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Abstract: Due to the increasing proportion of wind power connected to the grid, day-ahead wind
power prediction plays a more and more important role in the operation of the power system.
This paper proposes a day-ahead wind power short-term prediction model based on deep learning
(DWT_AE_BIiLSTM). Firstly, discrete wavelet transform (DWT) is used to denoise the data, then
an autoencoder (AE) technology is used to extract the data features, and finally, bidirectional long
short-term memory (BiLSTM) is used for prediction. To verify the effectiveness of the proposed
DWT_AE_BiLSTM model, we studied three different power stations and compared their performance
with the shallow neural network model. Experimental analysis shows that this model is more
competitive in forecasting accuracy and stability. Compared with the BP model, the proposed model
has increased by 3.86%, 3.22% and 3.42% in three wind farms, respectively.

Keywords: discrete wavelet transform; autoencoder; bidirectional LSTM; wind power forecasting

1. Introduction

In the past few decades, the scale of wind power generation has rapidly increased. As
reported by the Global Wind Energy Council (GWEC), the cumulative installed capacity of
global wind energy reached 743 GW at the end of 2020 [1], an increase of 59% compared
to 2019. Due to the random, nonlinear and nonstationary characteristics of wind energy,
this rapid growth has led to a series of problems, such as the instability of power system
balance and control [2]. More and more studies reveal that accurate short-term wind power
prediction is helpful in optimizing scheduling and energy trading [3,4].

The majority of scholars classify wind power forecasting methods into four categories:
physical models, statistical models, machine-learning models and hybrid models [5-7].
Physical models are based on geographic environments and numerical weather forecasts
(NWFs), such as wind speed, wind direction, temperature, humidity and pressure of
1-3 days, in advance. However, it requires rich expert experience and complex computation.
It is mainly applicable to new power stations without historical data. The statistical model
depends on the historical data observed by the power station to forecast future power
generation, mainly using multiple regression methods, such as the Kalman filter [8], moving
average (MA) methods, autoregressive (AR) or autoregressive moving average model
(ARMA) [9,10].

In recent years, machine-learning methods have been extensively studied and applied
to short-term wind power forecasts, such as the support vector machine (SVM) [11,12],
random forest (RF) [13] and so on. Ding et al. proposed a time series model based on a
hybrid-kernel least-squares support vector machine [11], and Lahour et al. presented a
model based on random forests for hour-ahead wind power forecast [13].
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With the flourishing of artificial intelligence techniques, deep learning models with
strong nonlinear complex mapping abilities are becoming more and more popular. Such as
the deep belief network (DBN) [14,15]. Yu et al. proposed a bidirectional recurrent neural
network (RNN)-based encoder-decoder scheme to learn efficient and robust embeddings
for a high-dimensional multivariate time series [16]. Liu et al. proposed a stacked recurrent
neural network (SRNN) based on a parameter sine activation function (PSAF) for wind
power prediction [17] using a convolutional neural network (CNN) [18] and long short-term
memory (LSTM) [19]. Liu et al. used a convolution neural network and long short-term
memory for power prediction, and used a genetic algorithm to optimize the model [20].
Yin et al. applied a quadratic mode decomposition and cascade deep learning to ultrashort-
term wind power prediction [21]. Lawal et al. used a one-dimensional convolution neural
network (CNN) and bidirectional short-term memory (BLSTM) networks to predict short-
term wind speed at different heights [22]. Wang et al. proposed a deep belief network
(DBN) model for regression with an architecture of 144 input and 144 output nodes and
was constructed using a restricted Boltzmann machine (RBM) [14]. Higashiyama et al.
explored the feature extraction scheme based on three-dimensional convolutional neural
networks (3D-CNNs) [18]. Qu et al. showed a wind power prediction model based on the
long short-term memory model [19].

In order to absorb the advantages of each model prediction method, some hybrid
model methods are proposed. Wang et al. [23] designed a new Laguerre neural network to
build the hybrid forecasting model optimized by the opposition transition state transition
algorithm. Viet et al. [24] proposed a combined artificial neural network model with a
particle swarm optimization algorithm and genetic algorithm.

However, these statistical and machine learning methods are data-driven and limited
by the data quality of the training set, so it is difficult to further improve the prediction
accuracy. The data collected from the wind farm is large, but there may be redundancy
among the data. Most previous studies have ignored this problem. Autoencoder is used to
discover more abstract, high-level hidden features. By using sparse features, the dimension
of the original data is reduced, and the representative information is retained to improve
the robustness of the algorithm and the accuracy of the prediction.

Based on the above considerations, this paper presents a deep learning day-ahead wind
power prediction framework based on discrete wavelet transform, sparse feature extraction
and bidirectional deep learning. The main contributions of this paper are as follows:

(a) According to the characteristics of wind power forecasting, a deep learning framework
DWT_AE_BiLSTM is first proposed.

(b) Through the discrete wavelet transform technology, the nonstationary original data is
decomposed into several subsequences, and the original data is filtered and denoised.

(¢) An autoencoder is employed to extract highly nonlinear feature data, and then
the extracted hidden feature data is input into the BiLSTM framework to predict
power generation.

This paper is organized as follows: Section 2 describes some preliminaries. Section 3
illustrates the overall framework of our proposed short-term wind power prediction model
based on an autoencoder and BiLSTM. In Section 4, we delineate three case studies, setup
the experimental initialization parameters and show the results, and Section 5 presents
the conclusions.

2. Preliminaries
2.1. Discrete Wavelet Transform

The wavelet transform has been widely employed in image processing, pattern recog-
nition, signal denoising and other fields [25,26]. It removes noise from the real signal. As
one of the main techniques for denoising signals, wavelet transforms greatly improve the
accuracy of the time series prediction model. It decomposes the input signal into several
low-frequency and high-frequency components. Wavelet transform includes two types:
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continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The definition
of CWT is defined as follows:

CWT,(1,5) =< f(£), us(t) >= ;mf(t)i Eoiy g 1)

*

IO ARC

where u, s, f(t), (t) and * denote the translation factor, scale factor, real signal, mother
wavelet and implies complex conjugate, respectively.

DWT is a Mallat algorithm proposed in 1988. It is widely used in signal decomposition.

It reduces the computational complexity and improves the data compression ability, and

effectively avoids information redundancy caused by a continuous wavelet transform. The
definition of DWT is as follows [27,28]:
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where j, k, L, W(t) and ¢(t) denote the scale factor, translation factor, length of W (t), input
signal and mother wavelet, respectively.

Discrete wavelet decomposition is a multiscale analysis tool that is used to reveal the
hidden characteristics of the signal. Due to the nonstationary, fluctuating timing of wind
speed, the output power of the wind turbine is unstable. A discrete wavelet transform
is used to decompose the original wind speed data into low-frequency components and
high-frequency components. The three-level decomposition process using the wavelet
transform is shown in Figure 1 [29,30].

High frequency
dl
Input original High frequency
signal d2
Low frequency High frequency
al d3
Low frequency
a2
Low frequency
a3

Figure 1. The schematic diagram of discrete wavelet transform decomposition.

2.2. Autoencoder

An autoencoder (AE) consists of an input layer, an encoding layer and a decoding layer.
The unsupervised learning method is utilized to extract and represent high-dimensional
features of wind power data [31-33]. More specifically, AE seeks a set of optimal connection
weights by minimizing the reconstruction error between the original input and output.
The input vector X € R? is input to the hidden layer through the encoder E to generate a
potential abstract feature mapping Z € R? as in Equation (3) [34,35]. Then, decoder D maps
the potential variable Z to the reconstructed output vector X as in Equation (4), which is
the same size as X.
Z = f(WiX +b) (3)

X =c(WoZ + b)) 4)

where W and W, denote the weight matrices, f and ¢ denote the activation functions and
b1 and b, denote the biases of the encoding layer and the decoding layer.
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2.3. Bidirectional LSTM

LSTM is a deep learning architecture for time series prediction that was first proposed
by Hochreiter et al. in 1997 [36]. LSTM effectively solves the problem of gradient explosion
and vanishing in recurrent neural networks. These networks are good at capturing the
dependence between time series data [37-39]. However, traditional LSTM can only make
use of past context. Graves and Schmidhub proposed a bidirectional LSTM (BiLSTM) to
better capture past and future context dependencies [40—42]. The bidirectional architecture
obtains contextual information from two directions simultaneously, utilizing the forward
and backward hidden layers.

H
In Equation (5), o denotes the sigmoid function, h; denotes the outputs of the forward
— —
hidden layer, ; denotes the backward hidden layers. In the function, o couples the ; and
P

h; sequences according to Equation (5). Vector Y = [y;_1, Y+, y:+1] denotes the output of
BiLSTM layer.

v = (i, ) 5)

3. Algorithm Framework

In this section, our proposed DWT_AE_BiLSTM deep learning algorithm framework
is shown in Figure 2, which includes three modules: data processing and denoising module,
feature extract module and forecast module. Its implementation details are described
as follows:

(a) Data processing and denoising module: Firstly, the missing data on a wind farm is
interpolated and corrected. Then, the discrete wavelet transform technology is used
to decompose the nonstationary wind power time series data into low-frequency com-
ponent and high-frequency component. These components exhibit a greater degree of
stationarity and may be forecasted more easily. Input data mainly includes wind tower
observation data, wind farm total active power and numerical weather prediction
(NWP) data. Wind tower observation data and NWP data include 12 meteorological
elements, i.e., wind speed and direction at heights of 10 m, 30 m, 50 m and 70 m, and
turbine hub, temperature, humidity and pressure. All of the data time resolutions are
15 min.

(b) Feature extract module: Based on step (a), in addition to the actual power of the
power station, there are 13 elements in total. Each element takes five elements in
chronological order to form a 65-dimensional vector, which is input into the autoen-
coder. The features are compressed into a 30-dimensional vector through the training
of the autoencoder.

(c) Forecast module: The compressed features in step (b) are input into the bidirectional
LSTM to predict the short-term power generation of the wind farm combined with
NWP. Bidirectional, two-layer stacked LSTMs are used. We apply the Adam op-
timization method for training. The grid search method is used to determine the
hyper-parameters, and the optimal configuration of model parameters is obtained
from the validation set. The final optimal parameters learn rate = 1 x 10~ and batch
size = 128. The dataset utilized in this study comprises data from the calendar year
2018, which has been divided into training and validation sets consisting of 70% and
30% of the data, respectively. In order to evaluate the predictive performance of the
model, data from four representative months of the year 2019 were handpicked for
comparison against the forecasted outcomes. The results are illustrated in Figure 3,
which displays the respective losses of the training and validation sets for Wind
Farm #1.



Appl. Sci. 2023, 13, 4042 50f12

Numerical weather prediction

Ddiscrete Wavelet Transform

o 5000 10000 15000 20000

0 5000 10000 15000 20000 0 5000 10000 15000 20000

I
I

I
! I
I

I
! I
I

I
! I
I

I
! I
I

I
! I
I

I
! I
I

I
! I
| a® L LN " | "

H]

| o 25 ] I
| 0 5000 10000 15000 20000 0 5000 10000 15000 20000 | |

I
I

I
! I
! I
I

I
! I
I

I
! I
I

I
! I
I

I
! I
I

I
! I
I

Historical .
data 2", Ay -

0 5000 10000 15000 20000 0 5000 10000 15000 20000

1

20 bl o] = 53 kel wd
" el 1) 7 O Tsbeudnselilioid Ll L |
o Saan 1030 15600 20800 3 Sov0 1039 15600 20000

Observation data denoise

| |
I I
I I
| |
| I
| |
| |
| |
I I
| |
I I
i I
} Inputs > |z D Deo;de' . ¢ Ouputs }
I |
I |
I |
I I
I |
I I
| |
I I
| |
I |
| |
I I
I

Abstract feature

Dimension reduction and implicit feature extraction

forward
—

Hidden La)gr

| Prediction
results

forward
—

Hidden Laygr

L+

Xent Xin

Two-layer bidirectional LSTM network

Xt

Figure 2. Proposed flowchart of DWT_AE_BiLSTM deep learning algorithm framework. Numerical
weather prediction (NWP) and historical observation data are used as input data, discrete wavelet
transform (DWT) is used to denoise the data, autoencoder (AE) is used for feature extraction and
Bi-LSTM is used for prediction.
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Figure 3. The loss of the validation set and the training set of Wind Farm #1.

4. Experimental Design

The whole power forecast framework was completed in Python 3.7. We implemented
our DWT_AE_BiLSTM framework based on a deep learning platform with Tensorflow
version 1.13. All models were built using Keras 2.1.3. The models run on a Windows 7
operating system, Intel (R) Core (TM) i7-2600 CPU@3.40 GHz and 8 GB RAM.

4.1. Data Description

In order to make the experiment more representative, four typical months of a year
were selected for each wind farm, namely the real-time wind farm power output data,
wind tower measurements and numerical weather forecast. The time interval between two
adjacent data points is 15 min. The unit for the wind power data is MW. The three wind
farms are located in Suizhou (Wind Farm #1, installed capacity is 110 MW), Huanggang
(Wind Farm #2, installed capacity is 220 MW), and Lichuan (Wind Farm #4, installed
capacity is 126.3 MW). These wind farms are located in Hubei Province, which has different
altitudes and topographical features.

4.2. Performance Evaluation Metrics

In this paper, we use four evaluation indicators to evaluate the performance of the
forecasting model. The matrices are normalized root mean square error (PA), mean absolute
error (MAE) and mean absolute percentage error (MAPE). These matrices are widely used
to evaluate the performance of wind power forecasting models [43-45]. Prediction accuracy
(PA) and the performance evaluation metrics are calculated by (6)—(9), respectively.

_ 1 Jj1 i _ pi)?
NRMSEfCapMNZ(Pf Pi) (6)

N . .
Y. |Pi— P}
MAE=%=L " 7
N . .
PR
MAPE ==L /Cap x 100% (8)

N
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PA = (1 — NRMSE) x 100% )

4.3. Results and Analysis

To verify the performance of the proposed model, the experiment was carried out
on three wind farms. To validate the efficiency of the proposed model, we compared
the DWT_AE_BIiLSTM model with three models: autoencoder and bidirectional long
short-term memory without DWT (AE_BiLSTM), long short-term memory (LSTM) and
traditional back propagation (BP).

Table 1 presents the forecast performance of each model in Wind Farm #1. The
DWT_AE_BiLSTM model demonstrates the highest prediction accuracy (PA) across all
the months, with an increase of 6.45% compared with the BP algorithm in February and
reaching a maximum of 90.69% in all months by October. DWT_AE_BiLSTM model is
6.45%, 3.59%, 1.7% and 3.7% higher than the BP algorithm in January, April, July and
October, respectively, with an average increase of 3.86%, while MAE was decreased by
4.41 MW, 3.79 MW, 4.88 MW and 6.62 MW, respectively. The BP model forecast exhibits
lower accuracy in the time periods 2352-2535 and 1259-1342, while it shows significantly
greater accuracy in the time periods 961-1002 and 1387-1482, as depicted in Figure 4.

Table 1. Performance evaluation of each prediction algorithm in Wind Farm #1.

Month Algorithms PA (%) MAE (MW) MAPE (%)

DWT_AE_BiLSTM 84.69 12.03 10.94

1 AE_BiLSTM 83.40 13.10 11.91
LSTM 82.08 14.25 12.95

BP 78.24 17.48 15.89

DWT_AE_BiLSTM 82.36 13.58 12.35

4 AE_BiLSTM 81.33 15.73 14.30
LSTM 79.04 16.33 14.85

BP 78.77 16.93 15.39

DWT_AE_BiLSTM 83.63 11.65 12.41

” AE_BiLSTM 82.68 12.39 11.26
LSTM 82.10 12.57 11.43

BP 81.93 12.60 11.45

DWT_AE_BiLSTM 90.69 6.34 5.76

10 AE_BiLSTM 89.76 7.14 6.49
LSTM 88.30 9.05 8.23

BP 86.99 10.02 9.11

120
——REAL AE_BILSTM —BP ——LSTM ——DWT_AE BiLSTM

wind power(MW)

Times (15minutes)

Figure 4. Comparison among different wind power short-term prediction models of Wind Farm #1
in April 2019.
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Table 2 illustrates the comparison of the prediction performance of each model in
Wind Farm #2. The DWT_AE_BiLSTM model shows the highest PA in January (84.75%)
and the lowest in April (82.65%). In April, the BP and LSTM forecast accuracies are similar,
while the PA of BiLSTM is 1.26% higher than LSTM, and DWT_AE_BiLSTM is 0.94% higher
than AE_BiLSTM, as indicated in Figure 5. In all months, DWT_AE_BiLSTM model is 5.3%,
2.3%, 1.16% and 4.1% higher than the BP algorithm in January, April, July and October,
respectively, and 3.22% higher on average in 4 months.

Table 2. Performance evaluation of each prediction algorithm in Wind Farm #2.

Month Algorithms PA (%) MAEMW) MAPE(%)

DWT_AE_BiLSTM 84.75 29.27 13.30
1 AE_BiLSTM 81.42 30.41 13.82
LSTM 80.30 31.51 14.32
BP 79.45 33.19 15.09
DWT_AE_BiLSTM 82.65 30.31 13.78
4 AE_BiLSTM 81.71 33.94 15.43
LSTM 80.45 34.23 15.56
BP 80.35 34.47 15.67
DWT_AE_BiLSTM 84.11 28.17 12.80
” AE_BiLSTM 83.65 29.36 13.35
LSTM 83.23 30.38 13.81
BP 82.95 32.42 14.74
DWT_AE_BiLSTM 84.35 28.18 12.81
10 AE_BiLSTM 81.57 29.49 13.40
LSTM 81.31 32.07 14.58
BP 80.25 34.94 15.88

—REAL AEBLSTM —BP ——LSTM ——DWT_AE BIlSTM

1394 1593
Times(13minutes)

Figure 5. Comparison among different wind power short-term prediction models of Wind Farm #2
in April 2019.

Figure 6 shows that in the April forecast for Wind Farm #3, the proposed model
DWT_AE_BiLSTM is 2.58%, 2.67%, 3.55% and 4.93% higher than the BP algorithm in
January, April, July and October, respectively, and 3.42% higher on average in 4 months.
The BP prediction model is significantly higher than the real result in the 471-511, 559-563
and 1538-1662 time periods, the PA of BiLSTM is 0.49% higher than that of LSTM, which
also proves that the prediction accuracy can be improved by using an autoencoder feature
extraction. After using DWT to denoise, the prediction accuracy was further improved.

In addition, Tables 1-3 and Figures 4-6 depict the performance of each model on all
evaluation metrics in detail. Among all the models, the DWT_AE_BiLSTM model had
the best prediction accuracy in terms of PA, MAE and MAPE. The BP model had the
lowest prediction accuracy of all performance indexes. Obviously, through the comparative
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analysis of the short-term predictions of three wind farms, the prediction algorithm based
on the deep learning frameworks LSTM, AE_LSTM, and DWT_AE_BiLSTM had a better
prediction effect than the traditional neural network prediction algorithm BP.

= REAL  —fP  —L5T AE-BILSTM = DWT-AE-BILSTM

=
=

o
=

o
=

wind power(MW)

598 797 996 1195 1394 1593 1792 1991 2190 2389

Times(13 minutes)

Figure 6. Comparison among different wind power short-term prediction models of Wind Farm #3
in April 2019.

Table 3. Performance evaluation of each prediction algorithm in Wind Farm #3.

Month Algorithms PA (%) MAE(MW) MAPE(%)

DWT_AE_BiLSTM 82.23 15.17 12.01

1 AE_BIiLSTM 81.47 15.53 12.30
LSTM 81.02 18.81 14.89

BP 79.65 19.58 15.50

DWT_AE_BIiLSTM 82.12 16.86 13.35
4 AE_BIiLSTM 81.59 17.10 13.54
LSTM 81.10 19.38 15.34

BP 79.42 20.65 16.35

DWT_AE_BIiLSTM 82.00 16.37 12.96

” AE_BIiLSTM 81.48 17.30 13.70
LSTM 79.47 18.91 14.97

BP 78.45 21.25 16.83

DWT_AE_BiLSTM 88.66 8.27 6.55

10 AE_BILSTM 87.65 10.07 7.97
LSTM 84.12 14.03 11.11

BP 83.73 14.89 11.79

In summary; it is clearly seen that the proposed model DWT_AE_BiLSTM shows the

best prediction ability in three different wind farms. The performance of the BP prediction
algorithm is extremely unstable; it oscillates up and down, and the prediction is either too
large or too small. The proposed prediction algorithm shows better prediction performance
than other algorithms. All deep learning models have better prediction performance
than traditional neural networks. The prediction model using LSTM and an autoencoder
for feature extraction is better than the LSTM model. Bidirectional LSTM is better than
LSTM. Experiments show that a discrete wavelet transform can effectively remove the
nonstationary noise data in wind power prediction, and an autoencoder can capture more
abstract and hidden nonlinear features. The proposed DWT_AE_BiLSTM algorithm model
has good universality and generalization ability in all situations.

5. Conclusions

This paper proposes a wind power forecast model that consists of a data processing
and denoising module, a feature extract module and a bidirectional deep learning forecast
module. The experiment is carried out on datasets collected from three different wind
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farms in Hubei Province. Compared with the BP model, the proposed model has increased
by 3.86%, 3.22% and 3.42% in three wind farms, respectively. The comparison results show
that: (a) by using a sparse autoencoder, the dimension of the original data is reduced, and it
discovers more abstract hidden features; (b) all performance indexes of the proposed model
outperform other machine learning models; and (c) the proposed model shows robustness
and reliability in three wind farms.
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