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Abstract: In Cooperative Vehicle Infrastructure System (CVIS), the roadside unit (RSU) obtainsmany
kinds of monitoring data through observation equipment carried by the RSU. The monitoring data
from RSUs are transmitted to an RSU that is connected to the backbone network using the “store–
carry–forward” scheme through the mobile vehicle. The monitoring data obtained by RSUs are
timely, and different types of monitoring data have corresponding timelines. Reducing end‑to‑end
delays to ensure more packets can be transmitted before deadlines is challenging. In this paper, we
propose a Distributed Packet Scheduling Scheme for Delay‑Packets Queue Length Tradeoff System
(DDPS) in CVIS to solve the multi‑RSU‑distributed packet transmission problem. We also estab‑
lish the vehicle speed state, vehicle communication quantity prediction, data arrival, and end‑to‑end
delay minimization models. After Lyapunov’s optimization theory transformed the optimization
model, a knapsack problem was described. The simulation results verified that DDPS reduced the
end‑to‑end average delay and ensured the data queue’s stability under packet deadline conditions.

Keywords: cooperative vehicle infrastructure system; roadside unit; deadline; store‑carry‑forward;
Lyapunov

1. Introduction
Highways are important to the research and application of CVIS in intelligent high‑

ways [1,2]. Deploying multiple RSUs along the highway ensures vehicles can access the
Internetmore easily. RSUs can also collect and forward observation datawithin their range.
Some RSUs are built in remote areas, such as mountain forests or the Gobi, which makes
Internet connectivity difficult and costly [3]. Therefore, isolated RSUs must carry data
through mobile vehicles to reach the RSU access range to the backbone network and then
upload the data. RSU observation data include traffic conditions, environmental monitor‑
ing, natural disasters, and animal activity information [4–6]. RSU collects monitoring data
in a timelymanner, and different data types have different delay deadline requirements [7].
High‑speed moving vehicles cause the time‑varying network topology of vehicles. An un‑
necessary impact is caused when the data cannot be fed back to the relevant departments
before the delay deadline. Therefore, the main goal of this paper is to determine the op‑
timal scheduling strategy considering that monitoring data have different deadlines and
data queues are stable, minimizing the end‑to‑end average delay.

2. Related Work and Contributions
The high mobility of vehicles in CVIS creates a time‑varying network topology. Its

communication has intermittent connectivity, which increases not only opportunities for
data distribution and network capacity, but also data transmission delays. It is more suit‑
able for delay‑tolerant services.

Kyoungsoo et al. [8] proposed an RSU scheduling that provides V2I‑based data ser‑
vices through multiple RSUs. The proposed scheme connects the RSU through a wired
backbone network. The scheme adopts a cooperation strategy of multiple RSUs to trans‑
mit secure and non‑secure data, reducing the deadline failure rate and average response
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time. Guo et al. [9] proposed a V2R data access scheme based on data integrity and im‑
portance. Based on the vehicle request’s initial information, they first estimated whether
it could avoid invalid data access requests. On this basis, the author proposed a multi‑
request priority scheduling scheme considering the importance of requests and deadlines.
Finally, the author used a priority‑based strategy to satisfy these requests.

TANet al. [10] proposed studying the problemof efficient content broadcasting through
vehicle networks. They expressed it as a joint optimization problem of data prefetching
and broadcast transmission scheduling with buffer size constraints and transmission rate
adaptive constraints. This article considers a highway scenario covered by multiple RSUs
and the deadline requirements of interactive applications. The author used a heuristic al‑
gorithm to solve the integer linear programming problem.

The block must be delivered within the playback period to achieve the desired video
quality during playback. Bethanabhotla et al. [11] proposed a network utility maximiza‑
tion (NUM) problem where the network utility function is a concave, component‑by‑com‑
ponent, non‑decreasing function of the video quality index requested by time‑averaged
users. Maximization depends on the stability of all queues in the system.

Due to the lack of an average delay performance guarantee in existing research,
Yang et al. [12] focused on the key goal of delivering next‑generation real‑time services
before the corresponding deadline of each packet while minimizing the overall cloud net‑
work resource cost, introducing a novel queueing system, which can track the life cycle
of data packets, and formalizing the optimal cloud network control problem with strict
deadline constraints. Having explained the main challenge of sending packets to their des‑
tination before their life cycle expires, the author developed an equivalent formula. The
relaxed flow conservation allowed the use of Lyapunov optimization to derive a provable,
near‑optimal, and fully distributed algorithm for the original problem.

Hu et al. [13] proposed an auction bidding scheme to determine the RSU in response
to the computing request. In other words, auctioning the computing request to obtain bids
from the least energy consumingRSUs. The schemeworks in a decentralizedmodel, which
effectively reduces the complexity of its implementation. In order to process computing
requests simulated as DAG applications, the DAG is divided into individual tasks using
upper‑order values. They also proposed a deadline‑aware queue jump algorithm assigned
to server queues in specific RSUs.

When tasks require different delay deadlines, computing resource allocation becomes
more challenging. Mukherjee et al. [14] proposed a scheduling strategy to maximize the
number of tasks completed within their deadlines and stabilize the network. The Lya‑
punov drift plus penalty function on the queue length was used to schedule tasks.
Sethi et al. [15] proposed a scheduling architecture that minimizes RSUs’ energy consump‑
tion and achieves uniformenergy consumption between adjacent RSUs. In turn, this scheme
increases the request fulfillment percentage for RSUs. The proposed architecture classifies
incoming requests as traditional (with less computation) or smart requests (withmore com‑
putation). They proposed a hard‑deadline low‑computing‑requirement method (HLCA)
and a soft‑deadline high‑computing‑requirementmethod (SHCA) aimed at traditional and
intelligent data requests, respectively.

Wu et al. [16] proposed the random unloading problem of minimizing long‑term en‑
ergy consumption. They used the perturbed Lyapunov optimization technique to con‑
struct a virtual queue and transformed the task deadline guarantee problem into a virtual
queue stability control problem. They proposed an energy‑saving online unloading al‑
gorithm for DelayAware, which can adaptively unload more tasks under good network
quality conditions. Additionally, the transmission is delayed when the connection is poor,
but the deadline is not compromised.

Xiang et al. [17] considered the delay sensitivity of different vehicles to receive early
warning information and studied the release of emergency information using V2X commu‑
nication. We divided the vehicles covered by the roadside unit (RSU) into primary and sec‑
ondary priority groups according to the distance between the vehicle and the emergency
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point. A joint optimization problem of content division, user groupings, and channel al‑
location was proposed to improve resource utilization and emergency message delivery
efficiency. The goal was to ensure that all vehicles in the primary priority group could
reliably receive warning messages within a fixed deadline. In addition, RSUs could send
countless warning messages to vehicles in the secondary priority group.

The main contributions of this paper are as follows:
We proposed an optimization strategy based on a vehicle carrier relay to minimize

end‑to‑end delays of RSU packets. This strategy decides packet scheduling using the high‑
and low‑priority data cache queue and vehicle speed status of multiple RSUs. According
to the queue and speed states of multiple RSUs, this strategy dynamically selects the data
cache queue and the number of packets sent to ensure system performance and minimize
end‑to‑end delays.

The packet scheduling problem is transformed into a knapsack problem, and simula‑
tion results verify the algorithm’s effectiveness.

The remaining organizational structure of this paper is as follows. Section 3 describes
the packet scheduling strategy and system model. In Section 4, Lyapunov optimization
theory transforms the model, and the knapsack problem is solved. In Section 5, the per‑
formance of the proposed optimization strategy is evaluated and compared to existing
algorithms. The superiority of the proposed scheme is renamed here. Section 6 contains
the conclusion of this paper.

3. SystemModel
On the highway section of L‑length, transferring data packets to RSU′ through a sin‑

gle RSU may cause the following problems:
1. Considering the maximum capacity of the data cache queue of the RSU, when the

monitoring data of the road section is stored in the data cache queue of the RSU, the
data cache queue of the RSUwill be full quickly, and the data packets that arrive later
will overflow, resulting in the loss of available data packets.

2. When the arrival rate of vehicles on the road section is high, a single RSU only sends
data packets to one vehicle in each time slot, which may cause multiple vehicles
to have no data packets to carry, so the stability of the data cache queue can’t
be guaranteed.

3. When the data packet arrival rate is high, considering that there are fewer data pack‑
ets that can be sent in each time slot of a single RSU, the data cache queue length of the
RSUwill remain in a higher state, and the higher data queue length will lead to larger
average queuing delay, which will affect the overall performance of the system.
In this paper, we consider that N RSUs are evenly distributed on the highway sec‑

tion of L‑length. each RSU observes its coverage and collects data and stores it in its data
cache queue. DDPS makes data packet scheduling decisions according to the correspond‑
ing states of N RSU in each time slot to avoid the above problems.

As shown in Figure 1, RSUs are deployed on highways. N RSUs in remote areas,
such as mountains and forests, which consider economic benefits and other factors, can‑
not access the backbone network. Therefore, many RSUs deployed in remote areas use
mobile vehicles as transmission media to forward data packets from mobile vehicle carri‑
ers to backbone networks. The data cache queue of RSUs is divided into emergency and
non‑emergency data cache queues. Emergency data mainly include extreme weather, for‑
est fires, and static obstacles on the road. Non‑emergency data are mainly daily traffic,
environmental data, and other monitoring data.

Based on the speed and queue status, scheduling determines whether data packets
are sent, how many, and what type of data packets are sent to vehicles. The data should
be transmitted to the backbone before the deadline to ensure the relevant departments
can handle the consequences of emergency and non‑emergency data. In remote areas,
l is the distance between two RSUs, and L′ is the shortest distance between the destina‑
tion node RSU′ and the isolated RSUs. Since L′ is much larger than the communication
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range of RSU, the latter can be ignored. RSU indexes of n ∈ {1, 2, . . . ,N} are deployed
in the scenario of L‑length highway sections. The system time is discretized, the index is
t ∈ {0, 1, . . . ,T}, and the length of each slot is represented by τ. When the vehicle enters
the coverage area of RSUn, RSUn unloads the collected data packets onto it. Using the data
scheduling controller, RSUn determines a scheduling strategy for processing data packets
in the data queues. Figure 2 shows that the data transmission control model comprises
vehicle speed state yn(t), data queues length QH

n (t), QL
n(t), packet arrival number hn(t),

queue selection decision bn(t), and data packet transmission decision dn(t).
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3.1. Vehicle Speed State Model
Weonly considered the one‑lane scenario of the highway, where the vehicle is in a free‑

flow traffic date and its arrival obeys the Poisson distribution with parameter λ. Therefore,
we can conclude that the arrival time interval ∆t of any two cars obeys a negative exponen‑
tial distribution. Its probability density function is as follows:

f (t) = λe−λt(t > 0) (1)

The probability distribution function is derived as

F(t) = P(∆t ≤ t)= 1−e−λt(t > 0) (2)

Therefore, the probability of at least one car arriving at this section in the τ time slot is

Pv = P(∆t ≤ τ)= 1−e−λτ(τ > 0) (3)
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Then, the probability of no vehicles arriving in the τ time slot is 1 − Pv.
In this paper, we considered v(t) as the speed of the vehicle when it arrives in the

t‑slot and assumed that the vehicle’s speed in the road section does not change. In the free
flow traffic state, the speed v(t) obeys the normal distribution with an average value of V
and a standard deviation of σ. Its probability density function is

fv(v) =
1

σ
√

2π
e[−( v−V

σ
√

2
)

2
] (4)

If the speed limit interval of the highway is expressed as [Vmin, Vmax], then the trunca‑
tion probability density function of the speed distribution is

fv
∗(v) =

2 fv(v)

er f
(

Vmax−V
σ
√

2

)
− er f

(
Vmin−V

σ
√

2

) (5)

The continuous speed is divided into X + 1 speed states [18]. The state vector is
expressed as V = [V1, . . . , VX+1], in which V1 = Vmin and VX = Vmax represent the
minimum and the maximum speed limits of the highway, respectively, and satisfy
Vx > Vx+1(x = 1, 2, . . . ,X). yn(t) indicates the speed the vehicle reaches RSUn in the t‑slot.
yn(t) = x(1 ≤ x ≤ M) indicates v(t) ∈ [Vx+1, Vx) and yn(t) = X + 1 indicates that no
vehicle will arrive at RSUn in the t‑slot.

Let δx represents the probability that the vehicle is in the speed state x, and its proba‑
bility density function expression is

δx = P{yn(t) = x} =

{
Pv
∫ Vx

Vx+1
fv
∗(v)dv , 1 ≤ x ≤ X

1 − P, x = X + 1
(6)

3.2. Prediction Model of Vehicle Communication Quantity
In the research scenario of this paper, the connection between vehicles and RSU is not

continuous. Therefore, we must determine how many vehicles establish communication
links with N RSU.When a vehicle enters the RSU coverage area, its communication state is
defined as ON. When the vehicle drives out of the RSU coverage area, its communication
state is defined as OFF [19]. In this paper, we analyzed the free flow trafficmodel to predict
the number of vehicles establishing communication links with RSU on the road as κ(t).
We assumed that the probability of the vehicle and establishing communication links obey
the discontinuous Bernoulli distribution (IBP) with parameter (λ, α, β) [20]. The vehicle’s
travel time in the ON/OFF state shows a geometric distribution, and the expected values
are α and β, respectively.

The cumulative distribution function of vehicle residence time tr on this road section
can be expressed as

FR(tr) = 1 − FV

(
L
tr

)
= 1 −

1 + er f
((

L
tr
− V

)
/σ

√
2
)

er f
((

Vmax − V
)
/σ

√
2
)
− er f

((
Vmin − V

)
/σ

√
2
) (7)

FV(L/tr) is the probability distribution function corresponding to the truncated prob‑
ability density function in the previous section.

The arrival of vehicles obeys the Poisson distribution with parameter λ; therefore, the
probability expression of k vehicles arriving in the road section within the interval of (0, t)
is as follows:

Ak(t) =
(λt)ke−(λt)

k!
(8)

The t‑slot, 1 − FR(t − ti), represents the probability of any vehicle arriving in the ti‑
slot. The vehicle’s arrival obeys the Poisson distribution. Therefore, the vehicle arrival time
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distribution depends on whether k vehicles arrive within the time interval of (0, t). This is
the same as the uniform distribution of k points within (0, t). The probability expression
for the existence of any k vehicles on the road section within the t‑slot is as follows:

pk(t) =
∫ t

0
[1 − FR(t − ti)]

dti
t

=
1
t

∫ t

0
[1 − FR(ti)]dti (9)

The probability of the vehicle leaving the road section in the t‑slot during the time
interval of (0, t) is as follows:

1 − pk(t) =
1
t

∫ t

0
FR(ti)dti (10)

Depending on whether k vehicles arrive within the time interval of (0, t), the proba‑
bility of y vehicles driving on the road section within the t‑slot is as follows:

Py|k(t) =

{
Ck

y[pk(t)]
y[1 − pk(t)]

k−y , y ≤ k
0 , y > k

(11)

The probability of establishing a communication link between a vehicle and RSUn
follows a discontinuous Bernoulli distribution with a parameter of (λ, α, β). Therefore,
the probability of y vehicles driving on the road section in t‑slot and r vehicles with RSU
coverage is as follows:

P{κ(t) = r} =
α

α + β

∞

∑
k=y

Ck
y[pk(t)]

y[1 − pk(t)]
k−y · (λt)ke−(λt)

k!
=

α[λt · pk(t)]
ye−(λt)·pk(t)

(α + β)y!
(12)

3.3. Queue Model
The data types are divided into emergency and non‑emergency data. According to

the type of data arrival, the data cache queue of the vehicle is divided into high‑ and low‑
priority data queues. Let bn(t) denote the data cache queue selection decision within the
range of RSUn in the t‑slot, of which bn(t) ∈ {0, 1}. bn(t) = 1 indicates that the data
packets in the high‑priority data queue will be transmitted by RSUn in the t‑slot. bn(t) = 0
indicates that the data packets in the low‑priority data queue will be transmitted by RSUn
in the t‑slot.

Considering that the data queue capacity of RSU is limited, let QH
n (t + 1) denote the

high‑priority data cache queue length of RSUn in the t + 1 slot. Then, the updated data
queue expression would be as follows:

QH
n (t + 1) = max

{
QH

n (t)− BH
n (t) + hH

n (t), 0
}

(13)

hH
n (t) represents the number of emergency data packets arriving at the high‑priority

data queues of RSUn in the time slot t, which is expressed as hH
n (t) = ϑ · hn(t).

ϑ indicates the probability that the data type arriving is an emergency data packet.
1 − ϑ indicates the probability that the data type arriving is a non‑emergency data packet.

hn(t) represents the number of data packets that reach RSUn in time slot t. Its proba‑
bility density function is

P{hn(t) = u} = θu , u ∈ {0, 1, . . . , U} (14)

where θu ∈ [0, 1] represents the probability of u data packets arriving at RSUs in the time

slot t. The data arrival distribution satisfies
U
∑

u=0
θu = 1, and θu = 0, ∀u > U. The average
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arrival rate of the group is h =
U
∑

u=0
uθu. When the data queue is full, the newly arrived

data packet overflows.
BH

n (t) is the number of emergency data packets transmitted by RSUn in the t‑slot,
which is expressed as

BH
n (t) = bn(t)dn(t) (15)

dn(t) ∈ {0, 1, . . . , S} represents the number of data packets that RSUn sent to the
arriving vehicle in the time slot t, where S is the maximum number of data packets that
RSUn can transmit to the vehicle in each time slot, dn(t)= 0 is when the vehicle speed state

is X + 1, indicating that no vehicle arrived in the current time slot.
N
∑

n=1
dn(t) ≤ S · κ(t) is

satisfied ∀n, t.
In order to ensure the data cache queue’s stability and reduce the data transmission

delays, the system designates ϖ as the upper limit of the long‑term average data cache
queue length. The expression is as follows:

lim
T→∞

1
T

T−1

∑
t=0

E
{

QH
n (t)

}
≤ ϖ (16)

Let QL
n(t + 1) denote the low‑priority data cache queue length in the t + 1 slot. The

data queue update expression would be as follows:

QL
n(t + 1) = max

{
QL

n(t)− BL
n(t) + hL

n(t), 0
}

(17)

hL
n(t) represents the number of non‑emergencydata packets arriving at the low‑priority

data queues of RSUn in the time slot t, which is expressed as

hL
n(t) = (1 − ϑ)hn(t) (18)

The newly arrived data packet overflows when the data queue is full.
BL

n(t) is the number of non‑emergency data packets transmitted by RSUn in the t‑slot,
which is expressed as

BL
n(t) = (1 − bn(t))dn(t) (19)

To ensure the data cache queue’s stability and reduce data transmission delays, the
system gives ξ as the upper limit of the long‑term average data cache queue length. The
expression is as follows:

lim
T→∞

1
T

T−1

∑
t=0

E
{

QL
n(t)

}
≤ ξ (20)

3.4. Average Delay Model
Emergencies such as extreme weather, fires, traffic accidents, etc., are timely and may

have a negative impact when not handled properly or within an effective time. Although
less serious than the emergency itself, non‑emergency events such as animals and daily
traffic still reduce thework efficiency of the relevant departmentswhen not treated quickly.
Therefore, data packet deadlines must be considered.

In this paper, different data deadlines are divided into emergency tH
n andnon‑emergency

data packet deadlines tL
n based on the severity of the event. The data packet is discarded

when the transmission time is exceeded.
The average end‑to‑end delays of emergency data packet transmission in the time slot

mainly comprise the following two parts:
The average propagation delay TH

n,c(t) is the average time RSUn requires sending a
packet to the vehicle and carry it to RSU′ in the t‑slot. Its expression is as follows:
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TH
n,c(t) =

Ln + L′

vn(t)
(21)

vn(t) represents the average speed at which the vehicle reaches RSUn at time slot, t.
The expression is vn(t) = (Vx+1 + Vx)/2.

Ln represents thedistancebetweenRSUn andRSUN , and its expression is Ln = (N − n)L.
The average queue delay is TH

n,q(t). According to the emergency data deadline tH
n , the

relationship can be deduced as 0 ≤ TH
n,q(t) ≤ tH

n − TH
n,c(t).

Its expression is as follows:

TH
n,q(t) =

tH
n − TH

n,c(t)
2

(22)

Therefore, the average end‑to‑end delay expression for RSUn to complete emergency
data packet transmission in the t‑slot is as follows:

τH
n (t) = TH

n,c(t) + TH
n,q(t) (23)

It can be obtained in the same way that the average end‑to‑end delay expression for
RSUn to complete non‑emergency data packet transmission in the t‑slot:

τL
n (t) = TL

n,c(t) + TL
n,q(t) (24)

Furthermore, the expression of the weighted end‑to‑end average delay of each data
packet from all RSUs in the time slot is as follows:

Γ(t) =

N
∑

n=1
dn(t) ·

(
bn(t) · τH

n (t)/tH
n + (1 − bn(t)) · τL

n (t)/tL
n
)

N
∑

n−1
dn(t)

(25)

The system’s long‑term average weighted delay expression is as follows:

Γ = lim
T→∞

1
T

T−1

∑
t=0

E{Γ(t)} (26)

The optimization problem is as follows:

min
bn(t),dn(t)

Γ = lim
T→∞

1
T

T−1
∑

t=0
E{Γ(t)}

s.t.



bn(t) ∈ {0, 1}, 1 ≤ n ≤ N a
dn(t) ∈ {0, 1, . . . , S}, 1 ≤ n ≤ N b

N
∑

n=1
dn(t) ≤ S · κ(t), ∀n, t c

lim
T→∞

1
T

T−1
∑

t=0
E
{

QH
n (t)

}
< ϖ d

lim
T→∞

1
T

T−1
∑

t=0
E
{

QL
n(t)

}
< ξ e

(27)

4. Lyapunov Optimization Model
Lyapunov optimization refers to the optimal control of a dynamic system using the

Lyapunov function. The Lyapunov function is widely used in control theory to ensure
system stability. Multidimensional vectors usually describe a system’s state at specific
times. The Lyapunov function is a non‑negative scalar measure of this multidimensional
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state. According to Lyapunov optimization technology, network stability is achieved by
initiating the control action that causes Lyapunov drift from negative to zero. Moreover,
the weighted (positive) network utility term is subtracted from the Lyapunov drift and
minimizes the sum. As a result, the drift plus penalty algorithm for joint network stability
and utility maximization is produced.

It is necessary to transform the optimization model and reduce computational com‑
plexity because of the large state space of the problem and the high complexity of online
optimization. We set the vector matrix G(t) =

[
QH

n (t) , QL
n(t)

]
. The Lyapunov function is

defined by this matrix:

L(G(t)) =
1
2

N

∑
n=1

[
QH

n (t)2 + QL
n(t)

2
]

(28)

According to Formula (28), the data queue length is positively correlated with the
value of L(G(t)). Data queue dynamics can be described using the Lyapunov function
for differences between adjacent time slots, that is, the Lyapunov drift ∆(G(t)), which is
expressed as follows:

∆(G(t)) = E{L(G(t + 1))− L(G(t))|G(t)} (29)

System optimization aims to keep the RSU’s data queue length low while minimiz‑
ing end‑to‑end average delays. Therefore, the end‑to‑end average delay becomes the drift
component in Formula (29), which can be rewritten as

∆(G(t)) + VE{Γ(t)|G(t)} (30)

V is the tradeoff parameter between data queue length and end‑to‑end average delays.
If the V value increases, the weight of the end‑to‑end average delay in the Lyapunov drift
parameter increases. In turn, the drift effect on the system increases. It makes the system
focus on reducing the end‑to‑end average delay, but the length of the data queue increases
accordingly. Therefore, the system can be optimized by adjusting the value of V. System
optimization is possible by minimizing the upper bound of the Lyapunov drift.

According to the theorem, {max[(a − b + c), 0]}2 ≤ (a − b + c)2 is true for ∀a, b, c > 0;
therefore, the following inequality is derived from Formula (13).

1
2

QH
n (t + 1)2 ≤ 1

2
QH

n (t)2 +
1
2

(
hH

n (t)− BH
n (t)

)2
+ QH

n (t)
(

hH
n (t)− BH

n (t)
)

(31)

It can be obtained in the same way:

1
2

QL
n(t + 1)2 ≤ 1

2
QL

n(t)
2 +

1
2

(
hL

n(t)− BL
n(t)

)2
+ QL

n(t)
(

hL
n(t)− BL

n(t)
)

(32)

According to Formula (28), the following relational expression can be derived:

∆(G(t)) ≤ 1
2

N
∑

n=1
E
{(

hH
n (t)− BH

n (t)
)2
∣∣∣G(t)

}
+

N
∑

n=1
QH

n (t)E
{(

hH
n (t)− BH

n (t)
)∣∣G(t)

}
+ 1

2

N
∑

n=1
E
{(

hL
n(t)− BL

n(t)
)2
∣∣∣G(t)

}
+

N
∑

n=1
QL

n(t)E
{(

hL
n(t)− BL

n(t)
)∣∣G(t)

} (33)

Through α · h = E
[
hH

n (t)
]
, (1 − α) · h = E

[
hL

n(t)
]
, and Bn(t) =

{
BH

n (t), BL
n(t)

}
≤ S,

we can obtain the following relations:

N
∑

n=1
E
{(

hH
n (t)− BH

n (t)
)2
∣∣∣G(t)

}
+

N
∑

n=1
E
{(

hL
n(t)− BL

n(t)
)2
∣∣∣G(t)

}
≤

N
∑

n=1
max

{(
α · h

)2
,
(

S − α · h
)2

}
+

N
∑

n=1
max

{[
(1 − α) · h

]2
,
[
S − (1 − α) · h

]2
} (34)
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Through dn(t) ∈ {0, 1, . . . , S}, we can obtain the following relation:

N
∑

n=1

[
dn(t) ·

(
bn(t) · τH

n (t)/tH
n + (1 − bn(t)) · τL

n (t)/tL
n
)]

/
N
∑

n=1
dn(t)

≤
N
∑

n=1

[
dn(t) ·

(
bn(t) · τH

n (t)/tH
n + (1 − bn(t)) · τL

n (t)/tL
n
)] (35)

If parameter Cons = N
{
max

{(
α · h

)2
,
(

S − α · h
)2

}
+max

{[
(1 − α) · h

]2
,
[
S − (1 − α) · h

]2
}}

/2 is
substituted with inequality (34), then the Lyapunov drift function satisfies the following
inequality relation:

∆(G(t)) + VE{Γ(t)|G(t)} ≤ Cons +
N
∑

n=1
QH

n (t)E
{(

hH
n (t)− BH

n (t)
)∣∣G(t)

}
+

N
∑

n=1
QL

n(t)E
{(

hL
n(t)− BL

n(t)
)∣∣G(t)

}
+VE

{[
dn(t) ·

(
bn(t) · τH

n (t)/tH
n + (1 − bn(t)) · τL

n (t)/tL
n
)]∣∣G(t)

} (36)

Among them, the right end of the inequality is the Lyapunov drift function’s upper
bound. By minimizing the upper bound, the optimization model’s critical point can be ob‑
tained through data packet scheduling decisions dn(t). The system’s optimization model
then transforms into the following expression:

min
bn(t),dn(t)

Cons +
N
∑

n=1
QH

n (t)
(
hH

n (t)− BH
n (t)

)
+

N
∑

n=1
QL

n(t)
(
hL

n(t)− BL
n(t)

)
+V

N
∑

n=1
dn(t) ·

[
bn(t) · τH

n (t)/tH
n + (1 − bn(t)) · τL

n (t)/tL
n
] (37)

Cons, hH
n (t) and hL

n(t) are constant in each time slot. Since the system results are not
affected by them, they can be omitted. The Formula (37) is simplified as follows:

min
bn(t),dn(t)

N

∑
n=1

dn(t) ·
[

bn(t) ·
(

V
τH

n (t)
tH
n

− QH
n (t)

)
+ (1 − bn(t)) ·

(
V

τL
n (t)
tL
n

− QL
n(t)

)]
(38)

4.1. Queue Selection Decision
Assuming a reasonable data packet scheduling decision vector D = {d′n(t)}, we can

describe the queue selection problem as follows:

min
bn(t)

N
∑

n=1
d′n(t) ·

[
bn(t) ·

(
V τH

n (t)
tH
n

− QH
n (t)

)
+ (1 − bn(t)) ·

(
V τL

n (t)
tL
n

− QL
n(t)

)]
s.t.bn(t) ∈ {0, 1}, 1 ≤ n ≤ N

(39)

Since d′n(t) is a constant, the optimal solution of the above equation can be expressed as

b∗n(t) =

{
1

(
V τH

n (t)
tH
n

− QH
n (t)

)
≤

(
V τL

n (t)
tL
n

− QL
n(t)

)
0 otherwise

(40)

We can obtain the optimal decision vector of queue selection B = {b∗n(t)}.

4.2. Packet Scheduling Decision
Given the queue selection optimal decision vector B = {b∗n(t)}, the packet scheduling

problem is described as
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min
dn(t)

N
∑

n=1
dn(t) ·

[
b∗n(t) ·

(
V τH

n (t)
tH
n

− QH
n (t)

)
+ (1 − b∗n(t)) ·

(
V τL

n (t)
tL
n

− QL
n(t)

)]
s.t.


0 ≤ dn(t) ≤ S, 1 ≤ n ≤ N

N
∑

n=1
dn(t) ≤ S · κ(t), ∀n, t

(41)

When we set σn(t) = b∗n(t) ·
(

QH
n (t)− V τH

n (t)
tH
n

)
+ (1 − b∗n(t)) ·

(
QL

n(t)− V τL
n (t)
tL
n

)
, the

system optimization model is described as

max
dn(t)

N
∑

n=1
dn(t) · σn(t)

s.t.


0 ≤ dn(t) ≤ S, 1 ≤ n ≤ N

N
∑

n=1
dn(t) ≤ S · κ(t), ∀n, t

(42)

The purpose of the optimization model was to maximize its value based on limited
packet schedulingdecisions (resource space). Therefore, we obtained optimal data schedul‑
ing by transforming the model into a knapsack problem [21].

In the knapsack problem, the system optimization model’s system value is expressed
by σn(t). The system first arranges the values of σn(t) in descending order, then inserts
them into the “knapsack”. However, this process can be interrupted. The optimal solution
to the system optimization problemdepends on the system state at the time of interruption.
Therefore, the key to the knapsack problem is to find the breakpoint. Typical interruption
conditions in knapsack problems are as follows:

The remaining “weight” space is 0.
The value of the “item” inserted into the “backpack” is negative.
Optimal packet scheduling decisions can be determined by the break point of the

knapsack problem. Define Ω as the interruption index parameter of the system knapsack
problem, and Ω = {ξ1, ξ2}, of which ξ1 , ξ2 satisfies the following relation:

ξ1 = argmin
n

n
∑

j=1
dj(t) ≥ κ(t)S

ξ2 = argmin
n

σn(t) < 0
(43)

Then, the optimal solution for packet scheduling decisions d∗n(t) is supplied as follows:

d∗n(t) =


S n < Ω
min{κ(t)S − (Ω − 1)S, dΩ(t)} n = Ω
0 otherwise

(44)

5. Performance Evaluation
The simulation experiment in this section follows two parts of the simulation exper‑

iment on DDPS proposed in this paper through MATLAB simulation software. The first
part involves drawing curve images of the average system delay and packet queue length,
which vary with the system’s weight coefficient V and packet arrival rate. The second part
compares this strategy model’s performance to two commonly used packet scheduling
strategies, Equal Allocation Strategy (EAS) and Queue‑weighted Strategy (QS), regarding
system average delay and packet queueing under constant simulation parameters. Table 1
shows the simulation parameters.

In addition, Section 3 mentions the discontinuous Bernoulli distribution parameter
α = β = 0.5. The time, T, is set to 1500 s, the number of emergency data packet deadlines tH

n
is set to 1000 s, and the number of non‑emergency data packet deadlines tL

n is set to 1500 s.
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Table 1. The simulation parameters.

Parameter Notation/Units of
Measurement Value

Highway mileage L/m 10,000
RSU to Backbone RSU Spacing L′/m 10,000

RSU Spacing L/m 1000
Speed limit range [Vmin, Vmax]/(m/s) [16.67,33.33]
Speed expectation V/(m/s) 25

Speed standard deviation σ 5.56
Vehicle arrival rate λ/(vehicle/s) 5.5

Slot length τ/s 1
Maximum number of transmission packets S 2

This paper considers that compared with the end‑to‑end delay, the end‑to‑end aver‑
age delay fluctuatesmore stably, which can bettermeasure the performance of the schedul‑
ing strategy. The lower the end‑to‑end average delay, makes the higher the transmission
efficiency of data packets. The average end‑to‑end delay cannot exceed the data deadlines.

In the second part of the comparative experiment, the EAS indicates that the number
of packet transmissions between RSUs and vehicles is equal. QS indicates that the system
allocates the transmission weight between vehicles according to the packet queue length
in RSUs: the longer the queue length of RSU packets, the more data RSUs send to vehicles.

Figures 3–5 show a DDPS simulation based on system performance. Figure 3 shows
the curve trend of average delay in each time slot with the increase in weight coefficient V.
The simulation results show that the average delay decreases with the increase in weight
coefficientV. The results show thatwith the increase inweight coefficientV, the average de‑
lay’s impact on system performance increases gradually. Therefore, the system will adap‑
tively reduce the average delay to ensure its overall performance. Figures 4 and 5 show
that the high‑ and low‑priority data queue lengths change with the increase in weight coef‑
ficient V, which reduces the impact of queue length on system performance. System deci‑
sions tend to adjust the factors that greatly impact system performance; therefore, the sys‑
tem reduces the average delay and increases the length of high‑ and low‑priority queues.

The packet arrival ratewill change accordinglywhen the system environment is differ‑
ent. Therefore, verifying whether the system’s packet scheduling strategy can adaptively
optimize packet scheduling under different arrival rates ensures online optimization. The
results of this experimental scheme are as follows: The experimental scheme provides the
weight value w, set to 0.8, 1, 1.2, multiplied by the packet arrival state hn(t) of the sys‑
tem. Set the weight to V = 2. Figures 6–8 show the experimental results. As shown in
Figure 6, the increase in packet arrival rate increases the average queue length and system
delays accordingly.
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We consider that the size of a single data packet is 1 MB. In order to ensure the long‑
term stability of the data queue and avoid the high queuing delay of the data packet, which
makes the total end‑to‑end delay exceed the deadline, the system sets high priority and low

priority queue length should not exceed the thresholdϖξ, that is, lim
T→∞

1
T

T−1
∑

t=0
E
{

QH
n (t)

}
≤ ϖ

and lim
T→∞

1
T

T−1
∑

t=0
E
{

QL
n(t)

}
≤ ξ. When the average packet arrival rate is h =

U
∑

u=0
uθu = 1,

the system sets ϖ = 40, ξ = 90, that is, the queue length of high priority should not ex‑
ceed 40 MB, and the queue length of low priority should not exceed 90 MB. As shown in
Figures 7 and 8, the increase in packet arrival rate increases the system’s queue length. Fur‑
thermore, the thresholdϖξ will increasewith an increase in packet arrival rate. Figures 6–8
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show that the system’s average delay and queue length can be manipulated under differ‑
ent packet arrival rates and finally converge. The results show that the DDPS strategy
proposed in this paper can dynamically adjust the packet scheduling strategy according
to the change in packet arrival rate. Thismethod ensures the system’s optimal performance
and stability.
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The above experiments analyze the performance of the DDPS and compare it to the
EAS and QS to prove the advantages of the DDPS. We set the experiment weight to V = 2.
The simulation results are shown in Figures 9–11. Figure 9 shows the average delay of
the system, and Figures 10 and 11 compare the high‑ and low‑priority queue lengths. The
simulation results show that when the system works for a long time, the average DDPS
delay is low. When it tends to be stable, the sum of high‑ and low‑priority queue lengths
is also low. DDPS improves system efficiency by dynamically adjusting the queue and the
number of packets sent according to the speed status of passing vehicles and the length
of high‑ and low‑priority queues. On the other hand, the EAS’s insensitivity to vehicles’
high‑speed mobility and packet queue length affects its performance. The QS only opti‑
mizes the system regarding queue length without considering the effect of vehicle speed
on transmission delays. The DDPS proposed in this paper has obvious advantages over
these two strategies.
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6. Conclusions
In this paper, we proposed an optimization strategy tominimize end‑to‑end delays in

multi‑RSU‑distributed packet scheduling based on vehicle carrier relays inCVIS. This strat‑
egy determines packet scheduling decisions according to the double buffer queue lengths
and vehicle speed status of multiple RSUs on the highway. The advantage of Lyapunov
theory is that it can maximize the network performance on the premise of ensuring the
stability of the whole network, so Lyapunov optimization theory was used to transform
the problem. Lyapunov drift parameters and weights were also introduced to the average
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system delay and length of high‑ and low‑priority packet queues, which were treated as
knapsack problems. This method can dynamically adjust the packet scheduling strategy
through the real‑time changes of multiple RSUs’ high‑ and low‑priority queue lengths and
vehicle speed status on the road, ensuring that the packet is transmitted to the destination
before the deadline and minimizing end‑to‑end delays.

The simulation results show that the average end‑to‑end delay of the DDPS strategy
proposed in this paper is 39% lower than the ESA strategy and 50% lower than the QS
strategywhen the queue length of the proposed ESApolicy is higher and lower than that of
the QS strategy and is significantly lower than that of the QS strategy. With the continuous
change of parameters, the end‑to‑end average delay of the DDPS strategy does not change
much, so it can be known that the DDPS strategy has good robustness.

In the assumption of this paper, a single lane of vehicle arrival in a highway section
obeys a Poisson distribution with an arrival rate of λ, considering that the vehicle arrival
rate is independently and identically distributed inmultiple lanes, that is, the number of ve‑
hicle arrivals in multiple lanes can be expressed as multiple superpositions of a single lane.
In the simulation, theDDPS proposed in this paper has little change in systemperformance
when the arrival rate is high, so the DDPS strategy is also suitable for multi‑lane scenarios.

In the hypothetical scenario of this paper, the transmission of data packets does not
take into account the influence of the weather environment, and in the real‑world scenario,
vehicles may be affected by rainy weather and road conditions in the process of data store–
carry–forward. Therefore, we will further study this limitation in future work.
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