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Abstract: This paper proposes a clothoid-curve-based trajectory tracking control method for au-
tonomous vehicles to solve the problem of tracking errors caused by the discontinuous curvature of
the control curve calculated by the pure pursuit tracking algorithm. Firstly, based on the Ackerman
steering model, the motion model is constructed for vehicle trajectory tracking, Then, the position of
the vehicle after the communication delay of the control system is predicted as the starting point of
the clothoid control curve, and the optimization interval of the curve end point is determined. The
clothoid control curves are calculated, and their parameters are verified by the vehicle motion and
safety constraints, so as to obtain the optimal clothoid control curve satisfying the constraints. Finally,
considering the servo system response delay time of the steering system, the steering angle target con-
trol value is obtained by previewing the curvature of the clothoid control curve. The field experiment
is conducted on the test road, which consists of straight, right-angle turns and lane-change elements
under three sets of speed limitations, and the test results show that the proposed clothoid-curve-based
trajectory tracking control method greatly improved the tracking accuracy compared with the pure
pursuit method; in particular, the yaw deviation is improved by more than 50%.

Keywords: trajectory tracking; clothoid control curve; curvature continuity

1. Introduction

Accurate and smooth motion control is a key technology to ensure the safety and com-
fort of autonomous vehicles. Vehicle motion control can be further divided into longitudinal
speed control and lateral trajectory tracking. Trajectory tracking of autonomous driving
has been widely studied in industry and academia alike [1–4]. This problem can be summa-
rized into two major research contents: the control model and the control method. Control
models mainly include geometric models, kinematic models, dynamic models, etc. Control
methods include geometric methods, feedforward and feedback control methods [5], Lya-
punov direct methods [6], robust control methods [7], intelligent control methods [8], etc.
Thanks to properties such as low model complexity, few parameters, and low computation
consumption, the geometric model and the control method have been widely used. The
pure pursuit tracking method is the most popular geometric control method that has been
studied and applied the most in recent years [9–11]. However, its planned control curve
is an arc segment and does not consider the constraint of the actual vehicle control on the
continuity of the path curvature. In addition, the algorithm uses a certain preview distance
selection strategy that has poor adaptability to paths with different curvatures.

This paper introduces a method that constructs a vehicle motion model with a contin-
uous curvature path and provides a new control law that uses a G2 continuous clothoid
curve to improve the tracking accuracy and ride comfort experience for the trajectory track-
ing task of an autonomous vehicle. The overall flow of the algorithm is shown in Figure 1.
First, the vehicle state is predicted by the communication delay of the control system, and
then the starting and ending points of the clothoid curve are determined according to the
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vehicle state and the parameters of the reference path. The clothoid curve is calculated
using the method given in Reference [12]. This method is reliable and quick and can reach
the microsecond level. The parameters of the clothoid curves are checked for feasibility
constraints, and the optimal control curve is obtained. Then, the response hysteresis of the
steering system that is controlled through the CAN bus is taken into consideration; finally,
the preview control method based on the clothoid curve is proposed. The correctness
of the approach proposed in this paper can be checked by simulation and experiment.
The simulation verification can adopt the concept of model-based testing [13,14]. In this
paper, we directly use field experiments to check the correctness of the approach. The field
experiment consists of comparative tests in various curved-road environments in a park.
The experimental results show that the trajectory tracking control method based on the
clothoid curve proposed in this paper greatly improved the tracking accuracy at different
speeds compared with the pure pursuit method.
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Figure 1. Clothoid-curve-based trajectory tracking control method. 
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Usual vehicle model configurations consist of geometric, kinematic, and dynamic 
models. The geometric vehicle model is particularly important in order to relate the vehi-
cle’s dimensions, the radius of the turn, and the radius of the curvature of the road under-
taken by the vehicle during turning. It is developed based on Ackerman steering config-
urations, where the line perpendicular to each of the vehicle wheels should intersect at 
the center point of the vehicle cornering arc where the radius of turn is R (Figure 2). This 
model only considers the dimension and positions of the vehicle with no regard to its 

Figure 1. Clothoid-curve-based trajectory tracking control method.

The rest of this paper is organized as follows. In Section 2, the related literature on the
geometric vehicle model, control curve, and control system delay are discussed. Section 3
details the steps taken to calculate the steering wheel angle based on the clothoid control
curve. Section 4 details the experiments conducted on an actual vehicle and analyzes the
accuracy and advantages of the method proposed in this paper. The last section concludes
the work and discusses further research.

2. Related Work
2.1. Geometric Vehicle Model

Usual vehicle model configurations consist of geometric, kinematic, and dynamic
models. The geometric vehicle model is particularly important in order to relate the
vehicle’s dimensions, the radius of the turn, and the radius of the curvature of the road
undertaken by the vehicle during turning. It is developed based on Ackerman steering
configurations, where the line perpendicular to each of the vehicle wheels should intersect
at the center point of the vehicle cornering arc where the radius of turn is R (Figure 2).
This model only considers the dimension and positions of the vehicle with no regard to its
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velocity, acceleration, and internal forces [2]. Therefore, compared with the kinematics and
dynamics models, using this model for trajectory tracking control usually has the highest
computational efficiency. However, large-tire lateral forces and lateral acceleration will be
produced when the vehicle turns at high speed, which cannot be neglected; therefore, if
geometric vehicle models are used for trajectory tracking control, vehicle speed must be
limited when passing curves in order to ensure high trajectory tracking accuracy.
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2.2. Control Curve

The reference path obtained from the path planning module is used as the target curve
of the trajectory tracking module. The general approach of the geometric controller is to
select a preview point on the reference path, plan a curve from the current vehicle position
to the preview point, and calculate the target angle of the steering wheel according to the
geometric model of the vehicle, so as to realize the lateral control of the vehicle in the path
tracking process. Pure pursuit as the most popular geometric trajectory tracking method
uses an arc to connect the current position of the vehicle and the preview point on the
reference path as the control curve, ignoring the constraint of the vehicle’s path on the
curvature continuity, which will lead to tracking deviation in theory. Wit et al. proposed a
trajectory tracking method based on the spiral theory, which considered both the position
and direction of the vehicle at the target point [15], but this method is not widely used due
to its complexity. Amidi et al. proposed using a quintic polynomial to draw the planned
control curve, taking into account the position, direction, and curvature constraints of the
starting and ending points [16]. This method does not guarantee a feasible solution and has
high computational complexity, so it is not widely used. Girb et al. [17] and Shan et al. [18]
both mentioned to use a clothoid curve to fit the control curve between the current position
of the vehicle and the preview point. The most important feature of a clothoid curve is
that its parameter function satisfies the continuity on the second derivative; that is, the
curvature change in the curve is continuous. In fact, the curvature of the clothoid curve is
proportional to the arc length of the curve, making it highly popular in highway or railway
design to ease the curvature change between straight and circular routes. The general form
of the clothoid curve parameter equation can be described as [18].x(s) = x0 +

[∫ s
0 cos( 1

2 κ′τ2 + κτ + θ0)dτ
]

y(s) = y0 +
[∫ s

0 sin( 1
2 κ′τ2 + κτ + θ0)dτ

] , (1)

where s represents the arc length of the curve, x0 and y0 represent the starting point
coordinates of the curve, θ0 represents the deflection angle of the starting point of the curve,
κ represents the curvature at the starting point of the curve, and κ′ represents the curvature
change rate of the curve.
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Compared with other curve fitting methods, using a clothoid curve to plan the vehicle
control path has the advantages as follows.

• When the driver controls the steering wheel, in order to ensure lateral stability, the
steering wheel is generally controlled at a constant speed, which means the angular
speed of the steering wheel is constant. When the speed and front wheel angle change
are very small in a tiny period of time and can be ignored, the change rate of the path
curvature is constant, which is consistent with the characteristics of the clothoid curve.
Therefore, the planned control path constructed by the clothoid curve can ensure that
the vehicle control process is stable and the jitter is tiny.

• The clothoid curve satisfies the G2 continuity conditions. Compared with the arc curve
constructed by the pure pursuit tracking algorithm, the curvature of the starting point
of the curve is consistent with the initial turning curvature of the vehicle, which can
reduce tracking deviation at the beginning period of the path.

• Compared with the polynomial curve, because its curvature changes linearly and
continuously, it is easier to control and verify the curvature and curvature change rate
of the planned control path and other constraints or limitations.

2.3. Control System Delay and Hysteresis

The steering control command generated by the control module needs to go through
multiple nodes, such as the processing of the interface driver and the CAN bus transmission,
which will bring in the communication delay of the control command. It also takes a certain
amount of time for the steering servo system to receive the steering control CAN command
and drive the actuator to achieve the target angle. This response time is called the response
hysteresis of the steering system. The communication delay of the control system and the
response delay of the steering system result in a situation where the control command
cannot be realized immediately. If proper compensation is not made, it would cause the
system to become unstable or limit the speed of the autonomous vehicle [19]. Therefore,
this paper proposes a vehicle future state prediction method to deal with the control system
delay phenomenon, and proposes a preview control method based on the clothoid curve
combined with the response hysteresis problem of the steering system.

3. Tracking Control Method Using Clothoid Curve
3.1. Kinematic Model of Vehicle Lateral Control

As shown in Figure 2, the relationship between the front wheel angle, wheelbase, and
turning curvature of the vehicle can be obtained from the geometric relationship of the
Ackerman steering vehicle, which can be described as

κ = tan(δ)/L, (2)

where δ represents the front wheel angle, L represents the wheelbase, and κ represents the
current turning curvature.

The change rate of curvature with time can be described as

dκ

dt
=

dκ

ds
∗ ds

dt
= κ′ ∗ v, (3)

where s represents the distance traveled in a tiny time period. Suppose that the vehicle
travels at a constant speed v within this distance, and κ′ represents the change rate of
curvature with arc length.

By substituting (3) with (2), we can obtain

dκ

dt
=

d(tanδ)

L ∗ dt
= κ′ ∗ v, (4)

Then we can obtain

κ′ =
d(δ)/dt

L∗v ∗ cos2(δ)
, (5)
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where d(δ)/dt represents the front wheel steering angular velocity. There is a linear
proportional relationship between the angular velocity of the steering wheel and the front
wheel, which can be described as

ω = k ∗ d(δ)/dt, (6)

where k represents the transmission ratio coefficient of the steering system, and ω represents
the angular speed of the steering wheel. Therefore, the relationship between steering
angular velocity of the steering wheel and the change rate of the vehicle motion curvature
can be expressed as

κ′ =
ω

k ∗ L ∗ v ∗ cos2(δ)
, (7)

As can be seen from Formula (7), since ω has an upper limit constraint by the steering
system, it determines that the path curvature of the actual turning cannot change suddenly.
Therefore, the curve used to control vehicle driving shall ensure its curvature continuity.
Otherwise, tracking error would be inevitably produced between the actual vehicle motion
and the reference path.

3.2. Algorithm Process

The overall process of the trajectory tracking control method based on the clothoid
curve is shown in Algorithm 1. Firstly, the reference path is obtained from the path planning
module. Then, it is checked whether the point number of the reference path is more than
one. If not, the target steering angle calculated from the previous cycle is output; otherwise,
the state of the vehicle after t1 is predicted according to the current state of the vehicle,
where t1 is the communication delay time of the control system. The point closest to the
predicted vehicle position on the reference path is found and set as the first point on the
preview point selection interval; then, the last point of the preview point selection interval
on the reference path is determined. The clothoid curve is calculated from the predicted
vehicle position to the preview point, which is selected from the preview point selection
interval. The clothoid curve obtained is composed of three curves. Since the distance
traveled by the vehicle in the control cycle is covered by the first curve, only the parameters
of the first S[0] curve need to be verified. If S[0] meets the vehicle motion and safety
constraints, it would be used as the candidate curve; then, the process would jump to
Step 6 to calculate the next clothoid curve. If the S[0] curve obtained does not satisfy the
constraints, the validation of the existing candidate curve is checked. If it is valid, it is
selected as the control curve; otherwise, the maximum curvature change rate under the
limit is used as the change rate of the output curve, and its symbol should be consistent
with S[0]. Taking the change rate of output curve curvature as a parameter, and taking the
curvature of the corresponding position of the output curve after the preview t2 time of
the current vehicle speed as the target curvature, the target angle of the front wheels of the
vehicle is calculated and then converted to the steering wheel angle. Finally, the steering
wheel control target angle is processed by the moving average filtering of the calculated
steering wheel target angles from the processes above.

3.3. Vehicle State Prediction Based on Communication Delay

Due to the communication delay t1 of the control system, the control command sent
at the current time cannot be responded to until t1. Therefore, the sent control command
should also be calculated according to the state relationship between the vehicle and the
reference path after t1, so it is necessary to predict the vehicle state after t1. Zakaria et al.
proposed to move forward along the current longitudinal axis of the vehicle to predict the
future state of the vehicle for tracking error calculation [20]. AbdElmoniem et al. proposed
to predict the vehicle state in the following control cycles by using the vehicle’s current state
vector

[
X f , Yf , θ, V, δ

]
, which are the vehicle’s current horizontal and coordinate position,

heading angle, speed, and front wheel angle [21]. Xu et al. used the optimal control theory
of the discrete time-delay system for reference, used the vehicle dynamics model to predict
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the state of vehicles in each cycle of the delay time in turn according to the control cycle,
and also used the same front wheel angle in the prediction space of each control cycle, but
the prediction accuracy of this method is affected by the accuracy of the vehicle dynamics
model [19].

Algorithm 1: Trajectory tracking of autonomous vehicle using clothoid curve
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at the current time cannot be responded to until t1. Therefore, the sent control command 
should also be calculated according to the state relationship between the vehicle and the 
reference path after t1, so it is necessary to predict the vehicle state after t1. Zakaria et al. 
proposed to move forward along the current longitudinal axis of the vehicle to predict the 
future state of the vehicle for tracking error calculation [20]. AbdElmoniem et al. proposed 
to predict the vehicle state in the following control cycles by using the vehicle’s current 
state vector 𝑋 , 𝑌 , 𝜃, 𝑉, 𝛿 , which are the vehicle’s current horizontal and coordinate po-
sition, heading angle, speed, and front wheel angle [21]. Xu et al. used the optimal control 
theory of the discrete time-delay system for reference, used the vehicle dynamics model 
to predict the state of vehicles in each cycle of the delay time in turn according to the 
control cycle, and also used the same front wheel angle in the prediction space of each 

This paper needs to predict the state of the vehicle after the communication delay
time t1 of the control system. The communication delay time t1 is about 0.1 s according
to the test. During this time, the change in vehicle speed and front wheel angle are very
small and can be ignored. Therefore, this paper uses the current state [X, Y, θ, δ, v] of the
vehicle to predict the state of the vehicle after t1, which can ensure the calculation error in a
small range.
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Firstly, the position of the vehicle after t1 in the current vehicle frame is predicted,
as shown in Figure 3. The state of the vehicle after t1 is calculated from the following
geometric relationship: 

s = v ∗ t1
r = L/tanδ
∆θ = s/r
∆x = −(1− cos(∆θ)) ∗ r
∆y = r ∗ sin∆θ
κ = κv

, (8)
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Suppose that the vehicle keeps the current front wheel angle moving at a constant
speed in time t1, where r is the current turning radius, L is the wheelbase, κ and κv are the
current turning curvature, v is the speed, and δ is the front wheel angle. At t1, s is the arc
length, and the vehicle state can be expressed as [∆x, ∆y, ∆θ, κ], namely, the state of the
vehicle in the current vehicle frame after time t1.

Since the frame of the reference path is the global coordinate system, the predicted
vehicle state after time t1 in the current vehicle frame should also be converted to the global
coordinate system. 

xg = ∆x ∗ cosθv − ∆y ∗ sinθv + xv
yg = ∆x ∗ sinθv + ∆y ∗ cosθv + yv
θg = θv + ∆θ
κg = κv

, (9)

where, [xv, yv, θv, κv] is the current state of the vehicle in the global coordinate system, and[
xg, yg, θg, κg

]
is the predicted state of the vehicle in the global coordinate system in time t1.

3.4. Preview Point Selection

The state of the vehicle after the control system communication delay time t1 is
obtained through prediction calculation, and the predicted vehicle position is taken as the
starting point of the planned control path. The selection of the end point of the planned
control path (also known as the preview point) will affect the deviation between the planned
control path and the reference path (as shown in Figure 4). The closer the preview point is
selected, the smaller the area enclosed by the planned control path and the reference path
is, that is, the smaller the overall deviation of the trajectory tracking process. However,
if the tracking control path is too short, the curvature and curvature change rate of the
calculated clothoid curve might be too large, which will exceed the control range of the
vehicle steering wheel angle and angular velocity, or cause the steering wheel angle to
change dramatically, thus affecting the vehicle stability. Therefore, this paper proposes to
design a preview point scanning interval. In this interval, the point that is closest to the
predicted vehicle position and can satisfy the vehicle’s control non-integrity, safety, and
stability constraints is found as the preview point to calculate the clothoid curve.
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Figure 4. Influence of the selection of preview point on the calculation deviation of control path.

The point closest to the predicted vehicle position on the reference path is selected as
the first point on the preview point interval. The last point on the preview point interval
is calculated from the speed and the bending degree of the target curve. The specific de
termination method is shown in Algorithm 2.

Algorithm 2: End point selection of preview point interval
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Set the initial value of the preview point selection interval length as s_init, then s_length
is adjusted according to the vehicle speed and the curvature and length of the reference path.
Next, set the point closest to the predicted vehicle position found on the reference curve as
the start point, and search along the reference path to find the point whose distance to the
start point is closest with s_length as the last point of the preview point selection interval.

After determining the preview point selection interval, calculate the clothoid curve
from far to near points within the interval, and check whether the parameters of the curve
obtained meet the constraints. The curve that can meet the constraints and its end point is
closest to the predicted vehicle position is the optimal planned control path.

3.5. Constraints

The autonomous vehicle platform with Ackerman steering is used in the test of this
paper. The motion constraints for the test platform include the maximum curvature and
the maximum curvature change rate. In addition, the length of the planned control path
designed by the clothoid curve should be long enough; otherwise, direction jitter will occur
in the continuous control process.

3.5.1. Curvature Constraint

The maximum curvature constraint is discussed in two cases: stationary or low-speed
state and normal running state. When the vehicle is stationary or moving at a very low
speed, the maximum front wheel angle parameter is used to calculate its motion curvature
constraint. When the vehicle speeds up, the maximum motion curvature is limited by
limiting the lateral acceleration.

κmax =

{
tan(δmax)

L (v < vslow)
ay

(v∗v) (v ≥ vslow)
, (10)

where δmax is the maximum turning angle of the front wheel, L is the wheelbase, v is
the vehicle speed, ay is the lateral acceleration, and vslow is the low-speed threshold. The
parameter used to determine whether the vehicle stops or not can be set to 0.1 m/s in
practical application

3.5.2. Maximum Curvature Change Rate Constraint

According to Formula (6), the curvature change rate of the curve is limited by the
maximum angular velocity of the steering wheel. When the speed is very low or the vehicle
is stationary, the maximum curvature change rate of the limited curve is set to an experience
value. The larger this value is, the more obvious the vehicle jitters when starting. To sum
up, the calculation method of the curvature change rate of the curve is as follows.

k′max =

{
ω

k∗L∗v∗cos2(δ)
(v > vslow)

experienced_value(v ≤ vslow)
, (11)

The meaning of the characters in the upper formula are consistent with that in
Formulas (7) and (10). In later experiments, the experienced_value is set to 0.5.

3.5.3. Clothoid Curve Length Constraint

The length of the planned control path designed by the clothoid curve is required to be
long enough for two reasons. On the one hand, the algorithm proposed in this paper needs
to preview a point at a distance on the clothoid curve according to the vehicle speed and the
servo response delay time of the steering system. The length of the planned control path
must be greater than the preview length; on the other hand, if the length of the planned
control path is too short, cross error may be raised because of the large change in the
curvature of the clothoid curves calculated successively. It is determined that the clothoid
curve length is not less than one meter, which can achieve good tracking performance.
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The clothoid curve control follow path length constraint proposed in this paper is defined
as follows.  length

(
s[0]
)
> v ∗ 0.5(v > 2 m/s)

length
(

s[0]
)
> 1.00(v <= 2 m/s)

, (12)

where length
(

s[0]
)

is the length of the S[0] curve or the planned control path, and v is the
current vehicle speed.

3.6. Preview Control Based on Steering System Response Hysteresis

We propose two methods to obtain the target angle of the steering wheel. The first
method is to calculate the target steering angle by previewing the curvature of a point on
the planned control path, as shown in the following formula.

κpreview = κv + κ′ ∗ v ∗ t2
δ = tan−1(L ∗ κpreview)
angle = δ ∗ k

, (13)

where κv is the current steering curvature of the vehicle, κ′ is the curvature change rate
of the planned control path, v is the current speed, t2 is the steering system response
hysteresis time, δ is the front wheel angle, L is the wheelbase, k is the steering system
transmission ratio, κpreview represents the target curvature of the preview, and angle is the
target steering angle.

The second method is to calculate the target turning rate of the steering wheel using
the curvature change rate of the planned path k′ according to Formula (6). Then, the target
angle is calculated by previewing the steering wheel angle by the steering system response
hysteresis time, as shown in the following formula.{

ω = κ′ ∗ k ∗ L ∗ v ∗ cos2(δv)
angle = anglev + ω ∗ t2

, (14)

where ω is the target angular velocity of the steering wheel, δv is the current angle of the
front wheel, anglev is the current steering wheel angle, and angle is the target steering angle.
The meaning of the other characters in Formula (14) is consistent with that in Formula (7).

The steering system response hysteresis time t2 has some differences due to the
different step values of the actual target angle. If t2 is too large, the target angle may be
reached in advance, resulting in tracking deviation; on the other hand, if the selection of t2
is too small, it may cause the steering response to be too slow and delay reaching the target
steering angle, thus resulting in tracking deviation.

4. Test Results and Analysis
4.1. Test Method
4.1.1. Test Platform

In order to verify the effectiveness of the trajectory tracking control method using the
clothoid curve proposed in this paper, an intelligent vehicle modified based on Wey VV6 (as
shown in Figure 5) was used for the field test. The intelligent driving software architecture
used in the vehicle is shown in Figure 6, which mainly consists of a sensor system, data
preprocessing module, perception module, prediction module, planning and decision-
making module, positioning module, map and navigation module, control module, system
service and log, simulation analysis tools, and other modules. Communication protocol
interfaces are defined between modules, and data communication is carried out using
the ROS platform. The platform is equipped with two Nuvo-7160GC industrial control
computers, one of which is used in this experiment.
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4.1.2. Test Path Design

In order to avoid the interference of misidentification and detection on the test, only
differential GPS and IMU sensors were used to collect the position information in the
test. The driver drove the vehicle along the set route to collect and record the positioning
information of the route. Because of the differential GPS positioning system, the accuracy
of the recorded path position information is ±0.02 m. When the vehicle ran in automatic
mode, the decision-making module extracted the path ahead of the vehicle, calculated the
position, distance, direction angle, and curvature of each path point, and sent the data to
the control module in the form of a path point array. The control module used this path as
the reference path to follow and calculated the control command. The control module then
sent the generated control command to the drive module and forwarded it to the servo
execution system via CAN messages to drive the steering wheel to execute corresponding
actions. The test path is shown as Figure 7.
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4.1.3. Comparison Method

The most popular geometric controllers are the pure pursuit tracking controller and
the Stanley controller. Because the pure pursuit tracking controller has few parameters and
is insensitive to sudden changes in the path, it is widely used in autonomous vehicles. In
recent years, its optimization is mainly focused on the selection of preview points. This
paper uses the pure tracking controller for comparative tests. The selection strategy of
preview points adopts the method proposed in Reference [9], as shown in Formula (15).
The calculation method of the front wheel target angle of the pure pursuit tracking method
is shown in Equation (16) [9].

ld =


5 vcur < 10 kph,
0.5 ∗ vcur 10 kph ≤ vcur < 50 kph,
25 50 kph ≤ vcur.

(15)

where ld is the preview distance, and vcur is the current vehicle speed.

δld(t) = tan−1
(

2Lsin(α(t))
ld

)
, (16)

where δld(t) is the desired steering wheel angle, ld is the preview distance, L is the wheel-
base, and α represents the angle between the heading angle of the vehicle and the look-
ahead vector.

4.2. Test Results and Analysis

The performance of the trajectory tracking controller is compared and evaluated by
the lateral position deviation and yaw deviation. The calculation method is as follows [22].

Maximum lateral deviation:

εd, max = max
i∈[1...N]

∣∣εd, i
∣∣ (17)

Maximum yaw deviation:

εθ, max = max
i∈[1...N]

|εθ, i| (18)

Average lateral deviation:

εd,rms =

√
1
N ∑N

i=1 εd,i
2, (19)



Appl. Sci. 2023, 13, 2733 13 of 18

Average yaw deviation:

εθ,rms =

√
1
N ∑N

i=1 εθ,i
2, (20)

The pure pursuit method and the method proposed in this paper were tested on the
designed route with speed limits of 10 km/h, 15 km/h. and 20 km/h respectively, as shown
in Figures 8–10. The statistics of maximum lateral deviation, maximum yaw deviation,
average lateral deviation, and average yaw deviation are shown in Table 1.
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Figure 8. Speed limit 10 km/h trajectory tracking. Top first row: the curvatures along the field test
road. Second row: actual speed of the vehicle during the trajectory tracking experiment under the
speed limit of 10 km/h. It can be seen that the vehicle will slow down according to the curvature of
the road ahead before entering the curve. Third row: steering wheel angle commands the comparison
between the pure pursuit method and the method proposed in this paper. When tracking the curve,
the method proposed in this paper increases the steering wheel angle control command later when
entering the curve, and decreases the steering wheel angle control command in advance when leaving
the curve, and the control amount given in the curve is also larger. It is because of this that the “cutting
corner” problem suffered by the pure pursuit method is avoided. Fourth row: yaw angle deviation
from the reference path point. The method proposed in this paper reduces the angle deviation to a
large extent and avoids the problem of directional oscillation when turning, so as to improve the
driving stability and riding comfort of the vehicle. Last row: lateral deviation from the reference path.
The method proposed in this paper greatly reduces the reference path tracking error and improves
the accuracy of vehicle path tracking control.
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Figure 9. Speed limit 15 km/h trajectory tracking. Top first row: the curvatures along the field test
road. Second row: actual speed of the vehicle during the trajectory tracking experiment under the
speed limit of 15 km/h. It can be seen that the vehicle will slow down according to the curvature of
the road ahead before entering the curve. Third row: steering wheel angle commands the comparison
between the pure pursuit method and the method proposed in this paper. It is noted that the steering
wheel angle control commands given by the pure pursuit method suffer a drastic oscillation when
leaving the right-angle turn, which does not occur in the previous test with a speed limit of 10 km/h.
This problem might be caused by the improper selection of the preview distance. Fourth row: yaw
angle deviation from the reference path point. The direction deviation generated by the pure pursuit
tracking method when leaving the right-angle turn is actually caused by the violent oscillation of
the steering wheel angle control command. Last row: lateral deviation from the reference path.
Compared with the 10 km/h speed limit test, the tracking deviation of the method proposed in this
paper in the first right-angle turn increased, which indicates a limitation that the trajectory tracking
accuracy of the method proposed in this paper is sensitive to speed changes when passing the curve
with a large curvature.
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Figure 10. Speed limit 20 km/h trajectory tracking. Top first row: the curvatures along the field test
road. Second row: actual speed of the vehicle during the trajectory tracking experiment under the
speed limit of 20 km/h. It can be seen that the vehicle will slow down according to the curvature of
the road ahead before entering the curve. Third row: steering wheel angle commands the comparison
between the pure pursuit method and the method proposed in this paper. It can be seen that the
steering wheel angle control commands given by the pure pursuit method still suffer a drastic
oscillation when leaving the right-angle turn. Fourth row: yaw angle deviation from the reference
path point. The obvious direction deviation generated by the pure pursuit tracking method when
leaving the right-angle turn also appears as expected. Last row: lateral deviation from the reference
path. The performance of the method proposed in this paper is obviously better than the pure pursuit
tracking method when passing through right-angle curves, but the accuracy is slightly lower when
passing through S curves with a small curvature.
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Table 1. Test result statistics. Clothoid represents the trajectory tracking control method based on the
clothoid curve proposed in this paper. PP represents the pure pursuit tracking method.

Limited Speed
(km/h)

εd,max (m) εθ,max (rad) εd,rms (m) εθ,rms (rad)

Clothoid PP Clothoid PP Clothoid PP Clothoid PP

10 0.109 0.381 0.0557 0.1390 0.0157 0.1225 0.0071 0.03148
15 0.227 0.378 0.0934 0.1753 0.0365 0.1218 0.0134 0.03662
20 0.232 0.368 0.0864 0.1727 0.0393 0.1231 0.0140 0.03754

The analysis of the three groups of comparative test results shows that the performance
of the method proposed in this paper is generally better than the pure pursuit tracking
method. In particular, the yaw deviation is improved by more than 50%. Under different
speeds, both methods can control the lateral tracking deviation and yaw deviation within
5 cm on the straight track. The maximum lateral deviation and yaw deviation of both
control methods occurred at the first right turn. The reason is that the maximum curvature
of this turn curve is 0.168, which almost reaches the limit of the turning radius of the vehicle.
The value of the steering wheel target angle output by the method proposed in this paper
in this curve reaches about 94%. When the vehicle passed this curve at the speed limit of
10 km/h, due to the relatively low entry speed, the lateral deviation and heading deviation
obtained at 10 km/h is less than those at the speed limits of 15 km/h and 20 km/h. During
the 15 km/h and 20 km/h speed limit tests of the pure tracking method, there is a large
jitter after every right turn, which leads to a large deviation in yaw. A small curvature S
curve and a lane-changing scene are designed in the route. In the 10 km/h speed limit
test, the performance of the method proposed in this paper is better than that of the pure
pursuit tracking method. In the speed limit 15 km/h and 20 km/h tests, the tracking result
of the pure tracking method is better than that of the method proposed in this paper, but
the method proposed in this paper still controls the lateral tracking deviation within 5 cm.
The reason for the analysis is that the preview distance of the pure pursuit tracking method
is close at low speed and oscillates when tracking small curvature paths. As the speed
increases, the preview distance also increases, which can better adapt to small curvature
paths. However, the parameter adjustment of the method proposed in this paper requires
that the speed is low enough to show better tracking performance when passing curves.

During the test, the control frequency is set to 100 HZ. Although it may require
multiple calculations to solve the optimal clothoid curve in one control cycle, the method
provided in Reference [18] is very efficient in solving the clothoid curve and can reach a
delicate level, so the average calculation efficiency of the system can meet the real-time
requirements. The system transplantation would take some work. In addition to the basic
parameters of the vehicle geometric model, such as the wheelbase and the steering ratio, it
is also necessary to adapt the communication delay of the control system and the response
lag time parameters of the vehicle steering servo system. In general, the system has good
real-time performance.

5. Conclusions

The trajectory tracking control method using a clothoid curve is proposed in this paper.
First, the vehicle motion control model is constructed; then, based on the current state of the
vehicle, the control system communication delay time is used to predict the vehicle state,
which is the starting point of the clothoid curve. On the reference path, the optimal selection
interval of the end point of the clothoid curve is selected, and finally, the optimal clothoid
planned control path that satisfies the non-integrity constraints and safety conditions of
vehicle driving is obtained. Based on the response hysteresis parameters of the steering
system, the curvatures of points are previewed on the clothoid curve to further calculate
the target angle of the output steering wheel control. A test path, including a straight lane,
a right-angle turn, a curve, and lane-change scenarios, is designed in a park environment,
and comparative tests are conducted against the pure pursuit tracking algorithm under
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the speed limits of 10 km/h, 15 km/h, and 20 km/h. The results show that the trajectory
tracking control method using the clothoid curve proposed in this paper outperforms the
pure pursuit tracking algorithm in terms of lateral deviation and yaw deviation indicators.

In this study, we adopted a geometric vehicle model based on Ackermann steering,
so the method proposed in this paper is not applicable to the vehicle platform of other
steering models, such as differential steering. At the same time, because the geometric
vehicle model is used, the dynamic characteristics of the vehicle, such as the slip of the
vehicle caused by the tire sideslip, are not considered. Therefore, the vehicle speed must
be strictly controlled according to the curvature of the curve when turning to ensure the
path tracking accuracy. In future work, we will use a different platform to test and verify
the effectiveness of the method proposed in this paper and future improve the trajectory
tracking performance of the method when passing curves with a small curvature.
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