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Featured Application: In the future, the application of this study is very feasible and very close
to being implemented for the auto-sorting system for various fish or other objects, in the fish
industry or other industries, with deep learning and machine vision technology.

Abstract: Automatic fish recognition using deep learning and computer or machine vision is a key
part of making the fish industry more productive through automation. An automatic sorting system
will help to tackle the challenges of increasing food demand and the threat of food scarcity in the
future due to the continuing growth of the world population and the impact of global warming and
climate change. As far as the authors know, there has been no published work so far to detect and
classify moving fish for the fish culture industry, especially for automatic sorting purposes based on
the fish species using deep learning and machine vision. This paper proposes an approach based
on the recognition algorithm YOLOv4, optimized with a unique labeling technique. The proposed
method was tested with videos of real fish running on a conveyor, which were put randomly in
position and order at a speed of 505.08 m/h and could obtain an accuracy of 98.15%. This study with
a simple but effective method is expected to be a guide for automatically detecting, classifying, and
sorting fish.

Keywords: automatic fish sorting; fish classification; fish recognition; YOLO; computer and
machine vision

1. Introduction

Automatic fish detection, recognition, and classification are popular and intriguing
areas of research. Numerous researchers are engaged in its development for underwa-
ter and out-of-water environments [1–6]. Recognizing fish in underwater conditions,
especially in deep ocean environments, is advantageous for fish population control and
sustainability [3,7–11] and supports the development of the IoUT (Internet of Underwater
Things) [12,13]. Recognizing fish in settings other than water, especially for farming fish, is
useful in aquaculture, for example, for automatic sorting processes, fish quality monitoring,
and other activities [4–6,14–19].

Automatic fish recognition using machine and computer vision is a key part of au-
tomating the fish industry, which is part of the food industry, to boost productivity in
aquaculture. It deals with the problems of high food demand and the possibility that
there won’t be enough food in the future because of the growing world population and
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the effects of global warming and climate change [20,21]. One of them is for the auto-
matic sorting system, which has already been mentioned and is being worked on by many
researchers [22–25]. Automatic detection and classification of moving fish is the key to
automatic sorting systems in the fish culture industry, and it has some unique challenges.
The main challenge is the speed, and others are the random position of the fish, the back-
ground, the deformed condition of the fish, and the fact that fish usually have a similar
visual appearance [14].

For moving fish recognition, many studies have been carried out. The study in [7]
employed CNN (Convolutional Neural Network) to classify fish by training them with
the number of species and their environments, such as reef bottoms and water. They
applied their proposed method to 116 underwater fish videos recorded using a GoPro
underwater camera. The best results were achieved in classifying 9 of the 20 types of fish
that appear most often in the videos. In [8], a multi-cascade object detection network with
an ensemble of seven CNN components and two RPNs (Region Proposal Network) linked
by sequentially jointly trained LSTMs (Long Short-Term Memory units) was performed. For
training and testing, they used a set of 18 underwater fish videos that were also recorded
with a GoPro underwater camera. Even though their proposed method can reliably find
and count fish objects in a variety of benthic backgrounds and lighting conditions, it is
only used to find fish and not to classify them. Using classic CNNs like these also has
advantages when applied to other sectors, such as agriculture [26], or in other broad cases,
such as detecting fine scratches [27]. The moving fish recognition in [9] utilized Optical flow,
GMM (Gaussian Mixture Models), and ResNet-50, then combined the output with YOLOv3.
The combination of those methods enabled the robust detection and classification of fish,
which was applied to the LifeCLEF 2015 benchmark dataset from the Fish4Knowledge
repository [28] and a dataset collected by the University of Western Australia (UWA)
which was explained in detail by [29]. The GMM and Pixel-wise posteriors were proposed
in [11], and then further developed by combining them with CNN [30]. They also used a
fish dataset extracted from the Fish4Knowledge repository in their work. Similar to the
work [8], the approaches proposed in their papers were only for detecting fish without
classifying them.

Abinaya et al. [14] segmented the fish into three parts; head, body, and scales. Then
an Alex-Net was used to classify each of these parts. Naive Bayesian Fusion (NBF) was
then utilized to determine the final classification results. The accuracy obtained from
this approach was quite well applied to the Fish-Pak [31] and BYU (Bringham Young
University) [32] datasets. Still, the fish images used were only static, even though the
narrative of this work was intended for an automatic sorting system. Mohamed et al. [16]
proposed an approach for fish detection in aquaculture ponds. Image enhancement was
used to improve fish detection in cloudy water conditions, and then YOLOv3 was utilized
to detect the fish. However, this approach is not intended for classification but for counting
and tracking fish trajectory. Xu et al. [17] applied Faster R-CNN and compared it with
YOLOv3 to detect and record fish trajectory to study its behavior and relationship to
ammonia levels in pond water.

However, the works reported in [7–9,11,30] recognized moving fish for underwater
(ocean) environments, while some only detected fish without classifying them. Moving fish
in aquaculture was discovered by [16,17], but not used for classification. The work in [14]
classified fish with narration for the automatic sorting system, but the datasets used were
static images. To the best of the authors’ knowledge, there is no public dataset for cultured
fish that run on conveyors, and there is no published work to detect and classify moving
fish for the fish culture industry, especially for automatic sorting based on fish species
using deep learning and computer vision. This paper will fill that gap, and it proposes
a method for detecting and classifying fish and tests it on real videos of aquacultured
freshwater fish moving along a conveyor belt for automatic sorting using deep learning
and computer vision.

In summary, this work thus creates the following significant contributions:
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1. We compiled our own dataset of eight cultivated fish species. The dataset contains not
only static images, but also videos of fish running randomly at two different speeds
on a conveyor belt (low and high).

2. This work employed YOLOv4, a very popular recognition algorithm, which was
optimized with a unique labeling technique.

3. A trial study with several schemes was also conducted to determine their effectiveness.
Among them are schemes for using data for training, versions of YOLOv4, and
comparisons of labeling techniques.

By using the proposed method and using real videos of freshwater fish running on a
conveyor, it is anticipated that this work will serve as a guide and provide solutions to the
challenges of detecting and classifying fish for automatic sorting, which is very close to the
actual condition.

2. Materials and Methods
2.1. Images Dataset and the Experimental Set-Up

The purpose of this work is to develop an approach to automatically detect and classify
fish for automatic sorting systems in the fish industry. As far as the authors know, there is
no publicly available dataset for cultured fish run on conveyors that can be used for this
purpose. For that, we created our own dataset for this work. We took fish samples from
eight types of farmed fish species called “Ben-Cak”, which are generally bred, sold, and
consumed in and around Thailand. Three of these fish species are endemic, originally from
the Mekong and Chao Phraya rivers, which are also in Thailand. The eight fish species are:

1. Yeesok (Labeo rohita),
2. Nuanchan (Cirrhinus microlepsis),
3. Tapian (Barbonymus gonionotus),
4. Nai (Cyprinus carpio),
5. Jeen Ban (Hypophthalmichthys molitrix),
6. Jeen To (Hypophthalmichthys nobilis),
7. Nin (Oreochromis niloticus), and
8. Sawai (Pangasianodon hypophthalmus).

Sample pictures of each type of fish can be seen in Figure 1. In Thailand, these fish are
bred together (mixed) in the same pond on the fish farm, and then when harvested, these
fish will be brought to the fish hub for sorting and weighing for further sale to consumers.
For this reason, these fish are considered very suitable for this work because the sorting
process carried out at the fish hub is still done manually by humans.
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Figure 1. Sample picture of fish: (a) Yeesok; (b) Nuanchan; (c) Tapian; (d) Nai; (e) Jeen Ban; (f) Jeen
To; (g) Nin; and (h) Sawai.

In creating the dataset, we did not just take static photos of each fish sample from
several views, as shown in Figure 1. We ran a conveyor and randomly put the fish on it in
both position and order. Then we recorded it with the overhead camera with two-speed
settings; low (116.65 m/h) and high (505.08 m/h). The recordings were carried out in
the Food Engineering laboratory at King Mongkut’s Institute of Technology Ladkrabang
(KMITL), Bangkok, Thailand, with room lighting conditions and additional light from
an LED lamp. The measured light intensity was 846 lux/79 FC at all times during the
recordings. We produced three videos; one low-speed video with a duration of 17 min
and 13 s, and two high-speed videos, with a duration of 8 min and 24 s (later referred to
as high-speed video 1) and 17 min and 13 s (later referred to as high-speed video 2). The
camera used was a SONY Model ILCE-7 with a frame size setting of 1920 × 1080 (W × H)
and a 29.97 frames/second frame rate.

In the videos produced, the background of the fish object is not entirely a conveyor,
with a monotone condition. The conveyor is small and does not dominate the entire frame;
it also has other objects in the background of the frame. So its condition makes this dataset
more challenging. According to the authors, this is the first work that utilizes videos of
aquacultured fish running on a conveyor. The experimental setup to create the dataset and
the sample for capturing results can be seen in Figure 2. Tables 1 and 2 show images from
the dataset that was created.
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Table 1. Images dataset (static pictures).

Fish Class Yeesok Nuanchan Tapian Nai Jeen Ban Jeen To Nin Sawai

No. of images 20 20 20 20 20 20 20 20
Total 160

Average per class 20

Table 2. Images dataset (videos).

No. Name Conveyor Speed
(m/h) Duration Note

1 low-speed video 116.65 17 min 13 s later extracted for
training data (scheme 2)

2 high-speed video 1 505.08 8 min 24 s for testing data
3 high-speed video 2 505.08 17 min 13 s for testing data

2.2. Training Images and Augmentation

The algorithm for detecting and classifying (recognition) needs to be trained, so images
for training should be prepared. This work uses two schemes for using or generating
training images. First, using static pictures from each fish class, and second, generating
and using extracted pictures taken from one of the video recordings from the dataset. Each
image prepared is then augmented in both the first and second schemas to enrich the data
for a better training process [14,33,34]. The augmentation techniques used in this work
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are vertical and horizontal flips, which are suitable for the case of fish objects running on
conveyors [35].

Scheme 1 employed 160 static images of each fish from eight classes. The images
were then augmented to enrich the data. Each augmentation technique was applied to
each original image. So, every one of the 160 new images was obtained using vertical and
horizontal flip techniques. All images are then combined (original and augmented) and
used as training images. In scheme 2, the low-speed video was used and extracted into
188 static images. Each fish that appears in the video was extracted by taking screenshots at
three positions, as shown in Figure 3: when the fish appears in its entirety (a), at the exact
center position (b), and just before the fish’s snout or tail hits the right-hand frame border
to leave the frame (c). Then augmentation was applied to enrich the data with the same
method as in scheme 1. Furthermore, training images were also obtained by combining
the original images with augmentations, as in scheme 1 as well. The training images and
augmentations used in this work are summarized in Table 3.
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the right-hand frame border to leave the frame.

Table 3. Images for training and augmentation.

Scheme Original Images
(8 Classes)

Averaged
per Class

Augmented Images Total Images
for Training

Averaged
per ClassFlip-Vertically Flip-Horizontally Total

Scheme-1
(from static

pictures)
160 20 160 160 320 480 60

Scheme-2
(from extracted

pictures)
188 24 188 188 376 564 71

2.3. Labeling Techniques

The labeling process is utilized during the training step. There are three types of label-
ing used in this work: conventional, using landmarking, and a combination of conventional
and landmarking. The conventional labeling technique is the most commonly used, but
it has a weakness. The object’s background is included so that the algorithm’s feature ex-
traction is carried out both on the object and background. It can make the learning process
less effective and impact the recognition results [14,36]. Labeling using the landmarking
technique was introduced by the authors for the first time in previous works [37,38]. Table 4
provides a summary of the previously stated works. This table contains important findings
regarding the effect of certain labeling techniques on the recognition accuracy of fish. The
landmarking technique can optimize the recognition algorithm significantly, especially in
object recognition in various background conditions. Because by using this technique, all of
the object’s backgrounds can be removed so that the recognition algorithm will extract only
the object’s features without the background. The difference between conventional labeling
techniques and using landmarking can be observed in Figure 4. For the third method,



Appl. Sci. 2023, 13, 3812 7 of 19

the combination labeling technique is proposed in this work. This technique combines
conventional imaging with landmarking, which will be explained in detail in Section 2.4.

Table 4. Summary of recent works by authors that are related to this work.

References Fish Object Important Findings Related to This Work

[37]

- Static pictures. 6 classes.
- Constant backgrounds.
- Aquaculture fish with similar appearance and

structural deformed.
- Taken from the Fish-Pak dataset.

Applying YOLOv4 with conventional labeling
resulted in 14.29% higher accuracy than using
landmarking for 6 classes.

[38]

- Static pictures. 4 classes.
- Various backgrounds.
- Ocean fish images captured in various background

conditions, such as rocks, water, seaweed, etc.
- Taken from the BYU dataset.

Combining YOLOv4 with landmarking labeling
techniques resulted in 4.94% higher accuracy than
using conventional.Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 18 
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2.4. YOLOv4, YOLOv4-Tiny, and the Training Process

In this work, YOLO (You Only Look Once) is employed as the recognition algorithm.
This algorithm is very popular and known as a real-time object detector because of its
speed and accuracy [39–43]. In addition, the version used is the relatively new, YOLO
version 4, which was released in April 2020. We use this version because it accommodates
our resources (currently, our resources only support this version), and we suppose that
this version will achieve good performance with proper optimization. YOLOv4 consists
of CSPDarknet53 as the backbone, SPP (Spatial Pyramid Pooling layer) & PAN (Path
Aggregation Network) as the neck, and YOLOv3 as the head. A simple architecture of
YOLOv4 is shown in Figure 5, and the output of this algorithm can be represented as [44]:

y = (Pc, By, Bx, Bw, Bh, C1, C2, . . . C8) (1)

where y is the output of the YOLO, Pc will become 1 if the algorithm detects objects (fish)
and 0 if otherwise, (By, Bx) is the center point of the produced bounding boxes of the fish,
(Bw, Bh) is the width and height of the bounding boxes, and C1 untill C8 represent each
class for the fish [44].
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In this work, YOLOv4-Tiny is also used for study and comparison. YOLOv4-Tiny is a
compressed and lite version of YOLOv4. The purpose of this compression is to reduce the
computation so it can run on hardware with lower capacities, even for mobile or embedded
devices. In this way, economic reasons can also be achieved. In addition, this algorithm has
a higher speed but is less accurate than the full version (YOLOv4). In its research, YOLOv4-
Tiny achieved 22.0% AP (average precision) or 42.0% AP50 at a speed of 443 FPS (frames
per second), while YOLOv4 was able to achieve 43.5% AP or 65.7% AP50 at a real-time
speed of 65 FPS for the MS COCO dataset. According to these results, YOLOv4-Tiny is
approximately seven times faster than YOLOv4 but only has 2/3 of the accuracy. It makes
YOLOv4-Tiny more suitable for cases that require high detection speed, unnecessarily high
accuracy, applied to hardware with lower capacities (economic reasons), or for mobile
or embedded devices [45]. YOLOv4-Tiny reduces the layers of some components of the
original YOLOv4 to achieve a faster detection speed. First and foremost, the number of
layers in the CSP backbone is reduced from 137 to only 29 pre-trained convolutional layers.
In addition, YOLOv3 reduces the head from 3 to 2, and there are only a few anchor boxes
for prediction [45].

These recognition algorithms were executed on CiRA-Core, a deep learning platform
originally developed by Advanced Manufacturing Innovation (AMI) KMITL and first de-
scribed in [46,47]. The advantages of this platform include its ease of use, user-friendliness,
plethora of interface options, and provision of several automated processes, including
during training, which will automatically select the most effective parameters for optimal
results. In the training process, both YOLOv4 and YOLOv4-Tiny delivered good accu-
racy, between 0.15 and 0.03. The training was carried out with a batch size of 64 and
16 subdivisions, a learning rate of 0.001, and an adam optimizer. Data enrichment was
carried out using rotation techniques, with a setting of 90 images per rotation (360◦). The
hardware used was a desktop PC with an Intel® 1151 CoreTM i7-9700 3.0 GHz CPU (Central
Processing Unit), NVIDIA GeForce RTX 3070 8 GB GDDR6 GPU (Graphical Processing
Unit), and 32 GB DDR4/3200 RAM (Random Access Memory). Training time for each
scheme took approximately 4–6 h.

2.5. Validation Matrix

The confusion matrix is used to evaluate the model’s output in this work. This matrix
is built from four blocks; TP, TN, FP, and FN. TP and TN are the basic truths, and FP and
FN are the basic falsehoods. TP (True Positive) is defined as when the model can correctly
detect the object (fish), TN (True Negative) is defined as when the model can correctly not
detect the not-existent fish, which was not measured in this work, FP (False Positive) is
defined as when the model incorrectly detects a fish, and FN (False Negative) is defined
as when the model fails to detect the fish. From the confusion matrix, we can define the
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accuracy to evaluate the model’s output. It can be obtained from a comparison between the
basic truth and the total blocks, as described by the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (2)

where, TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives.
In this work, the model’s output is also categorized into three groups: correct detection,

false detection (which includes wrong and double detection), and not-detect. Correct
detection is defined as the detection and classification of the model that can be carried out
correctly and consistently while the fish is fully visible in the frame. The wrong detection
is determined if the model detects the wrong fish class more than once for more than 1 s.
Double detection is specified if another fish class is also detected and appears more than
once for more than 1 s. Not-detect is counted if the model cannot detect at all, can detect only
momentarily (less than 1 s even though several times), or is unstable with a break of more
than once for more than 1 s. The accuracy can be defined from a comparison between the
number of correct detections and the total number of detections, as expressed in Equation
(3). In addition to accuracy, several other parameters are also measured to evaluate the
model by the confusion matrix, including precision, recall or sensitivity, specificity, and
F-score. Those parameters are each obtained by Equations (4)–(7) [15].

Accuracy =
∑N

i Pi

∑N
i |Qi|

× 100% (3)

where, ∑N
i Pi is the number of correct detections, and ∑N

i |Qi| is the total number of
all detections.

Precission =
TP

TP + FP
× 100% (4)

Recall/Sensitivity =
TP

TP + FN
× 100% (5)

Specivity =
TN

TN + FP
× 100% (6)

F− score =
2 ∗ Precission ∗ Recall

Precission + Recall
× 100% (7)

3. Experimental Results and Discussion

After the image data for training was prepared, the algorithm was trained with various
image data input schemes, labeling techniques, and network versions to determine which
approach was the most effective, including the proposed method. The trained algorithm
was then applied to two high-speed videos, 1 and 2, for evaluation (also referred to as video
tests after). The entire flow of this work can be seen in Figure 6, while the experimental
results are summarized in Tables 5 and 6, Figures 7–9. The following is the explanation and
discussion for every test result’s scheme.

3.1. Using Static Pictures for Training Data

In this scheme, static images were used as training data in YOLOv4. The use of static
images for this training is described in Section 2.2. Then, the algorithm that had been
trained was tested on the video tests. From the experimental results, the output accuracy
obtained was very low. In video test 1, the model could only correctly detect 2 of a total
of 71 fish/detections. This means that the accuracy obtained is only 2.82%. In video test
2, the model could correctly detect 11 of 171 fish/detections, so the accuracy obtained
is only 6.43%. The final average accuracy of this model (the average accuracy of video
tests 1 and 2) is only 4.62%.
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Certainly, the output accuracy result of this scheme is unacceptable. It indicates that
using static images as training data for the algorithm, which is then used to recognize
different images, is very ineffective. Although humans are able to classify fish species on
static images, the learning process in the algorithm cannot capture the same thing. Static
images have different sizes than the video tests used. The results of the accuracy and other
performance parameters of this scheme can be seen in Figure 7.

3.2. With the Lite Version (YOLOv4-Tiny)

For the next step, the extracted pictures were used as training image data. Extracted pic-
tures were obtained as described in Section 2.2. In this scheme, the lite version of YOLOv4
(YOLOv4-Tiny) was employed. This algorithm could be well trained and then tested on the
same video tests. The output accuracy results obtained from the model were good enough.
In video test 1, the model only detected four fish incorrectly out of 71 fish/detections. In
video test 2, the model could correctly detect 154 out of 171 fish/detections while making
17 detection errors. This gives an accuracy score on video tests 1 and 2 of 94.37% and
90.06%, respectively, so the average score of both is 92.21%.

Of all the errors, the model made a double classification, i.e., one type of fish was
detected as two different fish. It often appears between Yeesok and Nuanchan, Nuanchan
and Tapian, and Jeen Ban and Jeen To. These fish are very similar to each other.

3.3. With YOLOv4 Using Conventional and Landmarking Labeling Techniques

At this stage, extracted pictures were used as training image data, and we used
YOLOv4 as the algorithm. The first experiment was carried out using conventional labeling
techniques. With this model, the accuracy output was better. In video test 1, an accuracy
score of 97.18% was obtained, and in video test 2, it was 91.23%, so the average final
accuracy of this model could reach 94.21%.

Although the final accuracy is only slightly better than with YOLOv4-Tiny, the total
number of false (double) detections is much lower. From 4 to only 1 in video test 1, and
from 17 to only 7 in video test 2. This means YOLOv4 has a higher classification accuracy
capability than the lite version (YOLOv4-Tiny). However, another problem arose: the
detection failure occurred nine times, all of which were in the Sawai class.
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Table 5. Experimental results (accuracy).

Approches

Video Test-1 Video Test-2
Average

(Final
Accuracy) (%)

Correct
Detection

False
(Double/Wrong)

Detection

Not
Detect

Total
Detection

Accuracy
(%)

Correct
Detection

False
(Double/Wrong)

Detection

Not
Detect

Total
Detection

Accuracy
(%)

YOLOv4 with Static Pics 2 0 69 71 2.82 11 0 160 171 6.43 4.62
YOLOv4-Tiny 67 4 0 71 94.37 154 17 0 171 90.06 92.21

YOLOv4 69 1 1 71 97.18 156 7 8 171 91.23 94.21
YOLOv4 + LM 68 6 0 74 91.89 159 11 1 171 92.98 92.44

Proposed method 72 0 1 73 98.63 167 4 0 171 97.66 98.15

Table 6. Experimental results (other performance parameters).

Approches
Video Test 1 and 2

Correct Detection (TP) Wrong/Double Detection (FP) Not Detect (FN) Total Detection Precision (%) Sensitivity (%) F-Score (%)

YOLOv4 With Static Pics 13 0 229 242 100.00 5.37 10.20
YOLOv4-Tiny 221 21 0 242 91.32 100.0 95.46
YOLOv4 225 8 9 242 96.57 96.15 96.36
YOLOv4 + LM 227 17 1 245 93.03 99.56 96.19
Proposed Method 239 4 1 244 98.35 99.58 98.96
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Figure 8. Experimental results (accuracy).

In the labeling process for the next scheme, YOLOv4 will be combined with the
landmarking technique. With this approach, the results obtained were 91.89% accuracy for
video test 1 and 92.98% accuracy for video test 2, so the average final accuracy was 92.44%.
This model did many double detections, especially for the Nuanchan and Tapian, which
have the same appearance of scales but different shapes. Many double detections were also
carried out for the Jeen Ban-Jeen To classes. In addition, the model also detected scattered
fish outside the conveyor incorrectly. The three scattered Yeesok fish were detected as Nin.
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3.4. With the Prophosed Approach

Up to this step, some of the findings from various trials can be highlighted:

1. Using extracted pictures as training data provided much more effective results than
static pictures.

2. YOLOv4 provided better accuracy results than its lite version (YOLOv4-Tiny).
3. Using conventional labeling techniques on YOLOv4 gave fairly accurate detection

results, even for fish classes that were similar, but many of them failed to detect the
Sawai class.

4. Combining YOLOv4 with the landmark labeling technique provided a fairly accurate
detection result. Still, it generated many double detections for similar classes of fish,
mostly for Nuanchan and Tapian, as well as Jeen Ban and Jeen To.

We can focus on the YOLOv4 algorithm with extracted pictures as image training data,
and this approach produced the best accuracy. Then, we focus on the labeling technique
used. The Sawai class was detected poorly using YOLOv4 and conventional labeling
technique. If observed, this type of fish is the biggest. When it appears on the video, the
size of this fish almost fills the entire frame. So that when extracted images of this Sawai
fish are generated and used as a training image, utilizing conventional labeling techniques,
many other objects in the fish’s background will be included in the training process. These
objects are not constant (not the same in every extracted picture), making the YOLOv4
algorithm less effective in capturing Sawai fish features because it mixes with other objects
in the background [38].

In contrast to other smaller fish (seven other classes) such as Nin, Nuanchan, Tapian,
and even Jeen Ban and Jeen To, even though the background is involved in the training
process, the background tends to be constant (almost just a conveyor background). This
condition, on the other hand, has a good effect on the learning process. The model only
detects fish on the conveyor, so it does not detect fish scattered outside it. The model
can better extract the shape features of the fish so that it can better distinguish between
Nuanchan and Tapian fish, which have a similar appearance of scales, tails, and heads but
can be distinguished by their shape.
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YOLOv4 combined with the landmark labeling technique, resulted in lower classifia-
bility for similar fish such as Nuanchan-Tapian and Jeen Ban-Jeen To. Because, as previously
described, with this technique, the background of the fish is completely removed so that
the algorithm is not affected by the background during the training process. The advantage
of this approach is that the model can better detect Sawai fish because the algorithm is
not affected by the background object, which is inconsistent. However, this makes the
algorithm not good at extracting shape features. Hence, the model experiences a lot of false
(double) detection for fish that should be able to be distinguished from their shapes, such
as Nuanchan-Tapian and Jeen Ban-Jeen To. In addition, the model also detects fish that are
outside the conveyor (scattered fish).

This hypothesis can be supported by visualizing the feature maps—the features cap-
tured by the algorithm during the learning process. The visualization of these feature maps
can be seen in Figure 10 for the algorithm using the conventional labeling technique and in
Figure 11 when using landmarking. The example taken is the same fish for easy comparison.
Figure 10 shows that the background is included in the training process and extracted
by the algorithm (see the first convolution process (conv2d)). Even the background is
still carried over and becomes part of the extracted features in a deeper layer; pooling
1 (max_pooling2d), convolution 2 (conv2d_1), pooling 2 (max_pooling2d_1), and convolu-
tion 3 (conv2d_2). This means that the background also becomes one of the determinants
or features that are considered when the algorithm runs to detect the fish. In addition, the
features of the fish’s shape are better because there is a background comparison.
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On the other hand, the extraction process only happens on fish objects on feature maps
made from the learning process on YOLOv4 and the landmark labeling technique. This
is because the background of the fish is completely removed with this technique. It can
be seen in Figure 11. Because the learning process only focuses on the fish object, it is not
disturbed by other objects. However, the extraction of shape features is less good because
there is no background for comparison. For that, an approach is proposed. This approach
uses extracted images as training data, YOLOv4, and a combination of labeling techniques.
The combined labeling technique uses the landmarking technique for large fish (Sawai)
and conventional for other classes. Then this approach is tested on the same video tests.

From the test results, the accuracy obtained was 98.63% for video test 1 and 97.66%
for video test 2. This means that the average final accuracy was 98.15%. This achievement
increased significantly compared to using the previous methods. There were only 4 false
(double) detections, which had decreased a lot from the YOLOv4 with the landmark labeling
technique (17 detections) and the conventional (8 detections). In addition, the detection
failure was also significantly reduced to only one from the previous nine (using YOLOv4
with conventional labeling techniques). In other words, this approach can reach its optimum
point by combining existing labeling techniques and avoiding each of their weaknesses.

3.5. Comparison with Recent State of Art

The method proposed in this work is compared to the current state of the art in order
to identify its most significant contributions. Recent years have seen the development of at
least six studies on recognizing swimming fish, which were also discussed in the Section 1.
Table 7 provides a comparison summary. The table demonstrates that the proposed Method
with simple and effective algorithms has the best average recognition results and has been
tested on aquaculture fish video datasets; therefore, this work is most applicable to fish
sorting systems in the fish industry.

3.6. Limitations and Future Developments

Limitations of this work also need to be reported. The biggest limitation is that
the algorithm is standard and cannot be modified with the tools used in this work. So
optimization studies cannot be carried out within the scope of modifications to the YOLOv4
or YOLOv4-Tiny algorithms. For this reason, this limitation can also be developed in the
future. Optimization studies can be implemented by modifying them to achieve more
optimal accuracy output or more efficient computations by the other tools. Or the use of
a higher version (YOLO versions 5, 6, or 7) can also be considered. In addition, future
developments can also be conducted using image processing techniques such as reducing
glare on the appearance of fish objects or combining approaches with other classification
algorithms or unsupervised learning. A tuning or inference method can be proposed to
optimize the accuracy of the approach in this work. Moreover, a statistical hypothesis
analysis could be conducted.
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Table 7. Comparison chart of previously related works with the proposed method.

Related
Work

Fish
Dataset

Fish
Type

No. of Fish
Classes

Method/
Algorithm

Accuracy
(%)

Precision
(%)

Sensitivity
(%)

F Score
(%) Advantage Disadvantage

[7] own
dataset

deep
ocean
fish

20 CNN 94.90 - - -

(1) The best accuracy is
achieved by recognizing nine
species of fish.
(2) Recognition results are
accurate even though the
backgrounds are various or the
fish only partially appear.

(1) The results of
accuracy can still be
increased.
(2) High accuracy is
expected to apply to
all classes.

[8] own
dataset

deep
ocean
fish

1

Multi-cascade object
detection Network,

7 CNNs 2 RPNs,
trained LSTMs

- 67.28 68.25 67.76

Promising to detect and count
fish under various benthic
backgrounds and
illumination conditions.

Only detect fish, not
classify them.

[9]
Fish4-

Knowledge
& UWA

deep
ocean
fish

17

Optical flow,
GMM,

ResNet-50,
YOLOv3

91.64 - - 95.47

Quite effective, even applied to
many classes with diverse
backgrounds and
illumination challenges.

The results of accuracy
can still be improved

[16] own
dataset

Aquacu-
ltured

fish
1 Image enhancement,

YOLOv3 100 - - -

(1) Effectively detect all fish in
the test images.
(2) Image Enhancement can
optimize the work of the
algorithm significantly.

Only to detect fish and
trajectory, not
for classification.

[17] own
dataset

Aquacu-
ltured

fish
1 Faster R-CNN,

YOLOv3 98.13 - - -
(1) High accuracy is obtained
from Faster R-CNN.
(2) Simple with good results

Only to detect fish and
trajectory, not
for classification.

[30] Fish4-
Knowledge

deep
ocean
fish

1

GMM,
Pixel-wise
posteriors,

CNN

- - - 87.44 Increased the result fairly from
the previous work.

(1) Only detect fish, not
classify them.
(2) The result can still
be improved

Proposed
method

own
dataset

Aquacu-
ltured

fish
8 Optimized YOLOv4 98.15 98.35 99.58 98.96

(1) Simple method but delivers
high results.
(2) Ready to implement for
aquaculture fish sorting system.

(1) Using not open access
deep learning software.
(2) YOLOv4 can not
be modified.

-: not reported.
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4. Conclusions

This work aims to propose an optimal approach for detecting and classifying fish
intended for the aquaculture industry, especially for making automatic sorting processes.
In this work, we created and presented a real video dataset of freshwater fish running on
a conveyor, which is the first and only, as far as the authors know. The dataset includes
eight types of freshwater fish that are grown and eaten most often in Thailand and nearby
countries. Some of these fish are native to Thailand. This work uses YOLOv4, the most
viral algorithm for object detection, and a relatively new version. Several studies were
conducted to determine the level of accuracy, and finally, an approach was proposed.

This approach utilizes YOLOv4, optimized with a combination/custom labeling
technique, and extracted images as training data. From the test results on the video of
eight types of freshwater fish running on a conveyor with a total duration of 25 min and
37 s at a speed of 505.08 m/h, the model could produce an accuracy of 98.15%. These
results are considered quite good and can even be improved in the future. By using real
videos of freshwater fish running on a conveyor, this work is expected to contribute to
the development of fish detection and classification, especially for the automatic sorting
process in the fish industry, which is very close to real conditions.
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