-start users with
suggestions based on their predicted ratings in the target domain.

3.5. Loss

To enable the client to train the model on the source domain, we create the following
loss function on the local embedding module:

Lr =
1

|Dtrain| ∑
u,v∈R

||ys
u,v − ŷs

u,v||22 + λu∑
u
||ps

u||22 + λv∑
v
||qs

v||22 (9)

where Dtrain represents the number of user-item interactions in the source domain, λu
represents the user-side regularization term, and λv represents the item-side regularization
term. We use back propagation and stochastic gradient descent for effective training of
federation learning on dispersed data.

On the meta-recommendation module, in order to train the meta-network, we refer
to the method used by Fu et al. [39] to minimize the distance using a mapping-oriented
approach and define the loss function as follows:

Lm = ∑
ui∈Ul

∣∣∣∣ p̂u − pt
u
∣∣∣∣2 (10)

where p̂u represents the user embedding following the cold-start user personalization
transformation, whereas pt

u represents the user embedding in the target domain. The
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mapping-oriented minimization of distance will bring the cold-start user’s personalized
transformed user embedding closer to the user embedding in the target domain.

3.6. Overall Procedure

Figure 3 illustrates the general model architecture of MFPCDR. The training procedure
consists of three modules: the local embedding module, the meta-recommendation module,
and the prediction module, as shown in Algorithm 1.
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The local embedding module: this is primarily accountable for learning the possible
spaces of the source and target domains. The client trains the model in the source domain
using Equation (9), and, following training using a federated learning technique, we may
receive the respective user and item embeddings in the source and target domains, as well
as the user’s personalized transferable user embedding.

The meta-recommendation module: this is mainly responsible for training the meta-
network to learn personalized transformed user embeddings; the meta-network is opti-
mized by Equation (10).

The prediction module: after obtaining the personalized transfer embeddings of cold-
start users and the item embeddings of the target domain, we apply an internal product
model to forecast the ratings of cold-start users.

Algorithm 1: A meta-learning-based model for federated personalized cross-domain recommendation.

Input: Us, Ut, Ts, Tt, Rs, Rt, Ul

Output: ŷu,v
Local Embedding Module:

1. The client trains the model by optimizing Equation (9) and learns the representation vectors
for users and items in the source and target domains ps

u, qs
v,pt

u, and qt
v, respectively.

2. Learn the personalized transferable feature embedding pui of user ui.

Meta-Recommendation Module:
3. Learn a meta-network f (ϕ) by minimizing Equation (10) to obtain personalized converted

user embeddings p̂u.

Prediction Module:

4. The prediction score is calculated by the inner product model after obtaining the tailored
conversion user embedding for the cold-start user p̂u and the item embedding in the target
domain qt

v for the cold-start user.
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4. Experiments

In this section, we conduct experiments to evaluate the effectiveness of MFPCDR. We
answer the following research questions: RQ1: How does MFPCDR perform in cold-start
scenarios compared to other models? RQ2: How well does MFPCDR work in more realistic
recommendation scenarios? RQ3: How does the proportion of overlapping users affect the
model? RQ4: Does varying sparsity in the source domain influence MFPCDR performance?
RQ5: What is the classification performance of MFPCDR?

4.1. Datasets

To compare our model to a baseline, we conducted trials with the Amazon review
datasets. The Amazon datasets were chosen because Amazon’s data volume is large enough
to provide more samples with diversity, and the Amazon datasets is real, stable, and
repeatable enough to provide enough information to verify the effectiveness of the system.
The Amazon datasets can be divided into sub-datasets such as “Books”, “Electronics”, and
“Movies and TV” according to product categories, which can effectively help us conduct
cold-start recommendation experiments across domains: e.g., the source domain is the
“Book” domain and the target domain is the “Movie and TV” domain. For other e-commerce
datasets, the MFPCDR model is also applicable as long as the samples are diverse and
have overlapping users. Three major areas were selected as the three domains: “Movies
and Television”, “Books”, and “CDs and Vinyl”. In each domain, we deleted entries that
had no review language and then filtered out people with fewer than 10 interactions and
goods with fewer than 30 interactions. People with fewer than 10 interactions were deleted
because they provided too few reviews or feedback to provide enough information for
analysis, and items with fewer than 30 interactions were removed because the item’s
sales or market performance was insufficient to support analysis, or they were deemed
unpopular or irrelevant. These filtering criteria ensure that only high-quality data are used
for analysis, improving the credibility of the data and the accuracy of the results.

Since these three domains are highly interrelated, three cross-domain recommendation
scenarios can be constructed in pairs: “Books” to “Movies and TV”, “Movies and TV” to
“CDs and Vinyl”, and “Books” to “CDs and Vinyl”. In each scenario, the one with more
users is selected as the source domain, and the one with fewer users is selected as the
target domain. We randomly chose 30% of the users as cold-start users whose interactions
in the target domain were unknown to the model and were used to verify and test the
model, while 70% of the users were used to train the model. To simulate varying amounts
of overlapping users, we evaluated our model by randomly picking overlapping users
from the training set and adjusting the proportion η to η ∈ {5%, 10%, 20%, 50%, 60%}. The
situations for cross-domain recommendations are detailed in Table 1.

Table 1. Statistics of the Amazon datasets.

Scenario Domain Dataset Overlap Users η = 5% η = 10% η = 20% η = 50% η = 60%

Scenario 1
S Books

6053 149 302 604 1517 1815T Movies and TV

Scenario 2
S Movies and TV

2839 67 135 276 673 803T CDs and Vinyl

Scenario 3
S Books

1692 38 81 160 412 487T CDs and Vinyl

4.2. Baseline Methods

We have compared this to the following classic and contemporary benchmarks.

• CMF: A migration learning method that uses other relational data related to the
predicted relationship to improve prediction performance when doing relational
learning tasks.
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• EMCDR: A framework for cross-domain mapping and recommendation that uses
a multi-layer perceptron to capture non-linear mapping functions across domains,
followed by the learning of mapping functions using entities with adequate data to
enhance robustness.

• CDLFM [40]: The cross-domain latent feature mapping model takes into account
the similarity link between users in terms of rating behavior and provides a matrix
decomposition that includes user similarity and three similarity measures. A domain-
based gradient boosting tree approach was used for cross-domain knowledge transfer.
Mapping functions are learned for cold-start users utilizing latent attributes of users
in the auxiliary domain with similar ratings to cold-start users.

• DFM [39]: A deep fusion model based on comments and content is utilized to pre-
serve more semantic information by expanding the stacking noise reduction autoen-
coder and then transferring user latent factors across the two domains using a multi-
layer perceptron.

• ANR [41]: A comprehensive aspect-based model that performs aspect-based rep-
resentation learning on users and things using an attention-based component to
describe the aspect process underlying the user’s evaluation strategy. After training
the model on the target domain, related source domain comments are utilized to
provide recommendations.

4.3. Experimental Setup

We used PyTorch to implement our proposed MFPCDR model, preprocessing all user
and project documents in the datasets to remove deactivated words and words with high
document frequency. We used grid search to adjust the hyperparameters of all methods and
Adam to optimize the model, and we set the learning rate to {0.001,0.005,0.01,0.05,0.1,0.5},
the embedding dimension range for users and items to {8,16,32,64}, and the batch size test
range to {64,128,256,512}. The activation function was set to sigmoid, and the performance
of all methods was reported after five runs. We found that the MFPCDR model works well
when the Adam learning rate is set to 0.01, the user and item embeddings are set to 32, and
the batch size is set to 128.

For assessment metrics, we considered RMSE, MSE, MAE, and Top-K. MSE is the
abbreviation of mean square error, which is the average value of the square of the difference
between the predicted value and the actual value. It is a measure of the difference between
the predicted value and the actual value. The smaller the MSE, the smaller the difference
between the predicted result and the real result, indicating that the model’s prediction effect
is better. RMSE is less sensitive to outliers than MSE because it operates on the square root.
MAE maximizes user satisfaction but does not minimize prediction error. Top-K measures
how many items in a given recommendation the recommendation algorithm matches with
the user’s true preferences, often with a long tail of users problem. The MSE is sensitive
to outliers and computationally efficient, and it can be effectively applied to our model.
Therefore, we use MSEs as performance indicators; they are used as assessment metrics in
many related works, and the formula for the performance indicator MSE is:

MSE =
1
N ∑

(i,j,yi,j)∈Rtest

(
yi,j − ŷi,j

)2 (11)

where Rtest is the test set used for performance comparison or the cold-start user validation
set used for parameter selection, N is the number of ratings in the test set, yi,j is the true
rating of item tj by user ui, and ŷi,j is the predicted rating of item tj by user ui. According
to the definition of MSE, a smaller MSE number suggests higher model performance.

4.4. Model Comparison (RQ1 and RQ2)

According to the MSE, we examine the performance of several models with varying
amounts of overlapping users. Figure 4 is a graphical representation of the experimen-
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tal results, and Table 2 provides a summary of the outcomes for all three cross-domain
recommendation tasks. It can be seen from the data that MFPCDR performs better than
other baseline models in three cross-domain recommendation scenarios. The mean MSE
of MFPCDR in the first scenario is 1.086, and the median is 1.081. The mean MSE of
MFPCDR in the second scenario is 1.126, and the median is 1.128. The mean MSE of
MFPCDR in the third scenario is 0.8896, and the median is 0.895. The results yielded the
following observations.
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Table 2. Comparison of MSE in three cross-domain recommendation scenarios.

Scenario Scenario 1 Scenario 2 Scenario 3

S→T Books→Movies and TV Movies and TV→CDs and Vinyl Books→CDs and Vinyl

Methods

η
5% 10% 20% 50% 60% 5% 10% 20% 50% 60% 5% 10% 20% 50% 60%

CMF 1.183 1.175 1.172 1.168 1.165 1.170 1.166 1.159 1.143 1.142 0.969 0.964 0.961 0.945 0.937

EMCDR 1.150 1.145 1.141 1.139 1.136 1.179 1.175 1.153 1.139 1.135 0.940 0.938 0.935 0.929 0.926

CDLFM 1.147 1.140 1.137 1.132 1.128 1.174 1.172 1.146 1.137 1.131 0.953 0.934 0.929 0.925 0.922

DFM 1.158 1.154 1.146 1.142 1.140 1.177 1.169 1.164 1.158 1.153 0.955 0.943 0.935 0.928 0.924

ANR 1.139 1.137 1.132 1.128 1.125 1.163 1.158 1.145 1.136 1.133 0.942 0.921 0.914 0.905 0.901

MFPCDR 1.099 1.095 1.081 1.079 1.076 1.147 1.134 1.128 1.106 1.093 0.907 0.899 0.895 0.878 0.869

Improve% 3.51 3.69 4.50 4.34 4.35 1.37 2.07 1.48 2.64 3.53 3.71 2.38 2.07 2.98 3.55

Firstly, MFPCDR outperformed all methods for all cross-domain recommendation
tasks, and MFPCDR outperformed all methods with different proportions of overlapping
users. In Scenario 1, when the proportion of overlapping users reaches approximately
20%, the fold starts to level off gradually. This phenomenon is also observed in Scenario
2 and Scenario 3 when the proportion of overlapping users reaches approximately 10%.
We find that it is at the beginning of the model, as the proportion of overlapping users
increases, that the model is more likely to capture the personalized transferable preferences
of users, which helps our model solve the user cold-start problem. Additionally, as the
proportion of overlapping to users continues to increase, the discounting starts to level
off, which we find is due to several reasons. Firstly, it is due to the overlap between users
who may be interested in the same products; secondly, when the proportion of overlapping
users increases, more users in the MFPCDR model will generate similar behaviors; and,
finally, when the proportion of overlapping users is high, the MFPCDR model is susceptible
to the influence of popular recommendations. Compared to ANR, MFPCDR improved
performance in MSE by 3.53% to 4.35% when the proportion of overlapping users was 60%.
As the proportion of overlapping users becomes larger, the performance improvement also
becomes larger. Both MFPCDR and ANR outperform CMF, demonstrating the effectiveness
of the deep learning approach. CMF performs the worst of all evaluations because it learns
the user representation by decomposing the union matrix only. The DFM retains more
semantic information for the model through the autoencoder. However, neither of them
achieves optimal results.

According to our experiments, DFM shows degraded results compared to EMCDR.
What we found is that the stacked noise reduction autoencoder takes as input the original
rating vector, which may have over 100,000 dimensions in the real-world Amazon dataset.

In this case, the training parameters to be optimized are too large, which makes it
difficult for the model to converge and produces poor results. Although ANR is not a model
designed for cross-domain recommendation scenarios, it works better compared to other
baselines, and we found that it is its approach to modelling the aspectual process behind
the user–evaluation–item approach that improves the competitiveness of the model. In the
vast majority of cases, MFPCDR achieved better results than ANR, suggesting that our use
of meta-learning to learn personalized user preferences in cross-domain recommendations
is more appropriate than representing user and item vectors at the layer level. We find that
the MFPCDR model works better than other models because it uses an attention mechanism
on the item embedding by performing a weighted summation, which reduces the weight
given to learning the user’s preferences for useless items and thus improves the model’s
effectiveness. Our successful integration of federal learning methods in a cross-domain
recommendation system is effective in protecting user privacy. One can also observe that all
models typically produce worse results in Scenario 2 than in Scenarios 1 and 3, due to the
lower data density in Scenario 2. Our models are applicable to different regions or domains,
but the effectiveness of the recommendations depends on the quality of the data, feature
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selection, and user feedback. The data should adequately reflect the interests and behavior
of users. Different domains and regions may have different characteristics. For example,
in a stock exchange recommendation system, trading history and stock fundamentals
indicators may be important features, while in a location-based recommendation system,
user location and attached shops may be important features, and applying MFPCDR in
these scenarios requires appropriate feature selection.

From the experimental results, it can be seen that the baseline model is sensitive to
the proportion of overlapping users in the training data, but our MFPCDR shows better
performance, especially in the initial stage, when the proportion of overlapping users is
5%, which indicates that our model has good recommendation results in real scenarios. As
the proportion of overlapping users decreases, the cross-domain recommendation model
cannot be trained well due to the lack of training instances to learn user preferences, which
can lead to poorer results. Our proposed MFPCDR largely mitigates the effect of the
proportion of overlapping users on the model because it uses meta-learning to learn users’
personalized transferable preferences with less reliance on overlapping users. This also
makes our model more adaptable to real-world recommendation scenarios because it uses a
federated learning approach in learning embeddings, which keeps user data local to protect
user privacy. Because our meta-recommendation module needs to learn from interacting
users, our model is not suitable for extreme cold-start situations. Additionally, because a
federated learning approach is used to protect user privacy, this inevitably introduces noise
that reduces the effectiveness of the model training.

4.5. Impact of the Size of Overlapping Users (RQ3)

To investigate the influence of the number of overlapping users, further tests were
performed at five percentage levels of 5%, 10%, 20%, 50%, and 60% in three cross-domain
recommendation situations. Figure 4 depicts the outcomes. Observations indicate that
MSE lowers as the fraction of overlapping users increases, which means that the larger the
proportion of overlapping users, the more user preferences the model can learn and the
better the model accuracy. The setting of the proportion of overlapping users directly affects
the number of users from which the system learns similar preferences for cross-domain
recommendations. Clearly, a greater amount of overlapping users allows the model to
better understand the preferences of the cross-domain recommendation domain, thus
improving the accuracy of the recommendations. Intuitively, the curve of our proposed
MFPCDR model is relatively flat.

4.6. Effect of Source Domain Sparsity (RQ4)

To examine the impact of source domain sparsity on MFPCDR performance, we altered
the sparsity of the source domain by sampling from the original dataset so that the sparsity
sp could be modified to {1, 1/2, 1/4, 1/8}, where sp = 1 signifies an unsampled original
dataset. Figure 5 depicts the results of applying the MFPCDR model to the setups of
Scenario 1, Scenario 2, and Scenario 3 with the fraction of overlapping users in the training
dataset set to 60% in the interest of fairness and consistency. We can observe from the
findings that data sparsity decreases model performance. The graph demonstrates that the
MSE performance curve with MFPCDR is flatter in all three circumstances, which indicates
that it has better sparsity perception and can be better adapted to real-world scenarios. We
found that this is attributable to the attention mechanism used by MFPCDR in obtaining the
personalized transferable feature embeddings of the user, where different items contribute
differently to obtaining the personalized preferences of the user, and it is the use of this
approach that allows the MFPCDR model to handle sparse data better.
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4.7. Classification Performance Evaluation of MFPCDR (RQ5)

To evaluate the classification performance of the MFPCDR model, we chose Preci-
sion, Recall and F-measure as important metrics to assess the model performance. Their
mathematical formulas are defined as follows:

Precision = TP
TP+FP

Recall = TP
TP+FN

F-Measure = 2∗Precision∗Recall
Precision+Recall

(12)

where TP indicates the number of samples that the model correctly predicts as positive, FP
indicates the number of samples that the model incorrectly predicts as negative, and FN
indicates the number of samples that the model incorrectly predicts as negative. Precision
measures the ratio of correct recommendations made by the recommendation system to
the actual correct recommendations among all recommendations, while Recall measures
the coverage of all possible correct recommendations by the recommendation system.
F-Measure is a combination of Precision and Recall, which provides an overall assessment.
F-Measure measures the balance between Precision and Recall, and it is influenced by both
Precision and Recall, so it can reflect the comprehensive performance of the recommenda-
tion system well.

We compared the MFPCDR model to five baseline models with a source domain of
“Books” and a target domain of “CDs and Vinyl” and a 60% overlap in the proportion of
users, and the experimental results for all methods are reported in Table 3. To make the
results clearer, we show the experimental results in the form of bar charts in Figure 6.

Table 3. Precision, Recall, and F-measure experimental results table.

Scenario Books→CDs and Vinyl

Methods

Index
Precision Recall F-Measure

CMF 0.70 0.61 0.65

EMCDR 0.74 0.63 0.68

CDLFM 0.78 0.67 0.72

DFM 0.81 0.69 0.75

ANR 0.85 0.73 0.79

MFPCDR 0.89 0.78 0.83

Improve% 4.7% 5.4% 5.0%
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As can be seen from Table 3, our MFPCDR model improves by 4.7% in the Precision
metric compared to the best model in the baseline, indicating that the MFPCDR model
is better at recommending items of interest to users; it improves by 5.4% in the Recall
metric, indicating that the MFPCDR is better at capturing user interest preferences than
the baseline model; and it improves by 5.0% in the F-measure metric improved by 5.0%,
indicating that the MFPCDR model can cover the items that users are really interested in
while ensuring the accuracy of the recommendation results.

5. Conclusions

The objective of this study is to solve the cold-start problem in recommendation
systems and the privacy preservation challenge in cross-domain recommendation systems.
To this end, we propose a novel meta-learning-based framework for federated personalized
cross-domain recommendation systems, namely MFPCDR, in which a federated learning
approach is used to train the model on the local embedding module; user behavior data
are stored on the client machine to participate in the training, and upon completion of
training, the data and settings are transferred to a central server for update without the
user behavior data leaving the client machine, thus protecting the user’s privacy data.
Compared with traditional recommendation systems, we combine federated learning
methods with recommendation systems to effectively prevent user privacy leakage. We use
meta-learning, also on the meta-recommendation module, to effectively learn the user’s
personalized preferences to solve the user cold-start problem. After implementing the local
embedding module, we may gain user and project embedding as well as a customized
conversion of user embedding for cold-start users, after which we can obtain the transfer
of cold-start users through the meta-recommendation module. In the prediction module,
the items and embeddings of the target domain are inner-produced in order to calculate
the prediction scores of the cold-start users. We promote cold-start users based on their
prediction scores, thus resolving the cold-start issue in recommendation systems. We study
the efficacy of our proposed MFPCDR on real-world datasets, and extensive experimental
findings indicate the efficacy of MFPCDR.

We intend to continue to investigate privacy-preserving solutions for cross-domain
recommendations in the future in order to improve speed while safeguarding user privacy
even further.
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