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Abstract: The characterization of pressure-sensitive paint (PSP) is affected by many physical and
chemical factors, making it is difficult to analyze the relationship between characterization and
influencing factors. An artificial neural network (ANN)-based method for predicting pressure
sensitivity using paint thickness and roughness was proposed in this paper. The mean absolute
percentage error (MAPE) for predicting pressure sensitivity is 6.5088%. The difference of paint
thickness and roughness between sample and model surface may be a source of experimental
error in PSP pressure measurement tests. The Stern-Volmer coefficients A and B are strongly linked.
Pressure sensitivity is approximately equal to coefficient B, so coefficient A is predicted using pressure
sensitivity based on the same ANN, and the MAPE of predicting A is 2.1315%. Then, we try to
calculate the pressure by using the thickness and roughness on a model to predict pressure sensitivity
and Stern-Volmer coefficient A. The PSP pressure measurement test was carried out at the China
Aerodynamic Research and Development Center. Using the Stern-Volmer coefficient calculated by
the in situ method, the method in this paper, and the sample calibration experiment, the root mean
square errors (RMSE) of the pressure are 47.4431 Pa, 63.4736 Pa, and 73.0223 Pa, respectively.

Keywords: pressure-sensitive paint; characterization prediction; artificial neural network; pressure
measurement

1. Introduction

Pressure-sensitive paint (PSP) pressure measurement technology is a non-contact full-
field pressure measurement method based on image processing. It can provide continuous
pressure measurement data, and has the advantages of high spatial resolution, low cost,
short experimental preparation time, and small flow field interference. When laser or UV
LED is used as an excitation light source, an oxygen quenching reaction occurs between
luminescent molecules and oxygen in the paint. The changes in fluorescence intensity of
the model surface paint are converted into a pseudo-color image by CCD camera. Finally,
the surface pressure distribution was obtained by computer graphics processing [1].

At present, PSP technology tends to be mature and has been applied in numerous
wind tunnel pressure tests [2–6]. In harsh experimental environments, such as helicopter
rotor pressure tests, the image is prone to blur, and the paint may flake off due to high-speed
rotor rotation and surface temperature increase. Although algorithms such as deblurring,
temperature correction, and filtering can be used to correct the surface pressure distribution
results [7], it greatly increases the processing time of test data and reduces the accuracy
of results. Fast response PSP is a PSP that reduces response time from milliseconds to
hundreds of microseconds. The emergence of fast response PSP effectively solves the
problem in the helicopter rotor pressure test [8]. The ideal PSP has high pressure sensitivity,
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low temperature sensitivity, and low response time. Currently, no PSP can achieve high
pressure sensitivity, low temperature sensitivity, and low response time at the same time.
The factors affecting the characterization of PSP need to be further studied.

The main way to study PSP characterization is to change one of the influencing
factors, such as using a different probe or binder during the spraying process, changing
the ratio of certain materials, or changing the thickness of the paint. Then, calibrate the
characterizations through calibration experiments, and analyze the relationship between the
influencing factors and characterizations through phenomenological modeling or statistical
modeling. For a given performance range, such as the pressure sensitivity of a given range,
we can use the relationship between the characterizations of the paint and the influencing
factors to analyze the required parameters of the paint under the target characterization,
such as luminous probe concentration, paint thickness, and so on. The rapid prediction
of PSP characterizations can provide guidance for studying the relationship between
potential influencing factors and characterizations. As early as 2004, Peng, D. et al. found
that the response time of PC-PSP was affected by the thickness of the adhesive and the
oxygen diffusion rate [9]. In 2018, Jiao, L. et al. established first-order models of fast
PSP coating response time, oxygen diffusion of porous polymer layer, and the reaction
of oxygen with luminescent molecules [10]. The research of Hayashi, T. and Okudera T.
et al. in 2021 shows that the paint characterizations are not only related to the chemical
properties and ratio of substrate materials [11,12], but also the physical properties such as
paint thickness and roughness in the spraying process, which affect the characterization
of pressure-sensitive paint. When the paint thickness is greater than 8 µm, the problem of
uneven luminous life of the fast PSP paint can be improved [13]. Many studies have shown
that its characterization is affected by various chemical and physical factors. These studies
show that physical factors such as thickness appear to be an extremely important factor. In
calibration experiments, we found that different paint thicknesses and roughnesses lead to
significant differences in the pressure sensitivity of a fast-response PSP. Therefore, in PSP
pressure measurement tests, differences in paint thickness and roughness between the test
model and the sample may be a large source of error. The purpose of this study was to find
a way to predict pressure sensitivity using paint thickness and roughness, and to find a
way to avoid PSP pressure measurement errors due to differences in paint thickness and
roughness between model surfaces and samples.

Neural networks have been widely touted as solving many forecasting problems [14].
At present, an artificial neural network (ANN) has been used to approximate nonlinear
functions and has achieved great success in the field of engineering technology [15–19].
ANNs need large data sets to ensure their prediction accuracy. Due to the large time
cost and financial cost of PSP characterization calibration, the number of data points is
less than 50 data points. Based on the limited experimental observation data, a data
enhancement method is used to increase the number of data points and the dropout layer is
used to further improve the prediction accuracy. In order to further evaluate the prediction
accuracy of this paper, we propose a method to measure the delta wing pressure by using
the prediction coefficient in the Stern-Volmer equation. The pressure distribution of the
delta wing is calculated by using the coefficients predicted by the ANN in this paper, and
the error of this method is discussed in the test of the pressure measurement of the delta
wing in the China Aerodynamic Research and Development Center (CARDC).

2. Experimental Setup
2.1. Sample Preparation

The fast response PSP used in this paper is composed of a high concentration of
ceramic particles mixed with a small amount of adhesive. Its structure is shown in Figure 1.
PC-PSP uses a porous structure to enhance the diffusion of oxygen through the pores,
thereby rapidly responding to pressure changes.
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Figure 1. Structure schematic of the fast response PSP.

The samples are circular thin aluminum sheets. We sprayed 30 samples divided into
5 groups through the air spray method. We used the spray gun to sweep the surface of
the samples at a constant speed but different sweep times: 10 times, 15 times, 20 times,
25 times, 30 times, and 35 times, to form different paint thickness and roughness. As shown
in Figure 2, for PSP samples numbered 0 to 5, the sweep times increases gradually.
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2.2. Characterization Calibration of PSP

The pressure sensitivity of the PSP can be obtained with a static calibration system.
The schematic of the calibration chamber is shown in Figure 3. A UV LED light source
with a wavelength of 405 nm is used as the excitation light source to promote the oxygen
quenching reaction. The sample is placed on the heating/cooling table, and the pressure and
temperature can be changed by air source and liquid nitrogen. Pressure and temperature
sensors are used to accurately read the pressure and temperature in the chamber. Pressure
sensitivity is calibrated by changing the pressure under constant temperature conditions.
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Figure 3. Schematic of the PSP static calibration system.

The pressure and luminescent intensity can be modeled by a simplified form of the
Stern-Volmer equation, which can be expressed as:

Ire f

I
= A(T) + B(T)

P
Pre f

(1)

where Iref and Pref are the luminescent intensity and the air pressure at a reference condition,
respectively. The temperature-dependent coefficients A and B are determined through
calibration experiments. During the pressure calibration, we found that there seems to be a
strong correlation between coefficients A and B. The changes of coefficients A and B of the
30 samples are shown in Figure 4, and they change simultaneously and regularly.
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The pressure sensitivity is approximately equal to coefficient B. So, we try to predict
the pressure sensitivity using the paint thickness and roughness of the model surface based
on the ANN, then use the pressure sensitivity to predict coefficient A. We substitute the
values of coefficient A and pressure sensitivity (coefficient B) into the Stern-Volmer equation
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to calculate the pressure. In this way, we can avoid the problem of paint thickness and
roughness differences between samples and models in PSP pressure measurement tests.

2.3. Dataset

Two datasets were prepared in this work. The first dataset D1 consists of paint
thickness, roughness, and pressure sensitivity. There are 30 pieces of data in the dataset,
including training set, validation set, and test set. We selected 5 pieces of data as test set,
and the remaining 25 pieces of data were randomly divided into training set and validation
set. The composition of D1 is shown in Table 1. Table 2 lists the maximum, minimum, and
average of each element in this dataset.

Table 1. The composition of D1.

Inputs Outputs

Sample No. Thickness (µm) Roughness (µm) Pressure Sensitivity
(%/kPa)

1 15.5 3.27 0.600
2 23.0 0.90 0.709
... ... ... ...
29 56.6 1.03 0.767
30 90.6 0.28 0.774

Table 2. The maximum, minimum, and average of the elements in D1.

Component Minimum Maximum Average

Thickness (µm) 15.5 90.6 36.08
Roughness (µm) 0.38 4.22 1.24

Pressure Sensitivity (%/kPa) 0.596 0.815 0.721

The second dataset D2 consists of pressure sensitivity and coefficient A of the same
30 samples. It is divided into training set, validation set, and test set in the same way as
D1. The composition of D2 is shown in Table 3. Table 4 lists the maximum, minimum, and
average of each element in this dataset. The ANN used to predict pressure sensitivity is
denoted as N1.

Table 3. The composition of D2.

Inputs Outputs

Sample No. Pressure Sensitivity (%/kPa) A

1 0.600 0.29263
2 0.709 0.26869
... ... ...
29 0.767 0.16209
30 0.774 0.14736

Table 4. Distribution of elements in D2.

Component Minimum Maximum Average

Pressure Sensitivity (%/kPa) 0.596 0.815 0.721
Apressure 0.14151 0.29263 0.2082
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2.4. Pressure Measurement Test

The delta wing pressure measurement test was completed in the ∅ 0.7 m wind tunnel
of CARDC. The setup of the delta wing pressure measurement test is shown in Figure 5.
There are two CCD cameras near the shooting place. The fast response PSP is sprayed on the
upper part of the delta wing, which is excited by a UV LED and fluoresces. First, we turned
off the UV LED to create a completely dark environment. Then, 10 background images
were captured using the same camera settings as in the experiment and the average of these
images is called Idark. We collected 10 images under reference and wind-on conditions
and subtracted Idark from the corresponding raw images. Then, the average values of the
images collected under these two conditions are denoted as I and Iref, respectively. The
ANN used to predict coefficient A is denoted as N2.
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We sprayed the fast response PSP on a circular thin aluminum sheet to make the
sample, and calibrated coefficients A and B through the static calibration system. The
true value of the pressure is obtained by an electronic-scanned pressure sensor. The
thickness gauge and surface roughness measuring instrument were used to measure the
paint thickness and roughness on the surface of the delta wing. Then, the paint thickness
and roughness were used to predict the pressure sensitivity coefficient through N1, and
finally, the predicted pressure sensitivity was used to predict coefficient A through N2.

According to Equation (1), we can calculate the pressure of the delta wing by the
following equation:

P =
[

Ire f
I − B(T)]

A(T)
× Pre f (2)

Using the in situ calibration method [20], the calibration experiment, and the method
in this paper, three groups of coefficients A and B were obtained, and Equation (2) was used
to calculate the pressure. The feasibility of the method proposed in this paper is evaluated
by comparing the root mean square error (RMSE) of the pressure calculated by these three
methods.
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3. Neural Network Design
3.1. Structure

Generally, there exist many neural network methods or types; the back propagation
(BP) neural network is mature both in network theory and performance. Its outstanding
advantages are strong nonlinear mapping ability and flexible network structure. The
schematic of the BP neural network we used is shown in Figure 6. The neural network
consists of a fully connected layer, including an input layer, an output layer, and a hidden
layer. In theory, the more hidden layers a neural network has, the stronger the fitting
function will be. However, deeper layers may lead to overfitting and increase the difficulty
of training, thus making the model difficult to converge. We chose four hidden layers with
eight neurons in each hidden layer. The ReLU function serves as the activation function
of the hidden layer. In this work, we have two neural network models, N1 and N2, which
have the same structure except for the input layer and the output layer neurons. For N1,
paint thickness and roughness are considered as inputs to the neural network model, while
pressure sensitivity is considered as outputs for the neural network model. For N2, the
pressure sensitivity is the input and coefficient A is the output.
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3.2. Data Augmentation

The schematic of the data augmentation method is shown in Figure 7. The method
randomly generates augmentation data points for the calibrated experimental data points
within a certain confidence interval. The 30 pieces of data in D1 are denoted as Ao and the
model trained with Ao is denoted as Mo. Each calibration data point randomly generates
1 augmentation data point to form a new dataset, denoted as A1. We call the number
of augmentation data points the data augmentation factor. The same method is used to
increase the data augmentation factor to 10, 50, 100, 500, and 1000; those datasets are
denoted as A10, A50, A100, A500, and A1000, respectively. The ANNs trained with the above
augmentation datasets are denoted as M1, M10, M50, M100, M500, and M1000, respectively.
The corresponding relationship between the data augmentation factor, dataset, and the
corresponding neural network model is shown in Table 5. This method is not applied to
dataset D2 due to the simplicity of the prediction task.
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Table 5. Dataset and corresponding neural network model.

Data Augmentation Factor Dataset Model

\ Ao Mo
1 A1 M1
10 A10 M10
50 A50 M50

100 A100 M100
500 A500 M500
1000 A1000 M1000

3.3. Dropout

In the model of machine learning, if the model has too many parameters and too few
training samples, the trained model easily produces the overfitting phenomenon. In order
to prevent overfitting in the training phase, the neurons were randomly removed. For
each layer in a dense (or fully connected) network, a probability p of dropout is given.
In each iteration, the probability that each neuron is removed is p. The paper by Hinton
et al. suggests an input layer dropout probability of “p = 0.2” and a hidden layer dropout
probability of “p = 0.5” [21]. Obviously, there is interest in the output layer, which is a
prediction. So, we do not apply dropout at the output layer. The schematic of the dropout
method is shown in Figure 8. To prevent overfitting under the large data augmentation
factor, the dropout method is applied when the data augmentation factor is 10, 50, 100, 500,
and 1000.

Mathematically, it is said that the drop probability of each neuron follows a Bernoulli
distribution with probability p. Thus, an element-wise operation is performed on the
neuron vector (layer) with a mask, where each element is a random variable following a
Bernoulli distribution. The forward propagation of a neural network without dropout is
calculated as follows:

y = f (Wx) (3)
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The forward propagation of a neural network with dropout is calculated as follows:

∼
y = f (Wx) ◦m, mi ∼ Bernoulli(p) (4)

where y is the result obtained after weighting the output x of each neuron in the previous
layer by weight W, and m represents a vector consisting of multiple independent variables
following the same Bernoulli distribution. The output y is transformed into

∼
y by dropout.

3.4. Loss Function

The loss function is used to represent the difference between the predicted result
y* and the true value y. In the process of neural network training, the loss function is
continuously reduced by changing all the parameters in the neural network, so as to train
the neural network model with higher accuracy. Mean absolute percentage error (MAPE)
is expressed as follows and used to evaluate the model:

MAPE =
100
n

n

∑
i=1

∣∣yi − y∗i
∣∣

yi
% (5)

3.5. Training

Typically, the dataset is divided into the training set and the validation set in a ratio of
8:2. However, in order to make the training set as large as possible to ensure the prediction
accuracy, the ratio is 9:1 in this work because the dataset is very small. N1 and N2 are
trained in the same way. The initial learning rate is 10−4. The Adam algorithm was used to
optimize the neural network, and network parameters affecting model training and model
output were updated and obtained. The ANN was trained 40,000 rounds to make it close
to or reach the optimal value.
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4. Results and Discussion
4.1. Results of N1

Table 6 shows the prediction error obtained by training N1 with Ao, A1, A10, A50,
A100, A500, and A1000. We used MAPE to evaluate the error between the predicted and true
values for the five entries in the test set. Each ANN model is trained 40,000 times separately.
Since the initial coefficients of the network are random, the final evaluation result is the
average of the evaluation results after five training sessions.

Table 6. Prediction error of N1.

Model MAPE (%)

Mo 9.1749
M1 10.2517
M10 9.2730
M50 8.8186
M100 9.1405
M500 9.1208
M1000 9.0245

Without using the data augmentation method, the MAPE of predicting pressure
sensitivity is about 9.1749%. After using the data augmentation method, the lowest MAPE
is 8.8186%, and the data augmentation factor is 50. When the data augmentation factor is
100, the prediction error is 9.1405%, which is greater than M50. With the increase of the data
augmentation factor, the change of MAPE is negligible. This may be due to the limited
features extracted by the neural network and the result of overfitting after neural network
training when the original data set is small and the data augmentation factor is too large.

In order to reduce the effect of overfitting in training, we try to apply the dropout
method to M10, M50, M100, M500, and M1000. A dropout layer is added after each hidden
layer and the new models are denoted as M10_dropout, M50_dropout, M100_dropout, M500_dropout,
and M1000_dropout. The MAPE and improvements of the above models are shown in Table 7.

Table 7. Prediction error of M10, M50, M100, M500, M1000, M10_dropout, M50_dropout, M100_dropout,
M500_dropout, and M1000_dropout.

Model MAPE (%) Improvement (%)

M10 9.2730
2.2608M10_dropout 7.0122

M50 8.8186
2.3098M50_dropout 6.5088

M100 9.1405
2.0278M100_dropout 7.1127

M500 9.1208
2.1839M500_dropout 6.9369

M1000 9.0245
2.1568M1000_dropout 6.8677

In the case of the same data augmentation factor, the prediction accuracy of the neural
network after applying the dropout method is improved by about 2% in each model. It
is proved that the dropout method can effectively improve the prediction accuracy of
pressure sensitivity under large datasets. Among the neural networks without dropout,
M50 has the lowest MAPE of 8.8186%. Compared with M50_dropout neural network model,
the prediction accuracy is improved by 2.3098%. It can be seen that for the fast response
PSP characterization prediction task, combining the data augmentation method with the
dropout method can further improve the prediction accuracy of the neural network.
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M50_dropout is used to predict pressure sensitivity. The y=x function is used to indicate
that the true value is equal to the predicted value. The red area indicates the 5% error band
of the true values. Plotting the distribution of the predicted values of pressure sensitivity
within the 5% error band on the training set and test set is shown in Figures 9 and 10,
respectively. On the training set there are 1250 points, and most of the predicted values of
pressure sensitivity are distributed around the error range of the true values. The MAPE of
predicting pressure sensitivity on the test set was 6.5088%, slightly higher than the 5.5251%
on the training set.
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4.2. Result of N2

We trained N2 using the dataset D2. The predicted results and experimental values
of coefficient A are shown in Table 8. The absolute error of prediction is less than 0.001,
and the MAPE between the prediction and the experimental value of the five data points
in the test set is 2.1315%. The distribution of the predicted values for the 5% error band
coefficient A on the training set and test set is shown in Figures 11 and 12, respectively. All
the predicted points of coefficient A on the test set are distributed within the 5% error band
of the true value. The MAPE of predicting coefficient A on the test set is 2.1315%, which is
smaller than the 5.4576% on the training set. This may be due to the small data set.

Table 8. Absolute error of coefficient A.

Sample No. Experimental Value Prediction Absolute Error

1 0.27744 0.2784 0.0010
2 0.17874 0.1792 0.0004
3 0.17379 0.1744 0.0006
4 0.15363 0.1629 0.0093
5 0.24381 0.2498 0.0060

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 16 
 

4.2. Result of N2 
We trained N2 using the dataset D2. The predicted results and experimental values of 

coefficient A are shown in Table 8. The absolute error of prediction is less than 0.001, and 
the MAPE between the prediction and the experimental value of the five data points in 
the test set is 2.1315%. The distribution of the predicted values for the 5% error band co-
efficient A on the training set and test set is shown in Figure 11 and Figure 12, respectively. 
All the predicted points of coefficient A on the test set are distributed within the 5% error 
band of the true value. The MAPE of predicting coefficient A on the test set is 2.1315%, 
which is smaller than the 5.4576% on the training set. This may be due to the small data 
set. 

Table 8. Absolute error of coefficient A. 

Sample No. Experimental Value Prediction Absolute Error 
1 0.27744 0.2784 0.0010 
2 0.17874 0.1792 0.0004 
3 0.17379 0.1744 0.0006 
4 0.15363 0.1629 0.0093 
5 0.24381 0.2498 0.0060 

 
Figure 11. Distribution of coefficient A prediction points in the 5% error band on the training set. 

 

Figure 11. Distribution of coefficient A prediction points in the 5% error band on the training set.



Appl. Sci. 2023, 13, 3504 13 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 16 
 

4.2. Result of N2 
We trained N2 using the dataset D2. The predicted results and experimental values of 

coefficient A are shown in Table 8. The absolute error of prediction is less than 0.001, and 
the MAPE between the prediction and the experimental value of the five data points in 
the test set is 2.1315%. The distribution of the predicted values for the 5% error band co-
efficient A on the training set and test set is shown in Figure 11 and Figure 12, respectively. 
All the predicted points of coefficient A on the test set are distributed within the 5% error 
band of the true value. The MAPE of predicting coefficient A on the test set is 2.1315%, 
which is smaller than the 5.4576% on the training set. This may be due to the small data 
set. 

Table 8. Absolute error of coefficient A. 

Sample No. Experimental Value Prediction Absolute Error 
1 0.27744 0.2784 0.0010 
2 0.17874 0.1792 0.0004 
3 0.17379 0.1744 0.0006 
4 0.15363 0.1629 0.0093 
5 0.24381 0.2498 0.0060 

 
Figure 11. Distribution of coefficient A prediction points in the 5% error band on the training set. 

 
Figure 12. Distribution of coefficient A prediction points in the 5% error band on the test set.

4.3. Results of Pressure Measurement Test

During the experiment, the reference pressure Pref in the wind tunnel was 95,000 Pa,
and the temperature in the wind tunnel changed from 294.85 K to 295.45 K after heat
balance. The angle of attack of the delta wing was set to 30◦ and the wind speed was set to
30 m/s. The image taken under wind-on conditions is shown in Figure 13. The pressure
holes in the chord direction are denoted as S1, S2, S3, S4, and S5. The global pressure
distribution diagram of the delta wing calculated by the method proposed in this paper is
shown in Figure 14. There is a distinct area of low pressure at the front of the delta wing. In
addition, the Stern-Volmer coefficients A and B are obtained through the in situ method
and calibration experiment, and the pressure measurement results are obtained according
to Equation (2) and compared with the method proposed in this paper.

In order to find out whether the data augmentation method and the dropout method
can improve the prediction accuracy of pressure sensitivity, we use the trained neural
networks Mo and M50, which have the best effect after using these two methods, to predict
pressure sensitivity. Then we use the two pressure sensitivities through N2 to predict
coefficient A, and finally calculate the pressure separately. We denoted the pressure ob-
tained using these two models as method in this paper-Mo and method in this paper-M50.
The pressure distributions of the 24 pressure holes from S3-1 to S5-10 obtained by using
the in situ method, the method proposed in this paper-Mo, the method proposed in this
paper-M50, and the calibration experiment are shown in Figure 15. Using the pressure
measured by the electronic-scanned pressure sensor as the true value, we evaluated the four
methods using RMSE. The RMSE of the four methods is shown in Table 9. The pressure
value measured by the in situ method is closest to the true value, and the RMSE of the
method in this paper-M50 is less than that of the method in this paper-Mo, which proves
that the data augmentation method and dropout method can improve the accuracy of
pressure sensitivity prediction. So, we should use the M50 to predict the pressure sensitivity.
The RMSE of the method in this paper-M50 is greater than that of the in situ method, but
less than that of the sample calibration experiment. It can be said that the accuracy of
the ANN is quite accurate and worthy of attention. What needs illustration is that when
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the pressure hole is located at the bottom of the delta wing, the error is very large, which
may be the result of ignoring the inhomogeneity of ultraviolet light and the influence of
temperature in this paper.
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Figure 15. The distribution of pressure measured by electronic-scanned pressure sensor, the in situ
method, the method in this paper-Mo, the method in this paper-M50, and the sample calibration
experiment.

Table 9. RMSE of pressure calculated by the in situ method, the method in this paper-Mo, the method
in this paper-M50, and the sample calibration experiment.

Methods RMSE (Pa)

In situ 47.4431
Method in this paper-Mo 63.4736
Method in this paper-M50 139.6155

Sample calibration experiment 73.0223

5. Conclusions

In this work, the pressure sensitivity is predicted quickly and accurately through the
thickness and roughness of the paint based on an ANN. After applying the data augmenta-
tion method, its prediction error MAPE is reduced from 9.2730% on the original data set to
8.8186%. In order to prevent over-fitting in the training stage, the discarding method was
adopted, and its MAPE was reduced to 6.5088%. Through the PSP pressure measurement
experiment, it is further verified that the two methods can improve prediction accuracy. In
terms of characterization research, this method can quickly obtain the relationship between
pressure sensitivity and paint thickness and roughness. After inputting paint thickness
and roughness, pressure sensitivity can be obtained. By inputting multiple sets of paint
thickness and roughness into the trained ANN, and then screening the pressure sensitivity
obtained from the ANN, the paint thickness and roughness required for the target pressure
sensitivity can be obtained. When studying the relationship between multiple influenc-
ing factors and paint characterizations, the time cost and economic cost of calibration
experiments can be reduced to a certain extent.

In the PSP pressure measurement tests, in order to avoid the pressure measurement
error due to the difference in paint thickness and roughness between the model surface
and the sample, we propose a new ANN-based method to measure the pressure: we use
the ANN to predict coefficients A and B in the Stern-Volmer equation. We use the neural
network N1 to predict the pressure sensitivity through the paint thickness and the roughness
of the model. The pressure sensitivity is approximately equal to B, so we use the pressure
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sensitivity to predict coefficient A through N2. The MAPE of prediction coefficient A is
2.1315%. According to the Stern-Volmer equation, the delta wing pressure was calculated
and compared with the in situ method and the sample calibration experiment. In the delta
wing pressure measurement test, the RMSE of the in situ calibration, the method in this
paper, and the pressure measured by the calibration experiment are 47.4431 Pa, 63.4736 Pa,
and 73.0223 Pa, respectively. The RMSE of the method in this paper is greater than the in
situ method, but smaller than the sample calibration experiment, so the ANN-based method
to measure pressure in the PSP pressure measurement experiment deserves attention.
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