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Abstract: For cities, the problem of “difficult parking and chaotic parking” increases carbon emissions
and reduces quality of life. Accurately and efficiently predicting the availability of vacant parking
spaces (VPSs) can help motorists reduce the time spent looking for a parking space and reduce
greenhouse gas pollution. This paper proposes a deep learning model called DWT-ConvGRU-BRC to
predict the future availability of VPSs in multiple parking lots. The model first uses a discrete wavelet
transform (DWT) to denoise the historical parking data and then extracts the temporal correlation
of the parking lots themselves and the spatial correlation between different parking lots using a
convolutional gated recurrent unit network (ConvGRU) while using a BN-ReLU-Conv (1× 1) module
to further improve the propagation and reuse of features in the prediction process. In addition, the
model uses availability, temperature, humidity, wind speed, weekdays, and weekends as inputs to
improve the accuracy of the forecasts. The model performance is evaluated through a case study
of 11 parking lots in Santa Monica. The DWT-ConvGRU-BRC model outperforms the LSTM and
GRU baseline methods, with an average testing MAPE of 2.12% when predicting multiple parking
lot occupancies over the subsequent 60 min.

Keywords: parking prediction; deep learning; discrete wavelet transform; convolutional gated
recurrent unit network; multiple parking lots

1. Introduction

With economic and population growth, motor vehicle ownership is growing rapidly,
which has exacerbated the imbalance between the supply and demand of vacant parking
spaces (VPSs) in cities. Drivers typically spend 3.5–14 min looking for a VPS and cruising to
find a VPS accounts for 8–74% of traffic [1]. Excessive time spent by drivers looking for VPSs
increases time costs, fuel consumption, and emissions and leads to traffic congestion [2].
Parking difficulties and disorderly parking problems are often affected by accessibility,
parking prices, and the number of VPSs.

To address this problem, some parking management and inducement systems have
been developed to provide real-time VPS information [3–6]. These systems typically collect
real-time available parking data using cameras and sensors [7,8]. In addition, several
crowd-sensing-based schemes monitor the availability of street parking using mobile
communication devices and in-vehicle sensors [9,10]. However, these parking guidance
systems cannot guarantee the real-time nature of a VPS. That is, when a driver arrives at the
designated parking space, the parking space may already be occupied. Due to the high cost
of sensor equipment and maintaining real-time parking information, Y et al. [11] and Baidu
Maps proposed a model named Du-parking to estimate the real-time parking availability
of the whole city. Therefore, to enable car owners to purposefully find parking spaces, it is
necessary to develop a parking guidance information system with predictive algorithms
that can help drivers plan driving routes to find VPSs and reduce driving costs [12], which
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can assist traffic planning and management to reduce energy consumption and traffic
congestion [2].

In this paper, we propose a DWT-ConvGRU-BRC model. This model consists of a
discrete wavelet transform (DWT) [13], convolutional GRU networks (ConvGRUs) [14],
a two-layer linear network, and a composite function of three consecutive operations,
i.e., batch normalization (BN), rectified linear activation (ReLU), and a 1 × 1 convolution
(Conv), denoted BRC. First, we use the DWT to denoise the VPS data. Noise reduction
before forecasting can eliminate the volatility of the VPS data themselves. Then, we use a
deep learning-based prediction model that leverages ConvGRUs and a two-layer linear
network to incorporate the spatial–temporal features of multiple data sources acquired
in networks. Finally, the propagation and reuse of features in the prediction process are
further improved using the BRC composite function.

This paper contributes to the literature in the following ways:

• We propose a deep learning-based parking space prediction model from the perspec-
tive of multiple parking lots. The model considers the processing of parking noise data
as well as the spatial correlation of multiple parking lots and the temporal correlation
of the parking lots themselves and uses a variety of factors, including parking lot
occupancy, temperature, humidity, wind speed, weekdays, and holidays, to predict
the number of available VPSs.

• Our proposed DWT-ConvGRU-BRC model can simultaneously predict the number
of available parking spaces in multiple parking lots. Specifically, a ConvGRU is used
to capture the spatial–temporal features of multiple parking lots, a two-layer linear
layer is used to extract external influences, and BRC is used to further improve the
propagation and reuse of features in the prediction process.

• The performance of the method is evaluated with a case study in the Santa Mon-
ica area. According to the results, the model outperforms other baseline methods,
including LSTM, GRU, ConvGRU, and dConvLSTM-DCN models. Moreover, the
results prove the improvement in prediction accuracy from the DWT and the effec-
tiveness of incorporating weekday, vacation, and weather features into parking lot
occupancy predictions.

The rest of this paper is organized as follows: Section 2 summarizes the literature
review. Section 3 describes the detailed DWT-ConvGRU-BRC prediction model. Section 4
presents the results and analysis of the comparison experiments. Finally, we provide our
conclusions and discuss possible future work in Section 5.

2. Literature Review

Access to VPS data has become easier with breakthroughs in sensor technology. How-
ever, the VPS data obtained in practical applications are often subject to different degrees
of noise pollution. How to effectively process the data collected by sensors and improve
the accuracy of algorithms is a thorny problem that many existing prediction methods
still face. To solve this problem, wavelet analysis has been applied in some recent studies
and has proven to be effective. For example, Li et al. [15] used the wavelet function for
multiscale wavelet decomposition and reconstruction of VPS data using the hidden layer
function of a wavelet neural network to improve prediction accuracy. Ji et al. [16] proposed
a multistep prediction study of impacted parking spaces based on a WT in combination
with a multistep prediction strategy using threshold noise reduction to further improve the
prediction accuracy. Therefore, effective noise removal helps to improve the efficiency and
accuracy of prediction.

Predicting the occupancy rate of multiple parking lots is one of the necessary links
to solve the “difficult parking” problem. In recent years, VPS prediction has been di-
vided into two categories: one is based on a statistical prediction model, and the other is
based on machine learning (ML) and deep learning (DL). For statistical prediction models,
Caliskan et al. [17] combined continuous Markov and queuing theory models to predict
the occupancy status of parking lots in the destination area. On this basis, Xiao et al. [18]
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proposed a continuous-time Markov M\M\C\C model for predicting available parking
spaces. Caicedo et al. [19] proposed a real-time available dynamic algorithm using historical
information to predict the availability of each parking lot. In addition, Rajabioun et al. [20]
developed a vector spatiotemporal autoregressive model that can be used to predict the
availability of parking spaces at a driver’s estimated arrival time at both on-street and off-
street parking locations. Peng et al. [21] modelled the discrete occupancy rate of a parking
lot as a nonstationary Poisson process and proposed a cost-effective method for searching
for parking spaces. Abdeen et al. [22] proposed a smart parking algorithm that varied
the weights of five factors (availability, gate wait time, parking cost, traffic congestion,
and driving distance to the parking lot) to achieve balanced traffic allocation and parking
best use of the field. In fact, these statistical prediction models are highly dependent on
assumptions about the arrival and departure process and therefore have difficulty adapting
to the dramatic fluctuations in parking traffic flow.

For ML/DP prediction models, researchers have applied models such as regression
trees, support vector machines (SVMs), support vector regression (SVR), neural networks,
K-nearest neighbour (KNN), and random forests models to predict parking availability [23–27].
Hu et al. [28] combined support vector regression (SVR) and the fruit fly optimization
algorithm (FOA) to predict the number of vacant parking spaces. Fan et al. [29] optimized
a multi-step long short-term memory recurrent neural network (LSTM-NN) model with
a grid search method to predict the number of vacant parking spaces. Moreover, many
scholars have combined nonlinear system theory and optimization algorithms with neural
networks to improve prediction accuracy. For example, Vlahogianni et al. [30] used a
genetic algorithm-optimized multilayer perception (MLP) to predict the occupancy rate of a
regional parking lot over the subsequent 30 min. Camero et al. [31] used a genetic algorithm
(GA) combined with a recurrent neural network (RNN) to predict parking occupancy in
Birmingham. Zeng et al. [32] combined a wavelet transform (WT) with bi-directional LSTM
(Bi-LSTM) to further improve the prediction accuracy using threshold noise reduction.

In addition, some scholars have considered the influence of external factors, such
as weather and holidays, on VPS forecasting. Fokker et al. [33] explored the influence of
external factors such as weather on parking occupancy and found that external factors
improved the predictive performance by 8%. In Zhang’s [34] work, a PewLSTM was
proposed for predicting parking behaviour by combining the effects of weather and parking
periodicity. Zeng et al. [35] proposed a stacked gated recurrent unit (GRU)-LSTM model
that combined the efficiency of a GRU and the accuracy of LSTM and incorporated various
factors as inputs, such as weather, to predict the availability of parking spaces. ML/DL
methods can automatically learn from past samples to better describe complex nonlinear
problems. However, the ML/DP methods described above only consider the temporal
correlation of VPS data and fail to consider the spatial correlation of VPSs in multiple
parking lots.

Therefore, this paper proposes a model called DWT-ConvGRU-BRC to predict the
number of VPSs in multiple parking lots. Our model combines the advantages of wavelet
transform. While capturing the spatial–temporal correlation of multiple parking lot data,
it also takes external factors such as weather as input to improve the accuracy of the
model. Previous research related to our methodology includes DWT-Bi-LSTM [32] and
dConvLSTM-DCN [36].

3. Methodology
3.1. Data Description

To evaluate the performance of the proposed prediction model, we conducted a case
study in Santa Monica, CA, USA (longitude range: [−118.499378, −188.49361], latitude
range: [34.019575, 34.010806]) [37], which has 11 parking lots scattered over the road
network, as illustrated in Figure 1. The data were collected from 6 April 2021 to 13 May
2021. The number of VPSs was collected every 5 min, resulting in 10,944 pieces of historical
data per parking lot.
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We use a 100 m × 100 m grid to divide the target area into H ×W grids (Figure 1).
Each parking lot in the region is distributed in a different grid, and a grid without a parking
lot distribution is considered to have no VPSs in that grid. Then, the number of VPSs in the
area at time t is denoted as:
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where each element in the matrix, denoted as vt
(h,w), h ∈ [0, H], and w ∈ [0, W], is the

number of VPSs in the grid (h, w). This area is divided into a total of 60 grids, with H being
10 and W being 6.

The 11 parking lots we selected in the grid area are the St1–St9 parking lots, Lot1
parking lot, and Library parking lot. These parking lots are mainly distributed in recre-
ational, commercial, and residential areas. It is worth noting that there are similarities
and differences in the evolution of the number of spaces in these parking lots. We can
imagine that the closer the parking lot types and the closer the distance, the more they
should have the characteristics of time–space correlation. We take the Lot1, St5, and St7
parking lots as examples to mine the characteristics of different parking lots from the
perspective of spatiotemporal correlation, considering that the St5 and St7 parking lots
represent commercial areas and are close to each other, and the Lot1 parking lot represents
entertainment areas.

Figures 2 and 3 show the spatiotemporal characteristics of these 3 parking lots. The
x-axis represents the time interval. The y-axis represents the change in VPSs, where a
positive number represents the outflow of vehicles. The larger the number is, the greater
the number of VPSs. Figure 2 shows that the inflow on weekends is significantly higher
than that on weekdays during the almost full day in the Lot1 parking lot. The Lot1 parking
lot represents an entertainment area, which tends to be crowded on weekends. In contrast,
between 7 a.m. and 9 a.m., the inflow of the St5 and St7 parking lots is higher on weekdays
than on weekends, which may be influenced by the parking of mall workers. In addition,
we explore the impact of weather factors on the availability of VPSs.
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Figure 3. Impact of weather on VPS changes (7 a.m. to 7 p.m.). (a) Lot1 parking lot; (b) St5 parking
lot; (c) St7 parking lot.

The number of parking occupancies is different for hazardous weather and normal
weather. It can be imagined that when encountering hazardous weather such as heavy
rain, heavy snow, and smog, people may reduce travel in private cars, so the number of
available parking spaces will increase. The results for the three representative parking lots
are shown in Figure 3. For the entertainment area represented by Lot1 and the commercial
areas represented by St5 and St7, a significant decrease in parking occupancy was observed
for all hours of the day under hazardous weather conditions. To assess the impact of
hazardous weather conditions on parking demand, we define weather to be considered
hazardous if one or more of the following conditions are met: (1) fog or snow, (2) wind
speed greater than 39 km/h, (3) precipitation intensity greater than 0.15 inches per hour.
All other conditions are considered normal weather conditions. Similar to the research of
Yang et al. [38] and Zhao et al. [39], we conduct ablation experiments in Section 4 to explore
the influence of external factors such as weather on parking prediction.

3.2. Prediction Model

The DWT-ConvGRU-BRC model provided in this study consists of four components,
namely, the DWT component, three ConvGRU components, the meta-info feature extraction
component, and the BRC component (Figure 4). The first component is the DWT module,
which performs noise reduction on VPS data by means of the db3 wavelet basis function.
The second component is the ConvGRU module. A CNN can capture spatial correlation
well but not temporal correlation. A GRU and LSTM can both model temporal correlation
well, but a GRU maintains the prediction accuracy and reduces the running speed compared
to LSTM. Therefore, an integration of a CNN and GRU to form a three-layer ConvGRU
network can capture both temporal and spatial correlations. The third component is a
two-layer linear layer module that incorporates external factors such as temperature, wind
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speed, humidity, weekdays, and vacations into the model to enhance the accuracy of
long-term forecasts. Finally, feature fusion is performed using the BRC layer to obtain
predictions via the sigmoid function.
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3.2.1. Discrete Wavelet Transform (DWT) Denoising

Time series data obtained in practical applications are often contaminated by various
forms and degrees of noise. The discrete wavelet transform is very appropriate for noise
filtering, which makes it a good choice for time series data processing [40]. When time
series data are decomposed by a DWT, the original signal is separated into approximate
coefficients and detail coefficients at different resolution levels. The information of the
original signal is retained in the wavelet coefficients, and a perfect reconstruction of the
original data can be performed from these coefficients. However, some of the detail
coefficients that represent the detailed motion in the data can be identified as noise. These
coefficients can then be set to zero prior to the DWT reconstruction process to filter out the
noise from the original time series, and reconstruction involves reconstructing the time
series from every component except the noise. In other words, a DWT is a discretization of
the scales and translations of the fundamental wavelet. A DWT can be defined as:

Wϕ f (m, n) = 2−
m
2

∫
R

f (t)ψ(2−mt− n)dt (2)

where ψ is the complex conjugate of ψ, formula ψ satisfies
∫ +∞
−∞ ψ(t)dt = 0, and m and n

are integers.
Appropriate wavelet basis functions are very important to extract the features of park-

ing data. Kaplun et al. [41] selected the appropriate wavelet basis function based on entropy
estimation in the matching pursuit algorithm. Bhavsar et al. [42] chose the appropriate
wavelet basis function by calculating the magnitude of the mutual information. In this
paper, we measure the dependence between two variables by calculating the normalized
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mutual information (NMI), which places the mutual information between [0, 1], and it is
easy to choose a suitable wavelet basis function. The NMI is defined as:

NMI(X, Y) =
2(H(X)− H(X|Y))

H(X) + H(Y)
(3)

where H(X) and H(Y) represent the entropy of variables X and Y, respectively. H(X|Y) is
the conditional entropy for X given Y.

In this study, the basisfunctions of the compared wavelets are Daubechies (db3),
symlet (sym3), and coiflet (coif3). It can be seen from Figure 5 that db3 has the highest NMI
relative to other wavelet functions. After experimental comparison, the db3 wavelet basis
is selected for wavelet decomposition of the experimental time series, and the number of
decomposition levels is 3, which can remove the noise while maintaining the fluctuation
characteristics of the time series data as much as possible.
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We take the St7 parking lot as an example to show the specific process of the DWT
component. The original VPS data and its decomposition components are shown in Figure 6.
Red is the high-frequency sequence decomposed three times, and blue is the low-frequency
sequence. The denoising was performed using the threshold method, and then the denoised
time series was reconstructed. Figure 7 shows the comparison between the original and
denoised data. We can see that the overall regularity of the denoised data has increased,
and the trend tends to be smoother, which is more suitable for model construction. As in
Equation (1), the denoised data are Xt.
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3.2.2. Convolutional Gated Recurrent Unit (ConvGRU)

A key difference between a ConvGRU and GRU is that the former uses a convolution
operator rather than a fully concatenated operator. Therefore, a ConvGRU can better cap-
ture spatial–temporal correlations. Figure 8 shows the internal structure of the ConvGRU
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cell, where CAT and UCAT denote the concatenation and splitting operations, respectively.
The detailed information flow of a ConvGRU is shown in the following equations:

zt = σ(Wxz ∗ xt + Whz ∗ ht−1) (4)

rt = σ(Wxr ∗ xt + Whr ∗ ht−1) (5)
∧
ht = tanh(Wxh ∗ xt + rt � (Whh ∗ ht−1)) (6)

ht = (1− zt)�
∧
ht + zt � ht−1 (7)

where zt denotes the update gate, rt denotes the reset gate, and
∧
ht denotes the candidate

hidden state. xt denotes the input of the current step and ht and ht−1 denote the hid-
den state of the current and previous steps, respectively. xt and ht−1 are the input and
output vectors of the current time point, respectively, and W.z, W.r, and W.h are the con-
volutional kernels for each gate. In addition, σ and tanh are the sigmoid and hyperbolic
tangent activation functions, respectively, ∗ is the convolution operation, and � denotes
the Hadamard product.
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Specifically, given Xt (the denoised data) and ht−1 as inputs at time step t, the unit
first obtains the output of the update gate and reset gates, respectively, using Equations (4)

and (5). Then, using Equation (6), the temporal hidden state
∧
ht can be calculated, which

considers both the input Xt and the hidden state ht−1 produced by the previous ConvGRU
operator. The final hidden state ht of the unit is produced by a linear combination of

temporal hidden state
∧
ht and previous hidden state ht−1 using Equation (7). We denote the

output of this part as follows:

Oc = ht ⊕ · · · ⊕ ht−5(m−2) ⊕ ht−5(m−1) (8)

where m denotes the number of data divided into 5 min intervals and ⊕ is the concatena-
tion operation.

3.2.3. External Factor Extraction and Feature Learning

Parking spaces have obvious periodic characteristics. We analysed the impact of
external factors, such as weekdays, non-weekdays, hazardous weather, and normal weather,
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on the availability of parking spaces. External factors can affect parking events and are
an important part of the model. A two-layer linear layer was designed to consider the
impact of external factors on VPSs. We record the data collected from [43] on temperature,
wind speed, humidity, etc., and weekdays and non-weekdays as inputs to this section as n.
Bringing n into Equation (9), we obtain Ol ∈ RHW×1:

Ol = σ(wn,2σ(wn,1n + bn,1) + bn,2) (9)

where σ is the activation function and wn,i, bn,i, i = 1, 2 are the weights and deviations of
the i-th linear function. For feature learning, we convert the resulting output Ol ∈ RHW×1

to Ol ∈ RH×W via the Reshape function.
The outputs of the three ConvGRUs and the additional factor extraction component

are concatenated together, denoted as Oi = Oc ⊕Ol , and fed into the BRC layer. The BRC
layer is a composite function of three consecutive operations, i.e., batch normalization (BN),
rectified linear activation (ReLU), and a 1 × 1 convolution (Conv). We use the BRC layer to
implement feature reuse and propagation. Finally, the prediction is obtained by applying
the sigmoid function.

4. Experimental Results
4.1. Experimental Setup and Evaluation Indicators

In our experiments, we select 60% of the data as the training set, 20% as the validation
set, and the rest as the test set. We normalize the denoised data using Equation (10) and
then slice it into the model using single-step moving window data of length 10. For training,
the gradient descent optimization algorithm is the Adam [44] algorithm, the learning rate
is 0.01, the loss function is the MAE, the epoch size is 32, the batch size is 32, and the
number of ConvGRU layers (k) is 3. The numbers of VPSs after 5, 15, 30, 45, and 60 min
are predicted accordingly. To avoid contingency, each prediction task was independently
repeated 30 times, and the mean values were taken as the results. The DWT-ConvGRU-
BRC model is implemented using PyTorch version 1.11.0, and the experimental equipment
includes a 12th Gen lntel(R) Core(TM) i5-12600KF processor and an NVIDIA GeForce GTX
30600Ti GPU with 16 GB memory.

x∗ =
x−min

max−min
(10)

where max and min represent the maximum and minimum values of the sample data,
respectively, and max–min represents the range.

We use the mean absolute error (MAE), mean absolute percentage error (MAPE), and
root mean square error (RMSE) to measure the accuracy of the predicted values. All three
evaluation metrics have a range of [0, +∞) and are equal to 0 when the predicted value
exactly matches the true value, i.e., a perfect model; the larger the error is, the larger the
value. The definitions are shown in Equations (11)–(13).

MAE =
1
n

n

∑
i=1

∧
|yi−yi| (11)

MAPE =
100%

n

n

∑
i=1

∧
|yi − yi|

yi
(12)

RMSE =

√
1
n

n

∑
i=1

(
∧
yi − yi)

2
(13)

where yi denotes the actual VPSs,
∧
yi denotes the predicted VPSs, and n denotes the time step.
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4.2. Results and Analysis

Fifty experiments were carried out, and the mean was selected as the result to improve
the statistical significance of the difference in precision. Table 1 shows the detailed RMSE,
MAE, and MAPE data for our DWT-ConvGRU-BRC model. Figure 9 shows the effect
of the DWT-ConvGRU-BRC model in the Lot1, St5, and St7 parking lots for 5, 15, 30, 45,
and 60 min VPS predictions, where the x-axis represents the time interval, and the y-axis
represents the number of VPSs. Our model is robust in predicting the availability of VPSs
in multiple parking lots.

Table 1. Performance evaluation in terms of the MAE, RMSE, and MAPE.

DWT-ConvGRU-BRC
without External Factors

DWT-ConvGRU-BRC
with External Factors

5 min 15 min 30 min 45 min 60 min 5 min 15 min 30 min 45 min 60 min

RMSE St1 2.87 4.59 5.55 8.10 9.48 2.93 3.76 5.81 7.21 9.03
St2 5.72 4.56 7.26 8.88 10.98 3.22 4.31 6.70 9.29 10.26
St3 3.31 4.14 6.13 8.42 10.78 3.21 3.80 6.20 8.06 9.44
St4 3.74 4.97 8.52 9.75 13.90 3.65 4.74 7.46 10.43 11.80
St5 4.16 4.97 8.43 12.57 14.38 3.77 5.60 8.92 12.08 14.64
St6 5.20 6.17 9.47 12.12 15.00 4.86 6.07 9.79 11.98 14.83
St7 5.20 6.99 12.14 16.90 21.40 5.07 6.49 10.44 15.33 19.35
St8 6.14 7.21 12.18 16.60 22.18 5.42 6.97 11.14 16.38 20.74
St9 2.63 3.32 4.03 4.67 5.40 1.98 3.09 4.06 4.87 5.49

Lot1 9.21 12.27 18.84 34.60 41.72 9.19 12.01 19.54 27.38 34.50
Library 2.48 2.28 3.34 3.65 4.49 2.32 2.28 3.73 4.58 5.23

MAE St1 2.01 2.91 3.85 5.64 6.48 2.08 2.58 4.00 5.13 6.19
St2 3.22 4.31 6.70 9.29 10.26 2.29 3.12 4.91 6.51 7.44
St3 2.28 2.89 4.34 5.88 7.27 2.25 2.65 4.44 5.59 6.76
St4 2.67 3.54 5.88 6.77 9.89 2.56 3.40 5.33 7.24 8.17
St5 3.11 3.51 5.85 8.71 10.01 2.62 4.01 6.11 8.03 10.20
St6 3.77 4.36 6.88 8.77 11.43 3.43 4.36 6.99 8.80 11.08
St7 3.66 4.99 8.42 11.54 14.03 3.60 4.65 7.41 10.58 12.89
St8 4.09 4.93 8.35 11.10 14.26 3.80 4.97 7.79 11.38 13.78
St9 1.81 2.38 2.86 3.32 3.83 1.42 2.30 2.86 3.47 4.06

Lot1 5.57 7.77 11.75 21.60 25.53 5.67 7.68 12.67 18.22 23.18
Library 1.59 1.43 2.18 2.40 3.04 1.64 1.56 2.30 3.00 3.19

MAPE St1 0.82 1.24 1.56 2.30 2.64 0.84 1.07 1.65 2.07 2.51
(%) St2 0.76 0.63 1.01 1.25 1.52 0.44 0.60 0.94 1.25 1.43

St3 1.04 1.37 2.03 2.75 3.37 1.01 1.20 2.00 2.55 3.08
St4 0.56 0.74 1.26 1.46 2.12 0.54 0.71 1.13 1.56 1.76
St5 0.66 0.78 1.30 1.90 2.20 0.58 0.88 1.34 1.79 2.21
St6 0.70 0.84 1.33 1.68 2.18 0.64 0.82 1.32 1.66 2.11
St7 0.79 1.10 1.83 2.57 2.96 0.78 0.97 1.56 2.26 2.75
St8 0.62 0.75 1.27 1.69 2.19 0.57 0.74 1.17 1.67 2.08
St9 0.74 0.96 1.16 1.34 1.55 0.57 0.92 1.16 1.40 1.63

Lot1 0.68 0.93 1.60 3.49 4.14 0.69 0.95 1.64 2.32 3.07
Library 0.32 0.28 0.44 0.48 0.60 0.33 0.31 0.46 0.60 0.64

From Section 3, we conclude that parking occupancy is affected by external factors
such as weather. This is consistent with the conclusions drawn in [33–35,38,39]. Therefore,
we performed ablation experiments in Table 1 to compare the effect of the presence or
absence of external factors on VPS prediction. We find that the inclusion of external factors
such as temperature, wind speed, weekdays, and weekends was beneficial in improving
the accuracy of the forecasts. For the RMSE, MAE, and MAPE, the forecasting models
with external factors outperformed those without external factors in 40, 35, and 39 of the
55 forecasting tasks, respectively. This shows that considering external factors can improve
the accuracy of VPS prediction, so it can be said that external factors have a significant
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impact on parking prediction. Figure 10 specifically shows the prediction effect of our
proposed DWT-ConvGRU-BRC model for each parking lot. It can be seen from the figure
that our model has good timeliness in predicting the number of VPSs in multiple parking
lots, and it is relatively robust to changes in the spatial–temporal correlation of VPSs and
can accurately achieve predictions.
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As some models can only predict for a single parking lot, we compared the effective-
ness of these models in predicting the number of VPSs at 5, 15, 30, 45, and 60 min, using the
St7 parking lot as an example. The LSTM and GRU models can effectively extract temporal
information from nonlinear time series data, but they fail to consider the spatial correlation
between parking lots within a region. The ConvGRU model outperforms the ConvLSTM
model in terms of running speed while capturing spatial–temporal correlations. After
wavelet noise reduction, the forecasts improved significantly, and external factors, such as
weather, improved the accuracy of the long-term forecasts. As illustrated in Table 2, the
proposed DWT-ConvGRU-BRC model is significantly superior to the benchmark methods.

Table 2. Comparison of operating results.

Model Indicator 5 min 15 min 30 min 45 min 60 min

RMSE 14.86 17.14 20.84 29.24 34.45
LSTM MAE 8.54 11.07 14.92 26.71 33.12

MAPE(%) 1.32 1.72 2.31 4.15 5.17
RMSE 10.41 13.86 18.75 23.42 29.54

GRU MAE 7.80 11.40 15.15 19.25 21.74
MAPE(%) 1.57 2.50 2.93 4.36 5.07
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Table 2. Cont.

Model Indicator 5 min 15 min 30 min 45 min 60 min

RMSE 7.14 10.46 14.41 17.83 21.73
ConvGRU MAE 4.74 7.25 10.01 12.31 14.59

MAPE(%) 1.01 1.51 2.08 2.62 3.16
RMSE 7.70 10.55 14.28 16.87 20.01

ConvLSTM MAE 5.15 7.30 9.91 11.45 13.14
MAPE(%) 1.09 1.54 2.07 2.35 2.73

RMSE 7.23 10.75 15.10 17.88 19.43
dConvLSTM-DCN MAE 4.98 7.36 10.18 11.77 13.02

MAPE(%) 1.04 1.53 2.11 2.47 2.68
RMSE 5.2 6.99 12.14 16.9 21.4

DWT-ConvGRU MAE 3.66 4.99 8.42 11.54 14.03
MAPE(%) 0.79 1.1 1.83 2.57 2.96

RMSE 5.07 6.49 10.44 15.33 19.35
DWT-ConvGRU-BRC MAE 3.6 4.65 7.41 10.58 12.89

MAPE(%) 0.78 0.97 1.56 2.26 2.75

To illustrate the ability of the proposed model to predict the actual number of VPSs, in
Table 3, we present a detailed comparison between the actual and predicted number of St7
parking lot VPSs (from 10:00 to 11:00, 6 May 2021) output by the proposed DWT-ConvGRU-
BRC model. We also calculate the MAE, MAPE, and RMSE values for the time period. The
output values of the DWT-ConvGRU-BRC model are very close to the real values.

Table 3. Comparisons between the real and predicted numbers of VPSs at the St7 parking lot.

Time Real Predicted Values

Point Value 5 min 15 min 30 min 45 min 60 min

6 May 2021 10:00 652 647 643 654 674 669
6 May 2021 10:05 652 645 639 643 667 661
6 May 2021 10:10 644 646 636 632 659 655
6 May 2021 10:15 641 642 633 620 648 645
6 May 2021 10:20 643 641 632 622 637 636
6 May 2021 10:25 639 641 629 617 625 626
6 May 2021 10:30 638 642 625 614 611 615
6 May 2021 10:35 628 632 624 615 597 604
6 May 2021 10:40 615 623 624 606 593 591
6 May 2021 10:45 609 613 616 605 587 578
6 May 2021 10:50 603 600 606 605 582 564
6 May 2021 10:55 594 594 596 605 582 557
6 May 2021 11:00 584 584 585 591 575 554

MAE 3.23 7.54 12.08 17.15 20.69
MAPE(%) 0.51 1.19 1.91 2.74 3.36

RMSE 4.01 8.45 14.17 18.69 23.46

In addition, model performance evaluation should consider both prediction accuracy
and time consumption. Table 4 compares the running times per round of the LSTM, GRU,
ConvGRU, ConvLSTM, dConvLSTM-DN, DWT-ConvGRU, and DWT-ConvGRU-BRC
models. The DWT-ConvGRU-BRC model considers the effects of factors such as wavelet
noise reduction and external factors, so it is slightly inferior to the models that do not
consider these factors in terms of running speed, but compared to the dConvLSTM-DN
model proposed in [36], our model shows a significant improvement in running speed. In
conclusion, our proposed model not only improves the effectiveness of predictions but also
improves the running speed.
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Table 4. GPU runtimes of different prediction methods.

Model LSTM GRU ConvLSTM ConvGRU

Runtime (s/epoch) 3.34 2.46 17.21 15.07

Model dConvLSTM-DCN ConvGRU-BRC DWT-ConvGRU DWT-ConvGRU-BRC

Runtime (s/epoch) 21.82 15.51 16.04 16.28

5. Conclusions

This paper proposes a deep learning model for occupancy prediction of multiple
parking lots. The model incorporates DWT, ConvGRU, and BRC modules and has the
flexibility to take multiple spatial–temporal structured data sources as inputs. The perfor-
mance of the model is evaluated using a case study from 11 public parking lots in Santa
Monica, California, USA, in which VPS data, weather data, and weekday and weekend
data are used. The experimental results show that our model can achieve considerably
high accuracy with MAPEs of less than 2% for short-term predictions and less than 4% for
long-term predictions. The DWT-ConvGRU-BRC model significantly outperforms the base-
line LSTM and GRU methods. In general, we found that noise reduction of VPS data using
a DWT can improve prediction accuracy and that combining weather information and
weekday and weekend information can improve the performance of long-term predictions
of parking occupancy.

Prediction of available parking spaces is an integral part of parking guidance informa-
tion systems. Available parking space predictions can improve the effectiveness of parking
guidance system information, which can help drivers plan driving routes and find vacant
parking spaces. Furthermore, if we have a reliable parking prediction algorithm, we can
apply dynamic parking pricing to control the parking demand of each parking lot, thereby
assisting traffic planning and management and reducing energy consumption and traffic
congestion. In future work, we will concentrate on further improving the adaptability by
considering other external influences, such as POI information, traffic incident data, traffic
flow data, etc. At the same time, future research will also consider how the running time of
the model can be optimized while ensuring prediction accuracy.
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