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Abstract: Analyzing network traffic activities is imperative in network security to detect attack
patterns. Due to the complex nature of network traffic event activities caused by continuously
changing computing environments and software applications, identifying the patterns is one of
the challenging research topics. This study focuses on analyzing the effectiveness of integrating
Multi-Resolution Analysis (MRA) and visualization in identifying the attack patterns of network
traffic activities. In detail, a Discrete Wavelet Transform (DWT) is utilized to extract features from
network traffic data and investigate their capability of identifying attacks. For extracting features,
various sliding windows and step sizes are tested. Then, visualizations are generated to help users
conduct interactive visual analyses to identify abnormal network traffic events. To determine optimal
solutions for generating visualizations, an extensive evaluation with multiple intrusion detection
datasets has been performed. In addition, classification analysis with three different classification
algorithms is managed to understand the effectiveness of using the MRA with visualization. From
the study, we generated multiple visualizations associated with various window and step sizes to
emphasize the effectiveness of the proposed approach in differentiating normal and attack events by
forming distinctive clusters. We also found that utilizing MRA with visualization advances network
intrusion detection by generating clearly separated visual clusters.

Keywords: visualization; intrusion detection analysis; discrete wavelet transformation

1. Introduction

Protecting computing infrastructures from cyber threats is one of the priority research
topics in network security. The complex nature of traffic data generated by recent tech-
nologies and software applications and constant changes in network traffic patterns make
it difficult to detect threats and secure the network from unauthorized access and harm.
Intrusion detection systems monitor incoming and outgoing packets in a network and de-
tect any abnormal behaviors or violations of security policies. With the increasing amount
of computer malware and malicious attacks becoming more sophisticated, the need for
designing effective intrusion detection systems has increased significantly. Numerous
intrusion detection techniques have been proposed, but improving the accuracy and effi-
ciency of systems remains a research challenge. Traditional intrusion detection techniques
discover intrusive activities or network attacks by analyzing packets at a network layer and
comparing them to known attack signatures. However, this approach is not suitable for
identifying unknown (or new) threats. Thus, an alternative approach has been proposed
to analyze network traffic data by referencing normal network traffic patterns. In detail,
rather than searching for known attacks, it utilizes a mechanism to train the system to learn
normal network behavior (as a possible baseline). Any deviation from the baseline will
trigger alerts. One major limitation of this approach is that it suffers from high false rates.
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In this paper, we propose an approach to analyzing network traffic data by integrating
multi-resolution analysis (MRA) and visualization. MRA [1] examines data to represent
different scales or frequency components based on signal processing techniques. For
MRA, wavelet transform is considered because it decomposes data into multiple lower-
resolution levels and determines dominant modes of variability [2]. It has been widely
used in analyzing non-stationary data to determine anomalies, including false network
events or network intrusions [3–5]. Among various wavelet methods, such as Continuous
Wavelet Transform (CWT), Fast Wavelet Transform (FWT), Discrete Wavelet Transform
(DWT), and Stationary Wavelet Transform (SWT), DWT is utilized in this study to extract
features from network traffic data. After determining the number of features based on
input parameters, statistical validation is performed to evaluate the selected features and
remove non-statistically significant elements. Principal Component Analysis (PCA) is then
applied to determine the new vital variables from the selected features to support the
analysis of network traffic activities in visualization. To highlight the effectiveness of our
proposed method, we performed an in-depth analysis with publicly available intrusion
detection datasets. The main contributions of our work are:

• We performed an in-depth analysis of MRA with multiple intrusion detection datasets.
• We evaluated various wavelet functions to find the optimal wavelet for analyzing

network traffic activities utilizing visualization techniques.
• We also conducted classification and clustering analysis to detect network attack

patterns.
• To the best of our knowledge, our work is the first visual analysis to understand the

effectiveness of MRA with visualization in analyzing network traffic data.

The rest of the paper is organized as follows. First, we discuss prior research in
network intrusion detection and the benefits of utilizing visualization techniques. Then,
the MRA method is explained in greater detail with an emphasis on the importance of a
visualization tool. In Section 6, we present the performance evaluation results and conclude
with a discussion, conclusion, and future work.

2. Previous Work

The massive volume of network traffic data generated by Internet activities, as well
as the evolution of malware, poses a significant challenge to network security. For this
reason, designing an innovative intrusion detection system has gained significant atten-
tion and is considered one of the major research areas in cybersecurity. There are two
primary approaches to intrusion detection system implementation: signature-based detec-
tion techniques and anomaly-based detection techniques [6]. Signature-based techniques
(also known as knowledge-based or misused-based techniques) apply pattern-matching
processes to detect known attacks or system vulnerabilities. The signature-based tech-
niques compare current network traffic patterns with the previous intrusion signatures
in a database. Therefore, they are effective in detecting known attacks with minimum
false alarms [7]. Anomaly-based or behavior-based techniques monitor network traffic and
compare it with normal or expected traffic profiles, including bandwidth usage, common
protocols, combinations of port numbers, and system information. Any significant devia-
tion from the baseline traffic pattern is considered an anomaly or intrusion [8]. Although
the two types (anomaly vs. behavior) share considerable overlap and are often regarded as
identical in the literature, there is a slight difference between the two. Anomaly-based tech-
niques create a normal profile by training current network traffic and then using the profile
to detect deviations. On the other hand, behavior-based techniques do not necessarily
compare against the baseline profile.

Signature-based and anomaly-based techniques are effective in detecting network
intrusions. However, there are several limitations and disadvantages as well. The signature-
based techniques are generally less effective against unknown attacks or new deviations
of similar attacks. Furthermore, the system needs a constant update with new attack
signatures, which may require considerable resources and overhead. The anomaly-based
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techniques show a significant performance issue (high false positive alarm) under heavy
or sudden traffic bursts [9]. Additionally, building a normal network traffic profile is not
easy when network systems and computing environments are complex and diverse. To
address the limitations, researchers have proposed techniques that integrate statistics-based,
knowledge-based, and machine learning-based techniques [10,11]. Statistic-based anomaly
detection techniques aim to build a distribution model (univariate, multivariate, and time
series) for a baseline network profile. Using statistical functions (e.g., median and stan-
dard deviation), low-probability events are identified and classified as possible anomalies.
Knowledge-based anomaly detection techniques create a knowledge database based on
normal network traffic patterns. Unlike statistic-based techniques, a set of rules to define
baseline profiles is developed based on human or expert knowledge. Studies showed
that knowledge-based techniques are particularly effective in reducing false-positive
alarms [8]. Machine learning-based techniques identify and classify security threats using
some mechanism. The main difference is that the systems learn and improve their ability to
detect anomalies based on their experiences without being actually programmed [12]. Be-
cause of this advantage, machine learning-based techniques have been applied extensively
to design intrusion detection systems. Machine learning based-techniques encompass data
mining techniques such as fuzzy logic, bayesian networks, genetic algorithms, clustering,
decision trees, neural network, and support vector machines.

Cannady [13] emphasized the usefulness of Artificial Neural Networks (ANNs) for
intrusion detection. However, the author stated that the accuracy of detecting network
intrusions is closely dependent on datasets and methods used in training. Furthermore,
ANNs do not necessarily provide a detailed explanation/reason regarding detected intru-
sions. Amor et al. [14] utilized Naïve Bayes (NB) in intrusion detection. As a simplified
Bayesian probability model, the NB classifier operates based on the likelihood that one
attribute does not affect others. Their experimental study result indicated that NB was faster
than Decision Tree (DT) in terms of learning and classifying, but no significant performance
difference was found between the two techniques. As the number of studies on designing
new machine learning-based intrusion detection systems increased in early 2000, Nguyen
and Armitage [15] surveyed various network traffic classification algorithms. They found
that different ML algorithms demonstrated high accuracies, such as AutoClass, Expectation
Maximisation (EM), DT, and NB. However, most approaches are uniquely designed to
define their classification models by evaluating different test datasets. As a result, the
models tend to be less effective in analyzing different datasets and network circumstances.

Researchers have continuously sought and adopted various ML algorithms to improve
intrusion detection. Wang [16] showed the effectiveness of logistic regression (LR) modeling
to detect multi-attack types. Albayati and Issac [17] compared the performance among
NB, Random Tree Classifier (rTree), and Random Forest Classifier (rForest), and found
that rForest was superior to other methods while maintaining a low false alarm rate.
Support Vector Machine (SVM) has been used in intrusion detection analysis by numerous
researchers. SVM classifies the input data using a set of support vectors that represent data
patterns. It is well-suited for data classification by finding the hyperplane that maximizes
the margin among all intrusion classes [4,18–21]. However, SVM classification depends
mainly on the applied kernel types and parameter settings [21]. It also requires longer
training time compared to other classification algorithms. A study by Khan et al. [18]
proposed an approach to integrate hierarchical clustering analysis to address the limitation
of SVM. Genetic Algorithm (GA) has been applied in intrusion detection for optimization,
automatic model generation, and classification [22,23]. GA is a search algorithm that utilizes
the mechanics of natural selection and genetics. It is often used to generate detection rules or
select appropriate features from input data. However, the classification accuracy using GA
tends to be slightly lower than tree algorithms such as J4.8 and Classification and Regression
Trees (CART) [24]. CART is an algorithm that generates a set of rules by splitting data into
each child node. It predicts continuous dependent variables and categorical independent
variables by building a tree [25,26]. Unlike many statistic-based techniques, CART does
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not require any distribution assumptions. It also supports datasets with multiple data types
and missing values. Despite the fact that classical PCA has a high sensitivity to outliers [27],
PCA is often used to extract significant features from network traffic data. For instance, Xu
and Wang proposed (2005) a hybrid intrusion detection model based on PCA and SVMs.
They found that the proposed method presented superior classification performance and
improved accuracy [28].

Although machine learning based-techniques improve the accuracy and performance
in detecting network intrusions, there are several limitations as well. They include high
complexity and computational time, lack of ability to support real-time detection, high false
positive rate, slow detection rate when applied to a large amount of data, and performing
efficiently only with a single dataset [29]. We propose an integration of multi-resolution
analysis (MRA) and visualization to address some of the issues. MRA utilizes signal
processing techniques (i.e., wavelet transform) to discover any pattern changes. One of the
main advantages of MRA is that it offers simultaneous localization in time and frequency,
which can be used to detect sudden bursts from the data [4]. By decomposing input data
until a pre-determined level, it can separate different levels of information (fine details vs.
high level). Furthermore, prior literature indicates that MRA is computationally fast and
appropriate for noise filtering and data reduction [30,31]. In summary, numerous studies
have been conducted to design effective network intrusion detection systems. However, it
is important to note that one algorithm or approach cannot detect all existing or unknown
attacks precisely due to the existence of anonymity in network traffic patterns.

In the visualization community, researchers started to utilize various visualization
techniques to address the limitations of traditional network intrusion detection analysis.
Due to the importance of analyzing complex network traffic data, the community provides
network traffic data as a part of the visualization challenge and motivates researchers
to get involved in the visual analysis of real-world network traffic data. For example,
the VAST 2012 challenge [32] provided the data from a financial institution to identify
anomalies or problems visually and understand the health of a global corporate network.
Shiravi et al. [33] conducted a comprehensive review of existing network security visualiza-
tion systems and classified them into five different use-case classes: host/server monitoring,
internal/external monitoring, port activity, attack patterns, and routing behavior. While
numerous network security visualization systems have been proposed, most systems focus
only on how to represent collected log data or network events. To better understand
network traffic patterns and detect network intrusions more accurately, visualization tech-
niques should be integrated with computational and machine learning approaches. In the
following sections, a detailed explanation regarding how we combine both computational
approaches and visualization techniques is presented.

3. Datasets

Three publicly available intrusion detection datasets were used in this paper: NSL-
KDD [34], Kyoto 2006+ dataset [35], and CIC-IDS2017 [36]. NSL-KDD is a cleaned dataset
that addresses the duplicated entry problems in the KDD’99 dataset [37]. The dataset
includes approximately 150,000 records with 41 attributes. Twenty-four attack scenarios
are grouped into four attack categories: DoS, R2L, U2R, and Probe. DoS denotes a Denial-
of-Service attack that represents the attempts to make computing or network resources
inaccessible. R2L (Remote to User) sends packets to another computing machine over the
network to gain access to local user accounts. U2R (User to Root) gains a normal user
account and exploits some vulnerabilities to gain root access to computing systems. Probe
scans a network of computers to gather information and find vulnerabilities in computing
machines. In this study, U2R was not considered due to the limited sample size (only
119 instances).

The Kyoto 2006+ dataset was developed to respond to the need for generating new net-
work intrusion datasets. Although the KDD’99 and NSL-KDD datasets have been popular
in designing machine-learning-based intrusion detection systems, it does not reflect recent
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network traffic trends. The Kyoto 2006+ dataset includes millions of real traffic data records
with 24 attributes [35]. The 14 commonly used features in intrusion detection studies were
included. They are duration (length of connection), service type, source bytes, destination
bytes, count, same_ser_rate, serror_rate, srv_serror_rate, dst_host_count, dst_host_srv_count,
dst_host_same_src_port_rate, dst_host_serror_rate, dst_host_srv_serror_rate, and flag. Ad-
ditional 10 features were added to understand traffic patterns in the networks. The initial
version of the dataset was collected for three years (2006–2009), and the data collection
continued until 2015. Since the size of the Kyoto 2006+ dataset is extremely large, we used
a portion of the recent dataset (January 2015). The CIC-IDS2017 dataset [36] was created
at the Canadian Institute for Cybersecurity (CIC). The dataset captures current network
patterns to address the limitations of existing intrusion detection datasets. The CIC-IDS2017
dataset was captured during the period of 3 to 7 July 2017. It contains about 2.8 million
network events with about 0.5 million attack events. The dataset consists of eighty-five
variables, including the original full packet payload dataset, the processed dataset with a
network traffic flow analysis tool (called CICFlowMeter), and labeled network flows with
time stamps, IP addresses, network ports, protocols, and attack information. We used the
dataset generated on Tuesday, which includes 431,873 normal and 13,835 attack events. The
attack events were generated from Brute Force attack scenarios. In the rest of this paper, we
use the terms NSLKDD, Kyoto2006, and CICIDS2017 to indicate each dataset utilized in
our study, respectively.

4. Multi Resolution Analysis (MRA)

MRA generates multiple levels of representation to understand network traffic data by
utilizing signal processing techniques. Prior to analyzing the datasets, data pre-processing
was applied to exclude categorical attributes and null values. Then, a Discrete Wavelet
Transform (DWT) was used to discover underlying patterns in different resolution levels (γ).
The DWT decomposes data into a set of mutually orthogonal wavelet basis functions with a
function, ψ, known as “mother wavelet”. The wavelet basis functions indicate dilated, trans-
lated, and scaled versions of the mother wavelet. Since it includes a set of transforms, each
with a different set of wavelet basis functions and different mother wavelets can be utilized
to decompose data. The main idea of the transform is to calculate the degree of relationship
between wavelets and data at different scales. Prior studies [38–40] showed that wavelet
transform is suitable for analyzing non-stationary data such as Internet traffic data. The
DWT produces multiple levels of frequency components by splitting the data at each level
into high and low frequencies, denoting detail and approximate coefficients, respectively.
The coefficients present temporal information of the data with different scales. Since the
detail coefficients can detect rapid changes in the data, they are commonly used to identify
discontinuity or sudden changes. Since choosing a proper wavelet function (i.e., mother
wavelet) that matches well with data can maximize the correlation between the data and
the mother wavelet [41,42], selecting an appropriate mother wavelet is vital to produce
good performances. In network anomaly detection analysis, various DWT decomposition
levels (γ) can be considered because different results can be produced depending on the
applied decomposition level [43]. If a high decomposition level is used, it requires more
computational costs to determine wavelet coefficients. Similarly, if a smaller decomposition
level is applied, a short execution time might be needed. However, in such a case (having
a smaller decomposition level), it is not easy to discover detailed internal structures. In
our previous study [44], we conducted an analysis to determine an optimal decomposi-
tion level and found that γ = 3 is great for determining attack events in the NSLKDD
dataset. Therefore, we utilized the same decomposition level in this study to analyze the
datasets. With the decomposition level (γ = 3), various levels of detail coefficients (detail
level 1 ∼ γ) and approximate coefficients were measured. Since statistical validation is crit-
ical to filter unnecessary coefficients, we performed a statistical validation using ANOVA to
select significant features with the p-values (p < 0.0001). That is, ωi,j = {ω1,j, ω2,j, · · · , ωi,j}
represents wavelet coefficients at the jth level (i.e., j = 1, 2, · · · , (gamma + 1)), and i is the
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length of the coefficients of the jth level. The set Ω = {ωk,j}, k = 1, 2, · · · , m is the selected
coefficients with the ANOVA test, and the m indicates the length of the selected features.

For analyzing network traffic data, the utilization of sliding windows is often consid-
ered [45,46]. It runs with two user-defined parameters: window size (α) and step size (β).
Finding optimal window and step size is important for understanding the characteristics
of the data. Different scales of feature vectors are generated depending on the window
and step size. If a small window size is chosen, large feature vectors are usually generated.
The step size is also important because it has a direct impact on identifying anomalous
instances. A popular approach to determining the sliding window size is utilizing the time
information of events or data instances. In addition, PCA is utilized to generate visualiza-
tions. It performs eigendecomposition to find the variances and coefficients of the input
data by finding eigenvectors and eigenvalues. The eigenvector with the highest eigenvalue
indicates the most dominant principal components representing the most vital relationship
among variables. PCA is commonly used in the visualization community to represent
high-dimensional data in a lower-dimensional space (either 2D or 3D space) [47,48].

5. Classification Analysis and Visualization

To understand the effectiveness of MRA with visualization in network traffic data
analysis, classification analysis was performed. In detail, Support vector machine (SVM),
Naive Bayes (NB), and k-nearest neighbors (KNN) algorithms were used for performance
comparison. SVM is a classification technique that constructs a separating hyperplane.
Because of its effectiveness in classifying data, SVM has been used in numerous fields such
as health [49], pattern recognition [50], and network traffic data analysis [51–54]. KNN is a
non-parametric supervised machine learning method that finds k nearest observations by
calculating the distance between one observation and its k-nearest neighbors [55,56]. KNN
generally requires less computational time to predict the output, and it has been used in
the applications such as health science [57,58] and network traffic analysis [59,60]. NB uses
prior and posterior probabilities to classify data. It uses the relationships among attributes
to train a model. Although several assumptions need to be defined in training (such as the
data in each attribute following Gaussian distribution), it has been widely used because
of strong performances in analyzing data in various domains such as bioinformatics [61],
health science [62], network traffic analysis [63,64].

To represent network traffic data, a coordinated multi-view (CMV) framework [65]
is used to support multiple data analyses with different visualizations. The visualization
includes two views, PCA Projection View and Data View. In the PCA Projection View,
the first and second principal components are used to represent all network traffic data
within a 2D display space (mapped to x- and y-axis, respectively). Each network event is
represented as a rectangular-shaped glyph, and blue and red color attributes are used to
indicate normal and attack events. It supports multiple user interaction techniques such
as navigation, selection, and manipulation to help the user conduct visual analysis of the
displayed network traffic data. Navigation techniques (including semantic zooming and
panning) help the user navigate the PCA projection space freely. The Data View is designed
to display two connected sub-views to represent normal and attack events separately by
utilizing parallel coordinates. The parallel coordinates visualization [66]) shows the actual
feature space of the network traffic data. In the view, each line indicates an individual
network event. Therefore, a highly cluttered visual representation indicates that there are
high variances in the data.

Figure 1 presents visualizations of the different intrusion detection datasets using
the original raw features (Figure 1A,C) and the selected DWT features (Figure 1D,F. The
visualizations with the NSLKDD dataset (Figure 1A) and the Kyoto2006 dataset (Figure 1B)
show minor differences between normal and attack events. Since the overall number of
attack events in the Kyoto2006 dataset is very large compared to the normal events, they
show a dispersion pattern in the PCA projection space. However, the visualization with the
CICIDS2017 dataset (Figure 1C) presents a significant difference since it is an imbalanced
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dataset (only 12.5% indicates attack events). Because of the high similarity between normal
and attack events, the attack events are not visible clearly in the PCA projection space.
Figure 1D,F represent the visualizations with the DWT features. Differences between the
raw and the DWT features are clear when comparing their PCA projections. The visualiza-
tion with the NSLKDD dataset shows that a separated cluster representing normal events
only appears in the bottom right corner (see Figure 1D). For the Kyoto2006 dataset, the dif-
ference between the two visualizations (Figure 1B,E) was not clear since the representations
were highly cluttered. However, the Data View clearly shows a difference between normal
and attack events. With the DWT features, the attack events become more visible in the
CICIDS 2017 dataset on the right center of the PCA projection space (see red-colored attack
events in Figure 1F). We provide a more detailed explanation of the generated visualizations
with the DWT features in Section 6.

(A) (B) (C)

(D) (E) (F)

Figure 1. Visual representations of intrusion detection datasets. (A–C) represent the original raw
features of the datasets. (D–F) show the analyzed the DWT features (α = 150 and β = 10). All
network traffic instances are mapped to blue- and red-colored glyphs to represent normal and attack
events, respectively. (A) NSLKDD Raw Features; (B) Kyoto2006 Raw Features; (C) CICIDS2017 Raw
Features; (D) NSLKDD DWT Features; (E) Kyoto2006 DWT Features; (F) CICIDS2017 DWT Features.

With the user interaction techniques (i.e., selection and manipulation), the user can
select and manipulate network instances to understand the network traffic data within
the visualization. In detail, with the selection technique, interesting network patterns
can be selected or highlighted by the user. The manipulation technique assists the user
in controlling the visual representation of the data. For instance, the user can select and
eliminate unwanted data instances from the projection. This approach is essential in MRA
with visualization because it helps the user understand the overall contribution of the
removed data instances compared to the rest of the data. This feature also leads to an
outlier detection analysis, as minimally contributing instances can become possible outliers.
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During the visual analysis, similar network traffic instances can be identified using
similarity measurements: Cosine similarity, Euclidean distance, extended Jaccard coeffi-
cient, and Pearson correlation coefficient. With the user-selected data item(s), statistically
similar network traffic instances (p < 0.05) are determined. It helps the user initiate an
analysis of the selected network traffic instances and discover possible outliers if no similar
events are detected. Additionally, the user can select k clusters with a hierarchical clustering
method based on distance measures, such as Euclidean distance (L2), Chebyshev distance
(L∞), City-block distance (L1), and Pearson correlation coefficient (R2). This approach of
identifying possible clusters may not be optimal in intrusion detection analysis due to the
randomness in network traffic patterns [67]. However, understanding possible clusters is
vital in MRA because it supports identifying different feature spaces through various DWT
wavelet families and parameters.

6. Results and Discussion

When applying the DWT with various wavelet functions and levels, different numbers
of instances and features are generated. Statistical validation is performed to determine
significant features (p < 0.01) and reduce computational time while maintaining high accu-
racy. For analyzing the NSLKDD dataset with Daubechies 3 (db3) with α = 150 and β = 30,
a total of 4929 data instances with 572 features were determined. Under the same parame-
ter setting with Daubechies 5 (db5), we found the same data instances (i.e., 4929) with a
much larger number of features (i.e., 667). Similar results were also observed under the
same parameter setting in Kyoto2006 (db3: instances = 12,694 and features = 292/db5:
instances = 12,694 and features = 334) and CICIDS2017 (db3: instances = 14,850 and
features = 1058/db5: instances = 14,850 and features = 1439). Figure 2 shows the aver-
age number of features and instances generated with different wavelets, window (α), and
step (β) sizes. As the window size increases, the overall number of significant DWT features
increases as well (see Figure 2A–C). However, only minor changes in the number of features
were observed with increased step sizes.
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Figure 2. The number of determined DWT attributes and instances ± SEM depending on the
window (α) and step (β) sizes. x-axis indicates the size of either α or β. (A) NSLKDD; (B) Kyoto2006;
(C) CICIDS2017; (D) NSLKDD; (E) Kyoto2006; (F) CICIDS2017.

One interesting result we found with the NSLKDD dataset was that the number of
features showed a decreasing pattern when the step size increased up to 100. After the
value of 100, the number of features started to increase slowly. We found a fluctuation
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in the number of features with increased window sizes in the Kyoto2016 dataset. For
the CICIDS2017 dataset, we identified a gradual change (slowly increased and decreased
pattern) as the window size increased. On the other hand, when the step size was increased,
we found a continuously increasing pattern for all datasets. We also found that there
was a high variation in the number of features, especially when the step size was small
(e.g., β = 20). This would be because the determined number of features might have a
high variance depending on the applied wavelet function. For example, coif5 produces
more features than coif1 or coif3 as the wavelet function is stretched to capture multiple
frequency components at different locations of the data. By evaluating the number of
instances, we determined that the size of the instances decreased if either window or step
size decreased. With a small window and step size, numerous features were generated and
determined as significant features. We determined that using a small step size would be
beneficial for analyzing the data because it generated a large number of instances, which
eventually might help train and build predictive models for detecting network attacks.

We also performed an extensive evaluation of the datasets to determine optimal
parameters (i.e., sliding window and step sizes) for analyzing the data with visualization.
Various window (α) and step (β) sizes ranging from 20 to 300 and 10 to 290, respectively,
were tested to examine the effect of different window and step values on the classification
performances. For a fair comparison, the evaluation was managed under the condition of
having a fixed value for the sliding window or the step size. Figure 3 shows visualizations
with different window sizes under the same step size β = 10. We found that when a small
window size was used (i.e., α <= 100), it was difficult to separate normal and attack events
clearly. For instance, most normal and attack events lay within the same local region (see
Figure 3G). Similarly, we did not observe a clear separation in the CICIDS2017 dataset
(see Figure 3H–L). One interesting result was that all attack events appear at the bottom
of the projection space. For the NSLKDD dataset, we identified a high overlap between
normal and attack events (see Figure 3A). Davies–Bouldin index (DBI) scores were also
measured to determine the average similarity between clusters. The lower score closer to
zero indicates the clusters are well separated. For the NSLKDD dataset, we determined
that window size (α = 150) was good for differentiating normal and attack events (see
Figure 3D). However, for the Kyoto2016 and CICIDS2017 datasets, we identified different
window sizes as optimal values (α = 50 and 20), respectively. The visual representations
did not show separated clusters (see Figure 3H,M). This might happen because there is a
high similarity between normal and attack events in the Kyoto2016 dataset. However, for
the CICIDS2017, we found that clearly separated clusters become visible when a higher
window size (α > 150) is used.

From this evaluation, we concluded that the distinction between normal and attack
events became clearer when the window size increased. We also found that distinctively
separated clusters could become visible because of the decreased number of instances
caused by the increased window size. This might be related to the data aggregation
(i.e., causing a reduced number of network instances) caused by the DWT decomposition.
Understanding the phenomenon of highly decomposed data to analyze the intrusion
detection datasets is essential, but it is not a primary research topic of this study. Therefore,
we leave this as a possible future work. Instead, we conducted a performance evaluation
study with various classification algorithms based on the window and step sizes. This helps
us determine the most efficient MRA approach in analyzing intrusion detection datasets.
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Figure 3. Visual representations of the conducted empirical study of identifying optimal parameters
with different sliding window sizes (α) with the wavelet function (Daubechies 3) to detect network
intrusions. DBI indicates the Davies–Bouldin Index.

With the original network traffic data (using raw features), it is not easy to determine
normal vs. attack activities. As shown in Figure 1, differentiating normal and attack
network activities was not easy with the raw features because the activities are spread
all over the places in the projection space, which make the user difficult to understand.
When applying DWT wavelets, a clear separation between normal and attack activities is
appeared by forming distinctive clusters. However, it is still not clear which DWT wavelets
(i.e., wavelet families) produce more significant features to detect intrusions. Therefore,
we tested various wavelets, such as Haar (haar), Biorthogonal (bior), Daubechies (db),
Coiflets (coif), and Symlets (sym), and compared their performances. Figure 4 shows PCA
projections by applying different DWT wavelets with the same window and step sizes
(α = 150 and β = 10). Depending on the characteristics of the dataset, some differences
were observed. The projections with the NSLKDD dataset showed similar results when
applying different wavelets. For instance, bior1.1, bior2.2, coif1, db3, and sym4 wavelets
have similar visual representations. The wavelets of coif3, coif5, and sym8, as well as db5
and sym6, also resulted in similar visualizations. Interestingly, we found that Haar (haar)
wavelet displayed a completely different visualization with a clearly separated cluster of
normal network events. However, when analyzing the Kyoto2006 dataset, we found similar
visualization results even if different wavelets were applied. We suspect it is because the
Kyoto2016 dataset had different characteristics compared to the other two datasets. More
specifically, the Kyoto2016 dataset was generated in a honeypot environment. A honeypot
is a network-attached system used as a controlled decoy environment to examine attackers’
behaviors and attack patterns. Therefore, there might be little difference between normal
and attack events because all incoming network traffic to the honeypot environment is
considered possible attacks. In fact, numerous network traffic events were captured as
intrusive traffics. For the CICIDS2017 dataset, we also found similar visualization results.
However, for evaluating the projections of attack events in different visualization results,
we found minor differences. Specifically, the wavelets of coif3, coif5, sym6, and sym8
resulted in two separate clusters (see red-colored glyphs).
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Figure 5 presents detailed attack information for each dataset with the db3 wavelet.
DoS, Probe, and R2L attacks in the NSLKDD dataset form distinctive clusters (see
Figure 5A). For the Kyoto2006 dataset, there were two visible vertically-shaped attack
clusters positioned on each side in the projection space (see Figure 5B). We suspect that
certain types of network attacks with two distinctive characteristics might affect forming
the shape of the clusters. However, we could not further analyze the clusters due to a lack of
information about the attacks. From the visualization, we also could not determine a clear
distinction between normal and attack events as they appeared all over the projection space.
As mentioned earlier, most network traffic events captured in the honeypot environment
are considered possible attacks. Even though some network traffic events are determined as
normal activities by an intrusion detection system, they could be possible unknown attack
events because of the high similarity between normal and attack events. In the CICIDS2017
dataset, two different types of Brute Force attack scenarios, SSH-Patator and FTP-Patator,
were tested on the Tuesday dataset. It was difficult to determine the attacks when using the
raw features in the PCA projection space (see Figure 1C). However, with the DWT features,
the difference between normal and attack events became visible by forming separated
clusters (see Figure 5C).

Huang et al. [42] showed that Coiflet and Mexican Hat wavelets would be suitable
for detecting anomalies using a five-minute, sixty-sample window. They performed the
wavelet analysis on the MIT intrusion datasets and found that utilizing only the first
and second coefficients might be sufficient for analyzing the network intrusions. Our
study is different because we performed an in-depth analysis to identify multiple levels
of wavelet coefficients for intrusion detection analysis. Classification analysis was also
performed to understand the effectiveness of the various wavelets with different parameters
computationally. Previously, we determined the importance of using the wavelet features
compared to raw features of network traffic data [4,39]. Thus, in this paper, our classification
analysis focused on understanding the effectiveness of using DWT features in visualization.

W
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db3 db5 sym2 sym4 sym6 sym8

Figure 4. Cont.
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Figure 4. PCA projections of the DWT features (α = 150 and β = 10) by utilizing different
wavelets—Biorthogonal (bior), Coiflets (coif), Daubechies (db), and Symlets (sym).

Table 1 shows a performance comparison with different classification algorithms.
It presents comparative classification results between DWT and PCA features. For the
DWT features, all features are utilized. Since MRA on visualization is performed within
a PCA projection space, the first two principal components are used to determine the
classification performance differences. We used different metrics (i.e., accuracy, precision,
recall, and F1 score) to measure performance. The DWT features showed slightly higher
classification performances than the PCA features. Overall, similar results were determined
except for using NB. Performance degradation was found with NB for the NSLKDD
dataset, especially when using the PCA features. For the CICIDS2017 dataset, there was no
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significant difference between the DWT and the PCA features, but high-performance results
were observed because of data imbalance. Similarly, a high recall score was determined
when analyzing the Kyoto2006 dataset with SVM because the number of attack events is
relatively small.

(A) (B) (C)

Figure 5. Detailed attack information with the DWT features (db3, α = 150 and β = 10) in the PCA
projections. (A) NSLKDD; (B) Kyoto2006; (C) CICIDS2017.

Table 1. Performance differences between all DWT features and PCA features with multiple clas-
sification algorithms. For the PCA features, the first two principal components are used to run
the classification.

DWT Features PCA Features

Metrics Datasets SVM NB KNN SVM NB KNN

Accuracy

NSLKDD 0.521 0.987 0.951 0.520 0.528 0.938

Kyoto2006 0.892 0.632 0.971 0.893 0.892 0.951

CICIDS2017 0.970 0.998 0.998 0.970 0.970 0.994

Precision

NSLKDD 0.521 0.987 0.951 0.520 0.528 0.938

Kyoto2006 0.892 0.969 0.984 0.893 0.892 0.968

CICIDS2017 0.940 0.998 0.998 0.940 0.940 0.994

Recall

NSLKDD 0.521 0.987 0.951 0.520 0.528 0.938

Kyoto2006 0.998 0.621 0.984 0.998 0.999 0.978

CICIDS2017 0.970 0.998 0.998 0.970 0.970 0.994

F1 score

NSLKDD 0.521 0.987 0.951 0.520 0.528 0.938

Kyoto2006 0.775 0.916 0.974 0.943 0.943 0.973

CICIDS2017 0.955 0.998 0.998 0.955 0.955 0.994

From the extensive evaluation of the DWT features with various window and step
sizes, we found a performance difference depending on the datasets. Figure 6 represents
average F1 scores of classification algorithms based on different window and step sizes.
Because of the highly imbalanced dataset, specifically the CICIDS2017 dataset, we could not
find a major difference in the F1 scores with the DWT and PCA features (see orange-colored
polylines). For the Kyoto2006 dataset, we found a distinguishable result. With the DWT
features, we observed the average F1 scores of 0.86± 0.02. However, with the PCA features,
the average F1 scores jumped to 0.95 ± 0.002. It is because the normal and attack events in
the Kyoto2006 dataset maintain high similarities even if MRA has been applied. With PCA,
similar characteristics were removed as it only determined highly significant attributes
from the data. This finding indicates that PCA would be a good technique for determining
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attack events from the network traffic data, especially when the attack events maintain
highly similar characteristics compared to the normal events. For the NSLKDD dataset, we
found lowered F1 scores with the PCA features than with the DWT features. As explained
above, the DWT features are good for differentiating the normal and attack events in the
NSLKDD dataset. However, this result explains that applying PCA does not benefit the
performance in classifying them (normal vs. attack) if the difference between them has
already been discovered through wavelet transformation.
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Figure 6. Average F1 scores ± SEM for all classification algorithms with different window and step
sizes. (A) DWT features with α variation; (B) DWT features with β variation; (C) PCA features with α

variation; (D) PCA features with β variation.

Agglomeration hierarchical clustering is applied to understand the effectiveness of
performing a visual analysis within the PCA projection space as a part of MRA. It ag-
gregates data until k clusters are formed. For determining similarities, different distance
measurements are utilized as Euclidean distance (L2), Chebyshev distance (L∞), City-block
distance (L1), and Pearson correlation coefficient (R2). Figure 7 shows the results when the
hierarchical clustering technique is applied. Clustering results are presented with solid
lines in the visualizations. Since the PCA projections were performed to the statistically
validated DWT features (α = 150 and β = 10), we found good clustering results. For
the NSLKDD dataset, we could not find significant differences among different distance
metrics. However, for the Kyoto2016 and CICIDS2017 datasets, different results were found.
These might have happened because there was no clear visual separation between normal
and attack events in the visualizations. Overall, the clustering accuracy with the Pearson
correlation coefficient was slightly higher than other distance metrics.
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Figure 7. Visualizations of the analyzed k = 2 clusters with different distance metrics (Euclidean
distance (L2), Chebyshev distance (L∞), City-block distance (L1), and Pearson correlation coefficient
(R2)) on the PCA features within visualizations using an Agglomeration hierarchical clustering
technique. The determined clusters are represented as solid connected lines. (A) Clustering result for
the NSLKDD dataset with L2; (B) Clustering result for the NSLKDD dataset with L∞; (C) Clustering
result for the NSLKDD dataset with L1; (D) Clustering result for the NSLKDD dataset with R2;
(E) Clustering result for the Kyoto2006 dataset with L2; (F) Clustering result for the Kyoto2006
dataset with L∞; (G) Clustering result for the Kyoto2006 dataset with L1; (H) Clustering result for the
Kyoto2006 dataset with R2; (I) Clustering result for the CICIDS2017 dataset with L2; (J) Clustering
result for the CICIDS2017 dataset with L∞; (K) Clustering result for the CICIDS2017 dataset with L1;
(L) Clustering result for the CICIDS2017 dataset with R2.

When applying the clustering technique, a significantly longer computational time
was required to analyze the datasets (especially for the Kyoto2016 and CICIDS2017). This is
because a large number of attributes are often generated depending on the sizes of wavelet
window and step. As mentioned before, PCA is applied to generate visual representations
by reducing the overall number of input attributes (i.e., dimensions). However, when
applying PCA to determine appropriate principal components, evaluating confidence
interval (θ) is needed because it determines the error rate between the input and PCA
projected data. For example, when mapping high-dimensional data into a low-dimensional
projection space (often 2D or 3D spaces are utilized), an optimal projection space (n-D
space) can be found by evaluating the measured eigenvectors of the covariance matrix
from the input data. Of course, it is not easy to determine the optimal projection space
when the number of attributes and instances is huge. In analyzing network traffic data,
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minor PCA components (having smaller eigenvalues) cannot be ignored because they may
include essential attributes that can be used to discover anomalies [68]. Therefore, in our
visualization, the user is allowed to change the default principal components (i.e., the
first two principal components) to others. This would benefit intrusion detection analysis
because it helps the user analyze the data thoroughly with different PCA components.

In data classification analysis, Random Forest (RF) is often utilized. Since it builds
many individual trees with bootstrapping, it has been known as a good technique for
analyzing data that comes with categorical or numerical outcomes. Although it is helpful
for high-dimensional applications like genomics data, especially where the number of
variables exceeds the size of the observations [69], it is not suitable for analyzing highly
imbalanced data. Since the intrusion detection datasets (i.e., Kyoto2006+ and CIC-IDS2017)
are highly imbalanced (having a lower number of attack instances), we also found a major
limitation of using RF to analyze such datasets because it produced high-performance
scores (close to 0.99 or 1.0) even if different wavelet features were utilized. Thus, we
excluded RF from our classification analysis. However, since it has been broadly used
in network traffic analysis by researchers [64,70,71], an extensive analysis study needs
to be performed to evaluate its effectiveness in analyzing highly imbalanced intrusion
detection datasets.

From the evaluation studies, we determined that having a window size larger than
or equal to 150 would be good for analyzing network traffic data. However, this claim
needs further analysis because if the data has high similarities between normal and attack
events (for example, the Kyoto2016 dataset), the distinction between them cannot easily
be determined even if a higher window size is applied. As discussed above, we found
that a high number of significant features were determined with increased window sizes.
However, it produced fewer numbers of instances. Utilizing a relatively large window
size with a small step size is highly recommended because it produces sufficient amounts
of data that eventually helps analyze network traffic patterns. Additionally, an extensive
evaluation must be performed to find an optimal window size. Because of the highly
complex nature of network traffic data (often highly imbalanced), these findings lead us to
initiate our future research in understanding the characteristics of network traffic data to
determine the optimal alpha value automatically.

7. Conclusions and Future Works

This paper introduces a new way of analyzing intrusion detection datasets. Although
various approaches have been proposed by incorporating machine learning algorithms,
most techniques still suffer from detecting unknown attacks. To address the limitation,
our study focuses on integrating MRA with visualization. Specifically, the DWT is used to
determine significant wavelet features from the data. Then, the utilization of interactive
visualization is considered to represent the network traffic features to support interactive
visual analysis. Because of the complexity of network traffic data, we performed extensive
evaluation studies to determine optimal parameter values for applying the DWT to different
network traffic datasets. Classification analysis with SVM, NB, and KNN was performed
to determine the effectiveness of using MRA with visualization. A hierarchical clustering
method was also applied to identify clusters for normal and attack events by measuring the
Davies–Bouldin Index scores. From the study, we found that a small step size (β <= 20)
with a relatively large sliding window size (α >= 150) formed distinctive clusters in
differentiating normal and attack events. We also conclude that our approach of utilizing
MRA with visualization advances network intrusion detection by generating well-separated
visual clusters.

For future works, we plan to extend our study to test all possible input parameters and
measure sensitivity and specificity in detecting network intrusions with various imbalanced
data analysis techniques. Furthermore, a comparative study with known intrusion detec-
tion models will be conducted to determine the benefits and limitations of our approach.
Since analyzing network traffic data to find optimal parameters requires tremendous com-
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putational time and costs, finding a solution that automatically determines the parameters
is essential. Specifically, we plan to design an approach that determines the parameters
automatically by evaluating the unique characteristics of network traffic data. With the
proposed approach, a real-time intrusion detection system can be designed and tested to
detect intrusions in a real network environment.

Author Contributions: Conceptualization, D.H.J. and S.-Y.J.; methodology, D.H.J. and S.-Y.J.; soft-
ware, D.H.J.; validation, D.H.J. and S.-Y.J.; formal analysis, D.H.J. and S.-Y.J.; investigation, D.H.J. and
S.-Y.J.; resources, D.H.J. and S.-Y.J.; data curation, D.H.J. and S.-Y.J.; writing—original draft prepara-
tion, D.H.J., B.-K.J. and S.-Y.J.; writing—review and editing, D.H.J., B.-K.J. and S.-Y.J.; visualization,
D.H.J. and S.-Y.J.; supervision, D.H.J., B.-K.J. and S.-Y.J.; project administration, D.H.J. and S.-Y.J.;
funding acquisition, D.H.J. and S.-Y.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This material is based upon work supported by the National Science Foundation (Grant
No. 2107451 and 2219634).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Kyoto2016+ dataset is available at the website at https://www.
takakura.com/Kyoto_data/ (accessed on 10 January 2022). Both the NSLKDD dataset and the
CICIDS2017 dataset were obtained at https://www.unb.ca/cic/datasets/nsl.html and https://www.
unb.ca/cic/datasets/ids-2017.html, respectively (accessed on 10 January 2022). The complete analysis
data and source codes will become available upon request by email.

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Mallat, S.G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Anal. Mach.

Intell. 1989, 11, 674–693. [CrossRef]
2. Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [CrossRef]
3. Dainotti, A.; Pescapé, A.; Ventre, G. A Cascade Architecture for DoS Attacks Detection Based on the Wavelet Transform. J.

Comput. Secur. 2009, 17, 945–968. [CrossRef]
4. Ji, S.Y.; Jeong, B.K.; Choi, S.; Jeong, D.H. A multi-level intrusion detection method for abnormal network behaviors. J. Netw.

Comput. Appl. 2016, 62, 9–17. [CrossRef]
5. Illiano, V.P.; Muñoz-González, L.; Lupu, E.C. Don’t fool Me!: Detection, Characterisation and Diagnosis of Spoofed and Masked

Events in Wireless Sensor Networks. IEEE Trans. Dependable Secur. Comput. 2017, 14, 279–293. [CrossRef]
6. Patcha, A.; Park, J.M. An Overview of Anomaly Detection Techniques: Existing Solutions and Latest Technological Trends.

Comput. Netw. 2007, 51, 3448–3470. [CrossRef]
7. Kreibich, C.; Crowcroft, J. Honeycomb: Creating intrusion detection signatures using honeypots. ACM SIGCOMM Comput.

Commun. Rev. 2004, 34, 51–56. [CrossRef]
8. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.

Cybersecurity 2019, 2, 1–22. [CrossRef]
9. Kind, A.; Stoecklin, M.; Dimitropoulos, X. Histogram-based traffic anomaly detection. IEEE Trans. Netw. Serv. Manag. 2009,

6, 110–121. [CrossRef]
10. Stevanovic, M.; Pedersen, J. An efficient flow-based botnet detection using supervised machine learning. In Proceedings of the

Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 3–6 February 2014; pp. 797–801. [CrossRef]
11. Singh, K.; Agrawal, S. Performance Evaluation of Five Machine Learning Algorithms and Three Feature Selection Algorithms for

IP Traffic Classification. IJCA Spec. Issue Evol. Netw. Comput. Commun. 2011, 1, 25–32.
12. Saranya, T.; Sridevi, S.; Deisy, C.; Chung, T.D.; Khan, M. Performance Analysis of Machine Learning Algorithms in Intrusion

Detection System: A Review. Procedia Comput. Sci. 2020, 171, 1251–1260. [CrossRef]
13. Cannady, J. Artificial Neural Networks for Misuse Detection. In Proceedings of the National Information Systems Security

Conference, Arlington, VA, USA, 5–8 October 1998; pp. 443–456.
14. Amor, N.B.; Benferhat, S.; Elouedi, Z. Naive Bayes vs Decision Trees in Intrusion Detection Systems. In Proceedings of the 2004

ACM Symposium on Applied Computing, Nicosia, Cyprus, 14–17 March 2004; ACM: New York, NY, USA, 2004; pp. 420–424.
[CrossRef]

https://www.takakura.com/Kyoto_data/
https://www.takakura.com/Kyoto_data/
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
http://doi.org/10.1109/34.192463
http://dx.doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
http://dx.doi.org/10.3233/JCS-2009-0350
http://dx.doi.org/10.1016/j.jnca.2015.12.004
http://dx.doi.org/10.1109/TDSC.2016.2614505
http://dx.doi.org/10.1016/j.comnet.2007.02.001
http://dx.doi.org/10.1145/972374.972384
http://dx.doi.org/10.1186/s42400-019-0038-7
http://dx.doi.org/10.1109/TNSM.2009.090604
http://dx.doi.org/10.1109/ICCNC.2014.6785439
http://dx.doi.org/10.1016/j.procs.2020.04.133
http://dx.doi.org/10.1145/967900.967989


Appl. Sci. 2023, 13, 3792 18 of 20

15. Nguyen, T.T.; Armitage, G. A Survey of Techniques for Internet Traffic Classification Using Machine Learning. Commun. Surveys
Tuts. 2008, 10, 56–76. [CrossRef]

16. Wang, Y. A multinomial logistic regression modeling approach for anomaly intrusion detection. Comput. Secur. 2005, 24, 662–674.
[CrossRef]

17. Albayati, M.; Issac, B. Analysis of Intelligent Classifiers and Enhancing the Detection Accuracy for Intrusion Detection System.
Int. J. Comput. Intell. Syst. 2015, 8, 841–853. [CrossRef]

18. Khan, L.; Awad, M.; Thuraisingham, B. A New Intrusion Detection System Using Support Vector Machines and Hierarchical
Clustering. VLDB J. 2007, 16, 507–521. [CrossRef]

19. Mulay, S.A.; Devale, P.; Garje, G. Intrusion Detection System Using Support Vector Machine and Decision Tree. Int. J. Comput.
Appl. 2010, 3, 40–43. [CrossRef]

20. Yao, J.; Zhao, S.; Fan, L. An Enhanced Support Vector Machine Model for Intrusion Detection. In Proceedings of the First
International Conference on Rough Sets and Knowledge Technology, RSKT’06, Chongqing, China, 24–26 July 2006; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 538–543.

21. Kausar, N.; Belhaouari Samir, B.; Abdullah, A.; Ahmad, I.; Hussain, M. A Review of Classification Approaches Using Support
Vector Machine in Intrusion Detection. In Proceedings of the Informatics Engineering and Information Science: International
Conference, ICIEIS 2011, Kuala Lumpur, Malaysia, 14–16 November 2011; Abd Manaf, A., Sahibuddin, S., Ahmad, R., Mohd Daud,
S., El-Qawasmeh, E., Eds.; Springer: Berlin, Heidelberg, Germany, 2011; pp. 24–34.

22. Xia, T.; Qu, G.; Hariri, S.; Yousif, M. An efficient network intrusion detection method based on information theory and genetic
algorithm. In Proceedings of the Performance, Computing, and Communications Conference, Phoenix, AZ, USA, 7–9 April 2005;
pp. 11–17. [CrossRef]

23. Majeed, P.G.; Kumar, S. Genetic Algorithms in Intrusion Detection Systems: A Survey. Int. J. Innov. Appl. Stud. 2014, 5, 233–240.
24. Pawar, S.N.; Bichkar, R.S. Genetic algorithm with variable length chromosomes for network intrusion detection. Int. J. Autom.

Comput. 2015, 12, 337–342. [CrossRef]
25. Chebrolu, S.; Abraham, A.; Thomas, J.P. Feature deduction and ensemble design of intrusion detection systems. Comput. Secur.

2005, 24, 295–307. [CrossRef]
26. Ji, S.Y.; Choi, S.; Jeong, D.H. Designing a two-level monitoring method to detect network abnormal behaviors. In Proceedings of

the Information Reuse and Integration (IRI), Redwood City, CA, USA, 13–15 August 2014; pp. 703–709. [CrossRef]
27. Hubert, M.; Rousseeuw, P.; Verdonck, T. Robust {PCA} for skewed data and its outlier map. Comput. Stat. Data Anal. 2009,

53, 2264–2274. [CrossRef]
28. Xu, X.; Wang, X. An adaptive network intrusion detection method based on PCA and support vector machines. In Proceedings

of the Advanced Data Mining and Applications: First International Conference, ADMA 2005, Wuhan, China, 22–24 July 2005;
pp. 696–703. [CrossRef]

29. Musa, U.S.; Chhabra, M.; Ali, A.; Kaur, M. Intrusion Detection System using Machine Learning Techniques: A Review. In
Proceedings of the International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 10–12 September
2020; pp. 149–155. [CrossRef]

30. Rhif, M.; Abbes, A.B.; Farah, I.R.; Martínez, B.; Sang, Y. Wavelet Transform Application for/in Non-Stationary Time-Series
Analysis: A Review. Appl. Sci. 2019, 9, 1345. [CrossRef]

31. Chaovalit, P.; Gangopadhyay, A.; Karabatis, G.; Chen, Z. Discrete wavelet transform-based time series analysis and mining. ACM
Comput. Surv. 2011, 43, 1–37. [CrossRef]

32. VAST Challenge 2012: Visual analytics for big data, Contest Chairs- Kris Cook, Georges Grinstein, Mark Whiting. In Proceedings
of the VAST 2012, Seattle, WA, USA, 14–19 October 2012. [CrossRef]

33. Shiravi, H.; Shiravi, A.; Ghorbani, A.A. A Survey of Visualization Systems for Network Security. IEEE Trans. Vis. Comput. Graph.
2012, 18, 1313–1329. [CrossRef] [PubMed]

34. NSL-KDD. NSL-KDD Dataset. 2016. Available online: http://nsl.cs.unb.ca/NSL-KDD/ (accessed on 10 November 2016).
35. Song, J.; Takakura, H.; Okabe, Y.; Eto, M.; Inoue, D.; Nakao, K. Statistical Analysis of Honeypot Data and Building of Kyoto 2006+

Dataset for NIDS Evaluation. In Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security, BADGERS ’11, Salzburg, Austria, 10 April 2011; Association for Computing Machinery: New York, NY,
USA, 2011; pp. 29–36. [CrossRef]

36. Sharafaldin, I.; Habibi Lashkari, A.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy—ICISSP,
Madeira, Portugal, 22–24 January 2018; pp. 108–116. [CrossRef]

37. KDD99. KDD Cup 1999 Data. 2019. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on
10 November 2019).

38. Ji, S.Y.; Choi, S.; Jeong, D.H. Designing an Internet Traffic Predictive Model by Applying a Signal Processing Method. J. Netw.
Syst. Manag. 2015, 23, 998–1015. [CrossRef]

39. Ji, S.Y.; Kamhoua, C.; Leslie, N.; Jeong, D.H. An Effective Approach to Classify Abnormal Network Traffic Activities using
Wavelet Transform. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), New York, NY, USA, 10–12 October 2019; pp. 0666–0672. [CrossRef]

http://dx.doi.org/10.1109/SURV.2008.080406
http://dx.doi.org/10.1016/j.cose.2005.05.003
http://dx.doi.org/10.1080/18756891.2015.1084705
http://dx.doi.org/10.1007/s00778-006-0002-5
http://dx.doi.org/10.5120/758-993
http://dx.doi.org/10.1109/PCCC.2005.1460505
http://dx.doi.org/10.1007/s11633-014-0870-x
http://dx.doi.org/10.1016/j.cose.2004.09.008
http://dx.doi.org/10.1109/IRI.2014.7051958
http://dx.doi.org/10.1016/j.csda.2008.05.027
http://dx.doi.org/10.1007/11527503_82
http://dx.doi.org/10.1109/ICOSEC49089.2020.9215333
http://dx.doi.org/10.3390/app9071345
http://dx.doi.org/10.1145/1883612.1883613
http://dx.doi.org/10.1109/VAST.2012.6400529
http://dx.doi.org/10.1109/TVCG.2011.144
http://www.ncbi.nlm.nih.gov/pubmed/21876227
http://nsl.cs.unb.ca/NSL-KDD/
http://dx.doi.org/10.1145/1978672.1978676
http://dx.doi.org/10.5220/0006639801080116
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://dx.doi.org/10.1007/s10922-014-9335-3
http://dx.doi.org/10.1109/UEMCON47517.2019.8993044


Appl. Sci. 2023, 13, 3792 19 of 20

40. Ji, S.Y.; Jeong, B.K.; Kamhoua, C.; Leslie, N.; Jeong, D.H. Forecasting network events to estimate attack risk: Integration of wavelet
transform and vector auto regression with exogenous variables. J. Netw. Comput. Appl. 2022, 203, 103392. [CrossRef]

41. Barford, P.; Kline, J.; Plonka, D.; Ron, A. A Signal Analysis of Network Traffic Anomalies. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet Measurment, MW ’02, Marseille, France, 6–8 November 2002; ACM: New York, NY, USA, 2002;
pp. 71–82. [CrossRef]

42. Huang, C.T.; Thareja, S.; Shin, Y.J. Wavelet-based Real Time Detection of Network Traffic Anomalies. In Proceedings of the
Securecomm and Workshops, Baltimore, MY, USA, 28 August–1 September 2006; pp. 1–7. [CrossRef]

43. Kim, S.S.; Reddy, A.L.N.; Vannucci, M. Detecting Traffic Anomalies Using Discrete Wavelet Transform. In Information Networking.
Networking Technologies for Broadband and Mobile Networks: International Conference ICOIN 2004, Busan, Korea, 18–20 February 2004.
Revised Selected Papers; Springer: Berlin/Heidelberg, Germany, 2004; pp. 951–961. [CrossRef]

44. Jeong, D.H.; Jeong, B.K.; Ji, S.Y. Designing a hybrid approach with computational analysis and visual analytics to detect network
intrusions. In Proceedings of the 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las
Vegas, NV, USA, 9–11 January 2017; pp. 1–7. [CrossRef]

45. AsSadhan, B.; Kim, H.; Moura, J.M.F.; Wang, X. Network traffic behavior analysis by decomposition into control and data planes.
In Proceedings of the 2008 IEEE International Symposium on Parallel and Distributed Processing, Miami, FL, USA, 14–18 April
2008; pp. 1–8. [CrossRef]

46. Jiang, D.; Liu, J.; Xu, Z.; Qin, W. Network traffic anomaly detection based on sliding window. In Proceedings of the Electrical and
Control Engineering (ICECE), Yichang, China, 16–18 September 2011; pp. 4830–4833. [CrossRef]

47. Liu, G.; Yi, Z.; Yang, S. A hierarchical intrusion detection model based on the PCA neural networks. Neurocomputing 2007,
70, 1561–1568. [CrossRef]

48. Bouzida, Y. Intrusion Detection Using Principal Component Analysis. In Proceedings of the 7th World Multiconference on
Systemics, Cybernetics and Informatics, Orlando, FL, USA, 27–30 July 2003.

49. Cao, Y.; Xu, Y.; Du, J. Multi-variable estimation-based safe screening rule for small sphere and large margin support vector
machine. Knowl.-Based Syst. 2020, 191, 105223. [CrossRef]

50. Wang, H.; Shao, Y.; Zhou, S.; Zhang, C.; Xiu, N. Support Vector Machine Classifier via L_{0/1} L 0/1 Soft-Margin Loss. IEEE
Trans. Pattern Anal. Mach. Intell. 2021, 44, 7253–7265. [CrossRef]

51. Stryczek, S.; Natkaniec, M. Internet Threat Detection in Smart Grids Based on Network Traffic Analysis Using LSTM, IF, and
SVM. Energies 2023, 16, 329. [CrossRef]

52. Zhao, R.; Huang, Y.; Deng, X.; Shi, Y.; Li, J.; Huang, Z.; Wang, Y.; Xue, Z. A Novel Traffic Classifier with Attention Mechanism for
Industrial Internet of Things. IEEE Trans. Ind. Inform. 2023, 1–12. [CrossRef]

53. Dhanya, K.; Vajipayajula, S.; Srinivasan, K.; Tibrewal, A.; Kumar, T.S.; Kumar, T.G. Detection of Network Attacks using Machine
Learning and Deep Learning Models. Procedia Comput. Sci. 2023, 218, 57–66. [CrossRef]

54. Shukla, P.K.; Maheshwary, P.; Subramanian, E.; Shilpa, V.J.; Varma, P.R.K. Traffic flow monitoring in software-defined network
using modified recursive learning. Phys. Commun. 2023, 57, 101997. [CrossRef]

55. García-Pedrajas, N.; Ortiz-Boyer, D. Boosting k-nearest neighbor classifier by means of input space projection. Expert Syst. Appl.
2009, 36, 10570–10582. [CrossRef]

56. Syriopoulos, P.K.; Kotsiantis, S.B.; Vrahatis, M.N. Survey on KNN Methods in Data Science. In Proceedings of the Learning and
Intelligent Optimization 16th International Conference, LION 16, Milos Island, Greece, 5–10 June 2022; pp. 379–393. [CrossRef]

57. Thotad, P.N.; Bharamagoudar, G.R.; Anami, B.S. Diabetes disease detection and classification on Indian demographic and health
survey data using machine learning methods. Diabetes Metab. Syndr. Clin. Res. Rev. 2023, 17, 102690. [CrossRef]

58. Yadav, R.K.; Singh, P.; Kashtriya, P. Diagnosis of Breast Cancer using Machine Learning Techniques-A Survey. Procedia Comput.
Sci. 2023, 218, 1434–1443. [CrossRef]

59. Chauhan, P.; Atulkar, M. An efficient centralized DDoS attack detection approach for Software Defined Internet of Things. J.
Supercomput. 2023, 1–37. [CrossRef]

60. Usha, G.; Narang, M.; Kumar, A. Detection and classification of distributed DoS attacks using machine learning. In Proceedings
of the Computer Networks and Inventive Communication Technologies, Coimbatore, India, 23–24 July 2020; pp. 985–1000.
[CrossRef]

61. Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new
bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [CrossRef]

62. Karuppiah, K.; Uma Maheswari, N.; Balamurugan, N.; Venkatesh, R. Diagnosis of Heart Disease Using Improved Genetic
Algorithm-Based Naive Bayes Classifier. In Using Multimedia Systems, Tools, and Technologies for Smart Healthcare Services; IGI
Global: Pennsylvania, PA, USA, 2023; pp. 117–140. [CrossRef]

63. Salau, A.O.; Assegie, T.A.; Akindadelo, A.T.; Eneh, J.N. Evaluation of Bernoulli Naive Bayes model for detection of distributed
denial of service attacks. Bull. Electr. Eng. Inform. 2023, 12, 1203–1208. [CrossRef]

64. Gebrye, H.; Wang, Y.; Li, F. Traffic data extraction and labeling for machine learning based attack detection in IoT networks. Int. J.
Mach. Learn. Cybern. 2023, 1–16. [CrossRef]

65. Roberts, J.C. State of the Art: Coordinated Multiple Views in Exploratory Visualization. In Proceedings of the Coordinated and
Multiple Views in Exploratory Visualization, Zurich, Switzerland, 2 July 2007; pp. 61–71. [CrossRef]

http://dx.doi.org/10.1016/j.jnca.2022.103392
http://dx.doi.org/10.1145/637201.637210
http://dx.doi.org/10.1109/SECCOMW. 2006.359584
http://dx.doi.org/10.1007/978-3-540-25978-7_96
http://dx.doi.org/10.1109/CCWC.2017.7868417
http://dx.doi.org/10.1109/IPDPS.2008.4536559
http://dx.doi.org/10.1109/ICECENG.2011. 6057677
http://dx.doi.org/10.1016/j.neucom.2006.10.146
http://dx.doi.org/10.1016/j.knosys.2019.105223
http://dx.doi.org/10.1109/TPAMI.2021.3092177
http://dx.doi.org/10.3390/en16010329
http://dx.doi.org/10.1109/TII.2023.3241689
http://dx.doi.org/10.1016/j.procs.2022.12.401
http://dx.doi.org/10.1016/j.phycom.2022.101997
http://dx.doi.org/10.1016/j.eswa.2009.02.065
http://dx.doi.org/10.1007/978-3-031-24866-5_28
http://dx.doi.org/10.1016/j.dsx.2022.102690
http://dx.doi.org/10.1016/j.procs.2023.01.122
http://dx.doi.org/10.1007/s11227-023-05072-y
http://dx.doi.org/10.1007/978-981-15-9647-6_78
http://dx.doi.org/10.1128/AEM.00062-07
http://dx.doi.org/10.4018/978-1-6684-5741-2.ch008
http://dx.doi.org/10.11591/eei.v12i2.4020
http://dx.doi.org/10.1007/s13042-022-01765-7
http://dx.doi.org/10.1109/CMV.2007.20


Appl. Sci. 2023, 13, 3792 20 of 20

66. Inselberg, A.; Dimsdale, B. Parallel Coordinates: A Tool for Visualizing Multi-dimensional Geometry. In Proceedings of the 1st
Conference on Visualization ’90, San Francisco, CA, USA, 23–26 October 1990; IEEE Computer Society Press: Washington, DC,
USA, 1990; pp. 361–378. [CrossRef]

67. Chen, Y.Z.; Huang, Z.G.; Xu, S.; Lai, Y.C. Spatiotemporal patterns and predictability of cyberattacks. PLoS ONE 2015, 10, e0124472.
[CrossRef] [PubMed]

68. Schölkopf, B.; Platt, J.; Hofmann, T. In-Network PCA and Anomaly Detection. In Advances in Neural Information Processing Systems;
MIT Press: Cambridge, MA, USA, 2007; pp. 617–624.

69. Chen, X.; Ishwaran, H. Random forests for genomic data analysis. Genomics 2012, 99, 323–329. [CrossRef] [PubMed]
70. Yang, J.; Han, S.; Chen, Y. Prediction of Traffic Accident Severity Based on Random Forest. J. Adv. Transp. 2023, 1–9. [CrossRef]
71. Bierbrauer, D.A.; De Lucia, M.J.; Reddy, K.; Maxwell, P.; Bastian, N.D. Transfer learning for raw network traffic detection. Expert

Syst. Appl. 2023, 211, 118641. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/VISUAL.1990.146402
http://dx.doi.org/10.1371/journal.pone.0124472
http://www.ncbi.nlm.nih.gov/pubmed/25992837
http://dx.doi.org/10.1016/j.ygeno.2012.04.003
http://www.ncbi.nlm.nih.gov/pubmed/22546560
http://dx.doi.org/10.1155/2023/7641472
http://dx.doi.org/10.1016/j.eswa.2022.118641

	Introduction
	Previous Work
	Datasets
	Multi Resolution Analysis (MRA)
	Classification Analysis and Visualization
	Results and Discussion
	Conclusions and Future Works
	References

