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Abstract: Groundwater level (GWL) refers to the depth of the water table or the level of water below
the Earth’s surface in underground formations. It is an important factor in managing and sustaining
the groundwater resources that are used for drinking water, irrigation, and other purposes. Ground-
water level prediction is a critical aspect of water resource management and requires accurate and
efficient modelling techniques. This study reviews the most commonly used conventional numerical,
machine learning, and deep learning models for predicting GWL. Significant advancements have
been made in terms of prediction efficiency over the last two decades. However, while researchers
have primarily focused on predicting monthly, weekly, daily, and hourly GWL, water managers and
strategists require multi-year GWL simulations to take effective steps towards ensuring the sustain-
able supply of groundwater. In this paper, we consider a collection of state-of-the-art theories to
develop and design a novel methodology and improve modelling efficiency in this field of evaluation.
We examined 109 research articles published from 2008 to 2022 that investigated different modelling
techniques. Finally, we concluded that machine learning and deep learning approaches are efficient
for modelling GWL. Moreover, we provide possible future research directions and recommendations
to enhance the accuracy of GWL prediction models and improve relevant understanding.

Keywords: groundwater levels (GWL); machine learning; deep learning; conventional methods;
forecasting; water level; groundwater; neural networks; review; modflow

1. Introduction

Groundwater level (GWL) assessment is crucial to maintain groundwater resources,
as one-third of the world’s water requirements are met through this resource [1]. It is
used for domestic water supply and meets irrigation needs and industrial requirements
in some parts of the world. Excessive and unplanned extraction leads to the depletion of
this important resource and results in a severe issue globally, particularly in surface-water-
shortage countries. So, in this regard, researchers have developed different models and
techniques to simulate GWL. Modeling groundwater ranges from conceptual to numerical
methods and artificial intelligence (AI) models. In numerical techniques, MODFLOW
was extensively used until the previous decade to simulate GWL. However, its prediction
accuracy was mainly dependent on the availability of extensive hydrogeological data and
the physical characteristics of the aquifer [2]. To minimize the shortcomings of numerical
methods, researchers have extensively employed artificial intelligence (AI) models over
the last decade [3]. AI models do not require the physical properties of the aquifers
in the GWL simulation, making them appealing to use. AI models include the most
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superficial artificial neural networks (ANNs), often called multilayer perceptrons (MLPs),
with two or more hidden layers. ANNs having one hidden layer known as feed-forward
neural networks (FFNNs) have been the most used model in the early days of AI-based
research in hydrological studies [4]. Since the GWL time-series data are quite nonlinear and
nonstationary, the capability of ANNs is confined to a limited set of variables. Therefore,
the adaptive neuro-fuzzy inference system (ANFIS) was developed to analyze complex
systems using a backpropagation algorithm and fuzzy logic [5]. It has been reported that
AI (machine learning) models used to simulate GWL have shown better results than the
traditional physical and numerical models because the latter needs comprehensive details
of the physical properties associated with the aquifers to make a prediction [6].

However, classical machine learning models cannot learn long-term dependencies
because they do not have the architecture to maintain prior information to make future
predictions. To resolve this problem, researchers investigated recurrent neural networks,
including RNS, GRUs, and LSTMs, and wavelet transform pre-processing data analysis
to study the temporal dependencies between the multiscale input variables very well [6].
However, the prediction efficiency of the monthly, weekly, daily, and hourly basis simula-
tions improved significantly. However, less improvement in prediction accuracy and work
in the literature has been reported on yearly GWL simulation despite knowing that water
management requires multi-year assessments to formulate long-term strategies to keep the
balance between the supply and demand of the groundwater. Shahid et al. [7] proposed
advanced studies for water treatment technologies and removing emerging contaminants.
The water we consume in homes, commercial settings, or industry goes underground and
damages the pure underground water. Wastewater treatment is also playing an essential
role in water purification. A novel technology called “Reverse osmosis technology” is
widely used on a massive scale for groundwater treatment [8]. Another experimental
study on CO2 utilization in water treatment systems is based on the membrane for re-
ducing the capability of ionic precipitation on the membrane surface and successive level
expansion [9].

The comparison discussed in this review aims to evaluate the performance [10] of dif-
ferent machine learning (ML) [11–14] and deep learning models in predicting groundwater
level (GWL) [15–18]. The groundwater level is an essential indicator of the availability of
freshwater resources and is closely related to various hydrological and ecological processes.
Therefore, accurate groundwater level prediction is crucial for sustainable water manage-
ment and resource allocation. Machine learning is a branch of artificial intelligence that
focuses on developing algorithms to learn patterns from data and make predictions based
on that knowledge. There are various types of machine learning models, including decision
trees [19–21], random forests [22–25], support vector machines (SVM) [26], and artificial
neural networks (ANN). On the other hand, deep learning is a subset of machine learning
that focuses on developing artificial neural networks with multiple hidden layers. These
deep neural networks can learn complex patterns and relationships in data, making them
particularly useful for tasks such as image recognition, natural language processing, and
prediction modeling.

Consequently, different machine learning and deep learning models are applied to
predict groundwater levels and their performance is compared. The comparison is based
on various evaluation metrics, such as accuracy, precision, recall [27,28], and mean absolute
error (MAE), R2 [29]. The comparison results provide insight into the strengths and
weaknesses of different models and can help researchers and practitioners choose the most
appropriate model for their specific application. Overall, comparing groundwater level
prediction modeling using different machine learning and deep learning models provides
valuable information for researchers and practitioners working in hydrology and water
resources management.

In this paper, a collection of new theories for developing and designing a novel method-
ology and improving modeling efficiency are also considered in the appropriate field of
evaluation. They examine modeling techniques used in all the reviewed studies; it was
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estimated that the machine learning and deep learning approaches are efficient enough for
modeling GWL. The primary purpose of this paper is to focus on the following research ques-
tion: how is GWL predicted? The recent research refers to the different stages of groundwater
level prediction. In every step, the methods discussed in the reviewed studies are analyzed
and compared based on their benefits and drawbacks. A new model is proposed in this study
to simulate yearly GWL using wavelet Bidirectional-LSTM (W-Bi-LSTM).

The structure of the paper is as follows: Section 2 goes over the methodology of the
research, Section 3 presents the groundwater and surface water data sources and availability.
Section 4 illustrates the conventional, ML-, and deep-learning-based groundwater level
prediction techniques. Section 5 briefly discusses the performance evaluation of different
models and Section 6 represents the future research direction and discussion. Finally,
Section 7 ends the paper with a conclusion.

2. Methodology of the Research

In the first stage of this research, a comprehensive review of GWL forecasting has been
explored and analyzed. A few major scientific research databases, Web of Science, Scopus,
etc., were decided to organize the research. The papers with the word “survey” or “review”
in the keyword or abstract are reviewed. The majority of the papers were examined on GWL
and selected to cite. The only available research papers on GWL prediction were studied
and were chosen for our research. Once these research papers are analyzed, numerous
studies are published every year. Osman et al. [30] surveyed 78 articles, and Tao et al. [31]
surveyed 318 articles. As far as we know, no comprehensive study on GWL prediction is
available using deep learning. These two review articles were published this year and are
growing in popularity as more new research is published.

Data processing and the separation of training and testing are not included in the
analysis. As the global climate continues to change, recent studies of the GWL model have
used new kinds of data and applied different methods. For this reason, it is essential to
consider the latest algorithms and methods, including deep learning algorithms and hybrid
algorithms, along with the proprietary processing methods applied. After the analysis of
available databases was concluded, the search equation was identified as the latest and
very significant equation for GWL prediction. We explore the available databases to update
the latest trends and analyses.

After examining the online searched databases, more than 731 papers suit the search
strategy. A total of 182 of these papers were rejected, and 549 other papers were excluded
from this review because their main objective was not GWL prediction. After studying
the most relevant papers, the analysis was then conducted. Figure 1 shows the arithmetic
conceptualization of GWL research using an AI-based model during 2008–2022. Several
papers were chosen based on specific measures.

The main objectives of this research are

1. To discuss the conventional methodology for GWL.
2. To explore the current GWL methodologies.
3. Deep-learning-based models for GWL.
4. Machine -learning-perspectives-based groundwater modeling.

We used different searching keywords to find relevant studies: Set 1: “GWL” [32],
“Ground-Water-level” [33]; and “Groundwater Level prediction” [34]; set 2: “Prediction”,
“forecasting”, “Deep Learning”, “analysis”, “estimation”. We used the keyword AND
between set1 and set2, and the OR operator was used between keywords in a set. Figure 2
illustrates the relevant and irrelevant papers selection process. Once read through the
database, 731 papers met the search criteria. One hundred and eighty-two (182) duplicates
were excluded from this analysis. After reviewing the titles and journals, 440 were excluded
from the review because they did not go through the GWL criteria. After a thorough reading
of these articles, 109 articles were finally analyzed.
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elevation, land use data, paved area, and so on. The research results are classified and
analyzed in the next section based on the variables used for GWL modeling. Groundwater
is a primary source of water for living things around the globe. Large urban areas generate
enormous demands for water and food. India, Iran, and China are the main countries in
the GWL study. Of the 20 countries surveyed, about half of the studies took place in India,
Iran, and China. Other studies are centered on data collected from Azerbaijan, Greece,
Bangladesh, Taiwan, Serbia, Slovenia, South Korea, the USA, and Canada.

3. Groundwater and Surface Water Data Sources and Availability

The modeling process in the groundwater–surface water (GW-SW) system is essential
in understanding the interactions between these two water sources and how they impact
each other. This process requires adjusting the hyperparameters of the system to ensure the
simulations produced are reliable and accurate. However, data availability can sometimes
pose a challenge in modeling, particularly in small areas or basins where data may be
limited. Despite this, the use of GW and SW models has increased significantly in recent
years due to the availability of a growing number of regional and global datasets. Global
model products and open data, which contain a large amount of environmental information,
have become easily accessible and, combined with the advancement of remote sensing data,
provide a strong foundation for developing some water models. One of the advantages of
these models is the ability to obtain critical structural aspects such as watershed boundaries,
surface flow direction, and slope. This information can be taken from managing products
of a digital elevation model (DEM) with the help of GIS spatial analysis. A MERIT DEM is a
popular product in this field, it is a worldwide map with a resolution of approximately 90 m.
The development took place using current spatial DEMs. Numerous error components,
such as stripe noise, speckle noise, tree height bias, and absolute bias, have been removed
to provide an unbiased representation of terrain elevation [35].

In conclusion, the modelling process in the GW-SW system is essential for under-
standing the interactions between these two water sources. Although data availability can
sometimes pose a challenge, the use of GW and SW prototypes has dramatically increased
in recent years due to the availability of open data and global model products, which pro-
vide a solid foundation for building water models. The processing of DEM products allows
for the easy extraction of critical morphological features, such as surface flow direction,
watershed boundaries, and slope, making it an indispensable tool in this field.

In any situation, a DEM with a finer resolution designed for a specific region or nation
can also be obtained from light detection and ranging (LiDAR) products or by spatially in-
terpolating point elevations. Soil properties of spatial division, such as texture (proportion
of clay, sand, and silt), organic matter, porosity, bulk density, and hydraulic conductivity,
can greatly affect the modeling results, particularly in the surface water (SW) component.
These properties play a crucial role in determining soil quality and infiltration capacity [36].
The coherent world soil catalog provides a global distribution of soil characteristics [37].
Additionally, the World Soil Information Service (WOSIS) offers access to over 196,000 soil
columns [38]. The given dataset contains information about soil that is standardized and
ideal for mapping soil and the Earth’s system modeling. Hydrological modeling can be
affected by the lack of climate data, so many databases have been created to offer first-class
meteorological data. One of these databases is the Climate Forecast System Reanalysis
(CFSR) [39], which extends global meteorological information for 36 years at a resolution
of less than 1 degree, allowing for detailed historical data analysis. Furthermore, the
CORDEX program under the World Climate Research Program (www.euro-cordex.net)
provides a platform for the compilation of comprehensive climate data at the continental
level, both for historical and future predictions. These data are commonly utilized in water
modeling [40,41]. Obtaining information about subsurface elements, such as hydraulic
conductivity and porosity, typically requires permeability tests, which can be both expen-
sive and time-consuming. The other solution is the version 2.0 of Global Hydrogeology
Maps (GLHYMPS) of porosity and permeability [42]. The “Copernicus Land Monitoring

www.euro-cordex.net
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System” provides information about the spatial distribution and changes in land cover on
a continental scale through its Corine product for Land Cover (CLC), covering the period
from 1990 to 2018. In order to obtain accurate results, a multi-constraint measurement is
frequently necessary. The use of appropriate data and their availability for model validation
and measurement is still the crucial issue that determines the effectiveness of the model. To
validate and calibrate surface models, various findings have assessed the effectiveness of
the moderate resolution imaging spectroradiometer (MODIS) product with encouraging
outcomes. Data related to soil water content, snow cover, Normalized Vegetation Index
(NDVI), and evapotranspiration can be obtained using the AppEEARS interface [43].

In addition to these open datasets, a number of modeling products have become avail-
able over the past decade. Two of the global hydrological models that have been developed
are PCR-GLOBWB v2.0 [44] and WaterGAP v2.2d [45], which aim to quantify human use of
surface water and groundwater, along with storage, water flows, and resources on a global
level. They also provide the capability to output the post-process, such as groundwater
spatiotemporal recharge and volume of river flow. However, their main limitation is the
low spatial resolution. It is important to note that while these globally available datasets
can be useful, it is critical to be cautious when using them as they may contain errors
and inconsistencies that can result in inaccuracies in simulations. Estimating the share of
groundwater through a simulation of flood hydrographs using two different time-based
rainfall distributions is presented in [46]. Table 1 shows the various datasets available for
use in modeling parameters and their prediction possibilities. Table 2 shows the various
datasets available for use in modeling parameters and their corresponding links.

Table 1. Various datasets available for use in modeling parameters and their prediction possibilities [15].

Main Terminology Sub-Terminology Prediction Possibilities

Weather data

Precipitation Clear, rain or snow

Hourly, daily, weekly,
monthly, and yearly

Temperature Minimum or maximum,
positive or negative

Solar radiation

Relative humidity

Wind speed

Evaporation

Aquifer layers

Saturated and unsaturated zone

Hydraulic conductivity

Transmissivity

Aquifer storage

Number of layers

Thickness

Land cover Crop, Urban, rural, or industrial

Stream flow Variation measurement

Soil Soil texture

Morphology Digital elevation model (DEM)

Table 2. Various datasets available for use in modeling parameters.

Data Shape Data Classification Data Source Access Date Availability

Shapefile Classification of land use https://land.copernicus.eu/pan-european/
corine-land-cov (10 February 2023) Europe

Shapefile Property of soil classification https://www.isric.org/explore/wosis (10 February 2023) Worldwide

https://land.copernicus.eu/pan-european/corine-land-cov
https://land.copernicus.eu/pan-european/corine-land-cov
https://www.isric.org/explore/wosis
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Table 2. Cont.

Data Shape Data Classification Data Source Access Date Availability

Shapefile or Vectorial Rock permeability and porosity https://borealisdata.ca/dataset.xhtml?
persistentId=doi%3A10.5683/SP2/TTJNIU (10 February 2023) Worldwide

Raster Climatic data https://apps.ecmwf.int/datasets/ (10 February 2023) Worldwide

Raster MODIS products https://appeears.earthdatacloud.nasa.gov/ (10 February 2023) Worldwide

Raster Digital surface model (DSM) https://asterweb.jpl.nasa.gov/gdem.asp (10 February 2023) Worldwide

Database Climatic data https://swat.tamu.edu/data/cfsr (10 February 2023) Worldwide

Database Climate projections https://esgf-data.dkrz.de/search/esgf-dkrz/ (10 February 2023) Worldwide

Database River network spatial data https://water.nier.go.kr/web/gisKrf?
pMENU_NO=89 (10 February 2023) Korea

Database
National Water Resources
Management Comprehensive
Information System

http://www.wamis.go.kr/ (10 February 2023) Worldwide

Database Geographic information Water Environment Geographic Information (10 February 2023) Worldwide

4. Groundwater Level Prediction Techniques

Forecasting is achieved using the latest and past collected data to forecast the future.
This review is focusing on the evaluation of the GWL as a regression problem, and re-
searchers investigated different types: the SVM, ANN, DT, ANFIS, GP, hybrid, and genetic
models. A novel type (O) was created by introducing new algorithms that do not fit any of
the former categories. ANN [47] methods are the most frequently used technique in GWL
forecasting, and the number of ANN-based studies increases every year. Figure 3 shows
the groundwater prediction process.
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4.1. Physically Based Numerical Method—MODFLOW

Physically based numerical models remain the best methods to study the character-
istics of groundwater. This is because they require comprehensive details of the physical
properties of aquifer. Among the different physically based numerical models, MOD-
FLOW is the most used model in the literature; it models groundwater movement in
three dimensions using finite differences. Until the last decade, MODFLOW was used
extensively, especially when sufficient data are not available. Depending upon the problem,
several approaches are designed for MODFLOW, i.e., the head-oriented approach (HOA) is
used to determine the three-dimensional flow of groundwater, the velocity-oriented ap-
proach (VOA) comes in handy when computing the velocity of flowing groundwater [48].
However, certain steps are needed to formulate such a model, i.e., grid design, boundary
setting, time steps, and hydrologic and aquifer characteristic variables selection. Shukla
and Singh [49] calibrated MODFLOW in Uttar Pradesh, India to simulate groundwater
levels. Data mostly comprising of water levels collected between 2005 and 2013 were used
in the study. In addition, the impact of pumping and recharge rate on the groundwater
levels was also studied, and it aimed to predict the groundwater levels for five years ahead.
The results showed a declining trend in groundwater levels in the region.

https://borealisdata.ca/dataset.xhtml?persistentId=doi%3A10.5683/SP2/TTJNIU
https://borealisdata.ca/dataset.xhtml?persistentId=doi%3A10.5683/SP2/TTJNIU
https://apps.ecmwf.int/datasets/
https://appeears.earthdatacloud.nasa.gov/
https://asterweb.jpl.nasa.gov/gdem.asp
https://swat.tamu.edu/data/cfsr
https://esgf-data.dkrz.de/search/esgf-dkrz/
https://water.nier.go.kr/web/gisKrf?pMENU_NO=89
https://water.nier.go.kr/web/gisKrf?pMENU_NO=89
http://www.wamis.go.kr/


Appl. Sci. 2023, 13, 2743 8 of 19

4.2. Machine Learning—Artificial Neural Networks (ANN)

ANN is computational representation of a mathematical model inspired by the human
brain’s biological network. Simple elements called neurons, operating in parallel, constitute
ANN [50]. ANNs are used to calculate unknown functions or to make future predictions
of the given time series based on historical data. The most basic ANN is a three-layer
structure, with input, hidden, and output layers [51]. The structural representation of
classical FFNN into the network and the desired outcome is computed by the output layer.
The hidden layer nodes which are situated between the input and output layers receive a
set of scaled inputs and calculate an output after applying a certain learning (activation)
function [52].

A sample dataset Is used to train the ANN model. Training is a process of fine-tuning
the network’s adjustable parameters (known as weights and biases) to optimize the output
of the algorithm. “The Levenberg-Marquardt (LM) algorithm, the backpropagation (BP)
algorithm, the Bayesian regularization (BR) algorithm, and the gradient descent with
momentum and adaptive learning rate back-propagation (GDX) algorithm” are some
learning algorithms that have been employed to train models in the literature. Feed-
forward neural networks (FFNNs), usually known as multilayer perceptrons (MLPs), are a
popular and robust type of ANN that has been widely studied in hydrological studies [53].
Figure 4 shows the different kinds of data used for prediction the GWL.
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ANNs have been widely used in hydrology, hydraulics, rainfall-runoff estimation,
groundwater level, and quality forecasting [54–56]. According to recent GWL modeling
studies, it has been reported that ANN simulations have shown promising results com-
pared to conceptual techniques. In one of the first studies, Lallahem et al. [4] used ANNs to
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simulate monthly groundwater (GWL) for an aquifer. Inputs included evapotranspiration,
averaged temperature, precipitation, rainfall, and GWL at the previous lag of 13 piezome-
ters and the primary objective was to anticipate GWL for a specific piezometer in northern
France. The advantage of the multi-layer perceptron MLP was proven by simulation results.
Krishna et al. [57] compared several types of FFNNs to simulate the monthly GWL in
Andhra Pradesh urban aquifer, India. Results revealed the merit of an ANN trained with
the LM algorithm as compared to BP and BR algorithms. Moreover, in the experiment, the
best-performing network model parameters were used to predict the GWL in nearby wells.

Sreekanth et al. [5] developed ANFIS and FFNN with an LM algorithm to estimate GWL
for India’s Maheshwaram watershed. Monthly groundwater (GWL) of 22 wells, rainfall,
temperature, evaporation, and relative humidity are among the input variables. FNN out-
performed ANFIS in terms of accuracy when results were compared. Kouziokas et al. [58]
compared multiple FFNN networks and learning methods to simulate the daily groundwater
(GWL) in a well. The study area is located in Montgomery County, Pennsylvania, USA. The
best model was found to be FFNN trained using the LM learning algorithm with the humidity,
precipitation, and temperature as inputs.

4.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

This is a hybrid technique that aims to utilize the advantage of a fuzzy inference
system (FIS) with an adaptable neural network (AN). FIS is based on fuzzy logic and is
good at capturing uncertainties and noise in data. Jang [59] pioneered the use of fuzzy
if–then rules with right membership functions (MPs) to construct input–output pairs and
a neural network learning algorithm. The fuzzy inference aystem is further classified
into two approaches, namely Mamdani and Sugeno. Linear MFs are used by the Sugeno
approach while Mamdani uses fuzzy MFs. ANFIS consists of five layers. The structural
representation of ANFIS is similar to the ANN model, except it has two input parameters,
linear and non-linear, which makes it difficult to train. Input parameters are optimized
simultaneously in the training process.

Zhang et al. [60] applied three different algorithms for GWL prediction, namely, radial
basis function neural network (RBFNN), ANFIS, and the grey self-memory (GSM) method.
Evaluation reveals the superiority of ANFIS over the other applied algorithms based on
the performance metrics result (i.e., NSE, RMSE, R2, and MARE). Bak and Bae [61] trained
the ANFIS algorithm with precipitation (P) and mean temperature (Tmean) to predict GWL
and reported the performance metrics RMSE as 0.1381 and MAPE as 37.869%.

Gong et al. [62] investigated the prediction accuracy of ANFIS, FNN, and SVM for
monthly GWL simulation and concludes the superiority of ANFIS over other algorithms.
Previous GWL, lake level, precipitation (P), and Tmean were used as input variables.
Khaki et al. [63] investigated the performance of ANFIS, FFNN, and the cascade forward
network (CFN) model to simulate monthly GWL at Langat Basin in Selangor state’s south-
eastern part. R and MSE were used as performance metrics. The ANFIS model outper-
formed FFNN and CFN with R = 0.94 and MSE = 0.005. Emamgholizadeh et al. [64]
analyzed the differences in the monthly GWL prediction of ANN and ANFIS in Bastam
plain, Iran. The following input variables were used in the study: pumping rate, rainfall
recharge, and irrigation returned flow. ANFIS performed significantly better than ANN
and it was also found that high accuracy can be achieved by applying different structures.
Sometimes, hydrological time series data can be highly non-stationary which makes it hard
for models, such as ANN and ANFIS, to better understand the underlying seasonality and
thus leads to inaccurate predictions. In this situation, some researchers, such as Hsu and
Li [65] and Loboda et al. [66], applied the wavelet data decomposition technique to first pre-
process the input data. Wavelet transform can decompose data at various resolution levels
to obtain useful information and give insights about trends and irregularities in the data.
Therefore, it has several applications in hydrological studies because of the non-stationary
nature of the data.
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The performance of regular ANNs, ANFISs, and both coupled with the wavelet
technique, i.e., WANN and WANFIS, was examined by Moosavi et al. [67]. They conducted
a study to simulate monthly GWL for two subbasins in Mashad, Iran. Precipitation (P),
evaporation (E), temperature (T), and previous GWL were the input variables. ANN and
ANFIS failed to cope with the noise in the data while the ones coupled with wavelet
performed considerably better. However, the authors reported that wavelet transform does
contribute more to the efficiency of ANFIS than ANN. Another study was performed by
Ebrahimi and Rajaee [68] to analyze the impact of the wavelet pre-processing technique.
They developed wavelet-ANN, multi-linear regression (wavelet-MLR), and support vector
machine (wavelet-SVM) up to two decomposition levels, and their regular counterparts.
GWL at previous lag was used as the only input variable to simulate GWL with a one-
month lead. The results showed that data decomposition translates into the high prediction
accuracy of the models. Nevertheless, wavelet-ANN is reported as the best model. Machine
learning models using prior wavelet data decomposition are good at yielding underlying
trends and patterns at various levels in non-linear and non-stationary input data. Figure 5
shows the basic architecture of ANFIS model.
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Figure 5. A basic architecture of ANFIS model.

4.4. Genetic Programming (GP)

A general genetic algorithm (GA) was developed called genetic programming (GP) [69].
Darwinian theories of evolution are used for genetic programming and ecological choice
as the GA. The author in [70] developed a GP-based model to predict the GWL changes
and calculate the vagueness in the forecasting. The paper used Indian monthly rainfall
data to predict the GWL. The GP model proposed by the author could successfully predict
variations by using only hydrometeorological parameters for GWL, i.e., the model predicts
without knowing the physical characteristics of the wells. GP has been mostly affected
for feature selection work and optimization. Furthermore, because of its flexibility and
intelligible tree structure it is more used in GW modeling. The author in [71] proposed
GWL for the next day and prediction intervals of up to 7 days and applied SVM, GP, ANN,
and ANFIS. All of these algorithms have prediction capabilities to predict GWL. There are
several GWL combinations, including evapotranspiration and rainfall data, which are used
as input to the prediction model, using data gathered from Republic of Korean, Hongcheon
well station. After making a model, the autoregressive moving average (ARMA) model is
used for comparison to validate the accuracy. The final conclusions proved that the ARMA
methodology performed well compared to other ML methods, which is therefore the most
effective with the GP model.
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4.5. Deep Learning

Despite the significant performances of ANN and ANFIS in accurately predicting the
GWL, these methods were confined by the vanishing and exploding gradient problem, thus
hindering the capability of the machine learning models to make predictions for long-time
series. A recurrent neural network (RNN) is a type of neural network that was introduced
to solve the long-term dependency problem when dealing with large-scale data in the
temporal domain. However, regular RNN cannot remember temporal information for
long sequences, i.e., in the machine translation tasks, etc., and require large computational
resources. To overcome the limitations of regular RNN, the long short-term memory
(LSTM) model was proposed to keep the information for an arbitrary length. LSTM is
mainly developed for continuous data—time-series data. Recently, it has been employed in
various water level assessment studies.

Zhang et al. [6] proposed the LSTM model to simulate the fluctuations in water
table levels using monthly water diversion, precipitation, evaporation, temperature, and
previous water table level data spanning 14 years (2000–2013). The results achieved were
dramatically high (R2 score, 0.789) when compared with the R2 scores (0.004–0.495) of
the traditional feed-forward neural network (FFNN or regular ANN). To select relevant
predictors, the authors used a statistical technique that contributed to the model’s ability
to generalize from the unseen data. The study was performed in five sub-areas of Hetao,
China. GWL fluctuations data are prone to the existence of missing values because of several
factors, i.e., human negligence, failure of recording equipment, etc. Gaps in data can make
it difficult to grasp the hidden trends and seasonality. Therefore, this has led the missing
values being reconstructed to fully interpret the data and make accurate predictions so that
strategists can make plans for water resource management in the long run. Ren et al. [72]
evaluated the ability of an LSTM model against a traditional gap-filling algorithm, ARIMA,
to fill missing temporal observations for a 10-year-long dataset with dynamic gaps. The
model was designed to reconstruct specification measurements (groundwater and river
water interactions). The results revealed that LSTM is better at filling high dynamic
gaps (daily, weekly, and sub-daily), while ARIMA excelled in reconstructing trends and
seasonality-based gaps. In addition, the authors reported that LSTM can fill gaps for up to
2 days when spatial data from neighboring stations are used to make predictions. Table 3
presents detail research categorized by different algorithms: deep learning, GP, MODFLOW,
ANFIS, and ANN.

Table 3. Research categorized by different algorithms: deep learning, GP, MODFLOW, ANFIS, ANN.

References Deep Learning GP MODFLOW ANFIS ANN

P. Shukla and R. M. Singh [49] 3

Lallahem et al. [4] 3

Krishna et al. [56] 3

Sreekanth et al. [5] 3 3

Kouziokas et al. [57] 3

Zhang et al. [62] 3

Gong et al. [55] 3 3

Khaki et al. [64] 3 3

Emamgholizadeh et al. [65] 3 3

Kasiviswanathan et al. [69] 3

Shiri et al. [71] 3

Zhang et al. [6] 3 3

Ren et al. [72] 3

bowes et al. [73] 3

Shin et al. [74] 3

Javadinejad et al. [75] 3

Moravej et al. [76] 3

Khedri et al. [77] 3
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Table 3. Cont.

References Deep Learning GP MODFLOW ANFIS ANN

Seifi et al. [78] 3

Demirci et al. [79] 3 3

Djurovic et al. [80] 3

Jalalkamali et al. [81] 3

Zeydalinejad et al. [2] 3

Mukherjee et al. [32] 3

Moosavi et al. [68] 3

Sun et al. [82] 3

Ghose et al. [83] 3

Shan et al. [84] 3 3

Ghasemlounia et al. [85] 3

Yin et al. [86] 3

5. Performance Evaluation

GWL modeling is mainly divided into two categories with regards to time, i.e., long-
term, and short-term. Long-term forecasting is of great importance in various domains,
for instance urban planning and water resource management, which require years of data
to learn long-range dependencies. Short-term prediction is usually conducted to study
variations in patterns and trends in the input variables related to the problem, for instance
climatic conditions in the case of GWL. Since the target value of GWL modeling is a constant
value, regression models are used in such studies. Different evaluation metrics have been
used in the literature to measure the efficiency of proposed models. However, it is important
to select appropriate performance metrics as it measures how well a model’s predictions
compare against the true values. Root mean square error (RMSE), mean absolute error
(MAE), relative error (RE), and coefficient of determination (R2) are the most common
choices of researchers in the literature. Moreover, the peak elevation criteria (PEC), and low
elevation criteria (LEC) are special performance measures to evaluate the model against
critical parameters such as rainfall, groundwater, etc. in the case of GWL. However, most of
the time RMSE and R2 have been used in GWL modeling studies. Table 4 shows different
performance evaluation measures used by different experts for GWL prediction.

Table 4. Different performance evaluation measures used by different experts for GWL prediction.

Reference Performance Evaluation
Metrices Prediction Target Prediction Year

Ren et al. [72] MAPE, RMSE, NSE, KGE Weekly GWL 2022

Malik and Bhagwat [87] R2, RMSE Annually GWL fluctuations 2021

Bahmani and Ouarda [88] RMSE, BIAS
R2, rBIAS Monthly GWL 2021

Kombo et al. [89] MAE,R2, NSE, RMSE Daily GWL 2020

Iqbal et al. [90] R2, MAE, MSE Daily GWL 2020

Seifi et al. [78] RMSE, NSE, MAE, PBIAS Monthly GWL 2020

Kenda et al. [91] R2 Daily GWL/SWL 2020

Cao et al. [92] RMSE, R, MAPE Daily GWL 2020

Di and Granata [93] R2, RAE, MAE, RMSE, RAE Daily GWL 2020

Yadav et al. [94] NMSE, R2, RMSE, Monthly GWL 2020

Sharafati et al. [95] R2, NRMSE Monthly GWL 2020
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Table 4. Cont.

Reference Performance Evaluation
Metrices Prediction Target Prediction Year

Shin et al. [74] NSE, RMSE Daily GWL 2020

Khedri et al. [77] NSE, MAE, RMSE, R Monthly GWL 2020

Bozorg-Haddad et al. [96] RMSE, R2 Monthly GWL 2020

Chen et al. [97] RMSE, R2 Monthly GWL 2020

Evans et al. [98] MAE 3-month interval Depth to GW 2020

Hasda et al. [99] MSE, R2 Weekly GWL 2020

Mohanasundaram et al. [100] R2, RMSE Monthly GWL 2019

Malekzadeh et al. [101] Bias, R, VAF, RMSE, SI, MAE,
NSE, RMSRE, MAPE Monthly GWL 2019

Moghaddam et al. [102] R2, RMSE, NSE Monthly GWL 2019

Zhang et al. [6] R2, RMSE, NSE Half-hourly GWL 2019

Gemitzi and Stefanopoulos [103] MaxAE, MAE Monthly GWL 2011

Jalalkamali et al. [81] R2, MAPE, RMSE Monthly GWL 2011

Ghose et al. [83] MSE Daily GWL 2010

6. Future Research Direction and Discussion

We recommended the wavelet Bi-LSTM (W-Bi-LSTM) approach [85] to predict the
groundwater level. There are two strategies, one is wavelet data decomposition [104–107]
and the second is bi-directional long short-term memory (Bi-LSTM). Satellite-based tech-
niques [108] can be used for groundwater monitoring by measuring changes in the Earth’s
gravity field and surface deformation caused by water movement underground. Point-to-
point satellite-based techniques, such as interferometric synthetic aperture radar (InSAR)
and global navigation satellite system (GNSS), can be used to detect changes in ground
elevation and surface displacement, which can be used to infer changes in the amount of
groundwater. These techniques provide valuable information for managing groundwater
resources and mitigating the impacts of groundwater depletion.

6.1. Wavelet-Bi-LSTM (W-Bi-LSTM)

As discussed above, wavelet transform (WT) is a data pre-processing tool to decom-
pose time series in the time-frequency scale. WT is capable of decomposing the time series
at various scales and into several sub-time series that give insights into the relationships
between time-dependent features. To capture high-frequency information, short time inter-
vals are used and, conversely, long-duration intervals analyze low-frequency information.
Researchers report that wavelet-coupled ML models have often achieved higher prediction
accuracy than regular ML models [87,88]. WT is categorized into two types: continuous
wavelet transform (CWT), and discrete wavelet transform (DWT). CWT is time-consuming
and computationally expensive; therefore, DWT is mostly preferred in hydrological prob-
lems, particularly in groundwater level simulation. The mathematical equation of a discrete
wavelet can be represented as [89].

g(t)
(i,j) =

(
1/
√

ai
0

)
g(
(

t − jb0ai
0

)
/
(

ai
0

)
(1)

In Equation (1), i and j represent the integral values, and a0, and b0 are the location
parameter with specified fined dilation steps and the most common values are 1 and 2,
respectively. For details refer to (Cohen and Kovacevic) [90].



Appl. Sci. 2023, 13, 2743 14 of 19

6.2. Wavelet-Bi-LSTM (W-Bi-LSTM)

Unlike the conventional LSTM [52], Bi-LSTM has a simultaneous two-way flow of
prior information to better understand the contextual dependencies between the variables
using forward hidden layers and backward hidden layers [91]. Bi-directional LSTM man-
ages the flux of the input and output variables using several gates called memory cells,
while classical recurrent neural networks (RNNs) use hidden layer nodes with nonlinear
activation functions [92]. Figure 6 shows the graphical representation of Bi-LSTM. hf and
hb are two memory cells in the Bi-LSTM network which manage the forward and backward
computed values.

h f t = f (w f 1xt + w f 2ht − 1) (2)

hbt = f (wb1xt + wb2ht + 1) (3)
Appl. Sci. 2023, 13, 2743 15 of 19 
 

σ

Xt-1

σ

xt Xt+1

σ

Yt+1ytYt-1

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

W0

Wf

Wb

Forward Layer

Backward Layer

ht-1 ht
ht+1

ht+1htht-1

Output Layer

      

      

 

Figure 6. Graphical representation of Bi-LSTM. 

This study sheds light on a review of the most used conventional numerical and 

machine learning (ML) and deep learning models for groundwater levels (GWL) 

simulation. Significant advancements have been made in terms of prediction efficiency 

over the last 2 decades. In addition, most of the time researchers’ focus has remained on 

predicting GWL on a monthly, weekly, daily, and hourly basis. However, the water 

managers and strategists need multi-year GWL simulation to take effective steps towards 

the sustainable supply of groundwater. In this paper, a collection of state-of-the-art 

theories for developing and designing a novel methodology and improving modeling 

efficiency are also considered in the applicable field of evaluation. Examining modeling 

techniques used in all the reviewed studies, it was estimated that the machine learning 

and deep learning approaches are efficient enough for modeling GWL. Moreover, we also 

provide possible future research directions and recommendations to enhance the accuracy 

of the groundwater level prediction models and improve the relevant understanding. 

7. Conclusions 

This survey paper provides a brief review of the most commonly used conventional, 

numerical, machine learning, and deep learning models for predicting groundwater levels 

(GWL) using different simulations or data driven models. Over the last two decades, 

significant improvements have been made in terms of prediction accuracy. The survey 

covers the period of 2008–2022 and includes papers from Scopus- and Web-of-Science-

indexed journals. While most researchers have focused on predicting monthly, weekly, 

daily, and hourly GWL, water experts require multi-year simulations to ensure the 

sustainable supply of groundwater. This paper also compiles 109 papers that presented 

state-of-the-art concepts and techniques for developing a novel approach and improving 

modeling efficiency in this field. After examining modeling techniques used in all the 

reviewed studies, we find that machine learning and deep learning approaches are 

effective for modeling GWL. Additionally, we provide recommendations and identify 

research gaps for improving the accuracy of groundwater level prediction models. 

Author Contributions: Conceptualization, J.K. and K.K.; methodology, J.K. and E.L.; formal 

analysis, J.K. and E.L.; investigation, J.K. and A.S.B.; writing—original draft preparation, J.K.; 

writing—review and editing, J.K, E.L, A.S.B., and K.K.; supervision, K.K.; project administration, 

K.K.; funding acquisition, K.K. All authors have read and agreed to the published version of the 

manuscript. 

Funding:  This research was funded by Institute of Information & communications Technology 

Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.RS-2022-00155857, 

Figure 6. Graphical representation of Bi-LSTM.

In the above equations, hf represents the forward layer LSTM output and hb is the
backward layer LSTM output. The final output value of the hidden layer is computed by
combining the results of forward and backward layers [93].

ot = g(wo1 ∗ h f + wo2 ∗ hb) (4)

In Equations (2)–(4), wi is the weight coefficient matrix that is repeatedly applied at
each time step. I hypothesize that using wavelet transform (WT) with Bi-LSTM (W-Bi-
LSTM), groundwater levels can be simulated yearly with higher prediction efficiency. To the
best of my knowledge, no such model has been proposed, given that, in the literature, most
of the studies focused on monthly, weekly, and daily GWL predictions. Water managers and
strategists need long-term assessments to keep a balance between the supply and demand
of groundwater resources, therefore, yearly simulation of GWL is critical. W-Bi-LSTM can
utilize the advantages of both wavelet transform and Bi-LSTM networks to make year ahead
predictions. As discussed above, collected data (both meteorological and hydrological)
are vulnerable to varying missing values and noise because of certain factors including
human error and data collection sensor failure. The wavelet transform has the capability to
decompose large-scale noisy data and find hidden periodic trends, which Bi-LSTM then
uses to learn underlying long-term dependencies between the input variables and make
predictions. Considering the data span that is required to make yearly predictions, it is
important to mention that standalone LSTM might not learn the data as well as Bi-LSTM
can, since the latter processes data in two directions and maintains contextual information.
To evaluate the performance of the said model, correlation coefficient (R2) and root mean
square error (RMSE) are good choices as both are widely used in groundwater level
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studies. I believe this proposed model can serve to predict yearly GWL with complex [109]
input variables.

This study sheds light on a review of the most used conventional numerical and ma-
chine learning (ML) and deep learning models for groundwater levels (GWL) simulation.
Significant advancements have been made in terms of prediction efficiency over the last
2 decades. In addition, most of the time researchers’ focus has remained on predicting GWL
on a monthly, weekly, daily, and hourly basis. However, the water managers and strategists
need multi-year GWL simulation to take effective steps towards the sustainable supply
of groundwater. In this paper, a collection of state-of-the-art theories for developing and
designing a novel methodology and improving modeling efficiency are also considered in
the applicable field of evaluation. Examining modeling techniques used in all the reviewed
studies, it was estimated that the machine learning and deep learning approaches are
efficient enough for modeling GWL. Moreover, we also provide possible future research di-
rections and recommendations to enhance the accuracy of the groundwater level prediction
models and improve the relevant understanding.

7. Conclusions

This survey paper provides a brief review of the most commonly used conventional,
numerical, machine learning, and deep learning models for predicting groundwater levels
(GWL) using different simulations or data driven models. Over the last two decades,
significant improvements have been made in terms of prediction accuracy. The survey
covers the period of 2008–2022 and includes papers from Scopus- and Web-of-Science-
indexed journals. While most researchers have focused on predicting monthly, weekly, daily,
and hourly GWL, water experts require multi-year simulations to ensure the sustainable
supply of groundwater. This paper also compiles 109 papers that presented state-of-the-
art concepts and techniques for developing a novel approach and improving modeling
efficiency in this field. After examining modeling techniques used in all the reviewed
studies, we find that machine learning and deep learning approaches are effective for
modeling GWL. Additionally, we provide recommendations and identify research gaps for
improving the accuracy of groundwater level prediction models.
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