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Abstract: Human activity recognition (HAR) has been applied to several advanced applications,
especially when individuals may need to be monitored closely. This work focuses on HAR using
wearable sensors attached to various locations of the user body. The data from each sensor may
provide unequally discriminative information and, then, an effective fusion method is needed. In
order to address this issue, inspired by the squeeze-and-excitation (SE) mechanism, we propose
the merging-squeeze-excitation (MSE) feature fusion which emphasizes informative feature maps
and suppresses ambiguous feature maps during fusion. The MSE feature fusion consists of three
steps: pre-merging, squeeze-and-excitation, and post-merging. Unlike the SE mechanism, the set
of feature maps from each branch will be recalibrated by using the channel weights also computed
from the pre-merged feature maps. The calibrated feature maps from all branches are merged to
obtain a set of channel-weighted and merged feature maps which will be used in the classification
process. Additionally, a set of MSE feature fusion extensions is presented. In these proposed methods,
three deep-learning models (LeNet5, AlexNet, and VGG16) are used as feature extractors and four
merging methods (addition, maximum, minimum, and average) are applied as merging operations.
The performances of the proposed methods are evaluated by classifying popular public datasets.

Keywords: convolutional neural networks (CNNs); deep learning; feature fusion; human activity
recognition (HAR); inertial measurement units (IMUs); squeeze-and-excitation; wearable sensors

1. Introduction

Human activity recognition (HAR) is an active and challenging research field [1] to
specify human activities (e.g., sitting, walking, running) based on the data collected from
devices such as cameras [2] and wearable sensors [3–5]. It has been essential in many
applications, especially healthcare [6]. In addition, HAR helps an information–technology
system to automatically monitor and record the activities of users such that we can analyze
them and alert related persons (e.g., users, relatives, doctors) when an abnormal activity
or an accident happens [7]. Due to the limitations of using cameras in HAR such as
user privacy, using wearable devices (e.g., smart watches and smartphones) in HAR is
receiving significant attention. These wearable devices commonly use sensors such as
accelerometers, gyroscopes, and magnetometers to monitor the activities of the users [5,8,9].
In addition, many studies have been focused on using several inertial measurement units
(IMUs) attached to different parts of the user body such that we can have data from different
locations and utilize them together to obtain better recognition accuracy [10].

The HAR using wearable devices will receive sensor data from accelerometers, gyro-
scopes, and/or magnetometers and use them to classify the activities. Of the classification
models/algorithms, two types are popularly applied to HAR: traditional machine learning
(ML) algorithms and deep-learning (DL) models. By using a traditional ML algorithm (e.g.,
support vector machine, random forest), we will manually extract a set of useful features
from the sensor data and pass them to the ML algorithm to specify the corresponding
activities [11,12]. On the other hand, a DL model will automatically extract a set of features
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from the sensor data and use them in the classification process. As a result, DL models such
as convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have
been extensively studied in HAR [9,13–15].

A CNN model essentially consists of a series of convolutional layers and pooling
layers to extract a set of features called feature maps, which will be used later in the
classification. However, only some feature maps may be very useful for classifying the
activities of interest. Therefore, informative feature maps should be emphasized while
ambiguous feature maps should be suppressed. A channel–attention mechanism called the
squeeze-and-excitation (SE) block [16] was proposed to solve this issue. The SE block will
recalibrate each feature map by a weight value which is proportional to the importance
of this feature map in the classification. The SE block has recently been applied to CNN
and/or RNN models to better the HAR performances [17,18].

The performances of wearable-sensor HAR can be improved by implementing multi-
branch DL architectures [19,20]. A multi-branch DL architecture consists of several parallel
branches using DL models to extract different sets of feature maps independently. Specifi-
cally, each branch provides a set of feature maps denoting local information. Thereafter,
these sets of feature maps will be fused by using feature fusion such as concatenation to
generate a set of fused feature maps (denoting global information); which will be used later
in the classification process. A traditional feature fusion method combines the local feature
maps equally without being aware that, in each set, some feature maps may be informative
while some feature maps are ambiguous. Motivated by this issue, we need a feature fusion
method which is able to emphasize informative feature maps and suppress ambiguous
feature maps in each branch during fusion such that we can combine the local feature maps
efficiently and obtain useful discriminative fused feature maps.

Inspired by the squeeze-and-excitation (SE) mechanism [16], we propose a feature
fusion method called the merging-squeeze-excitation (MSE) feature fusion. In each branch,
the MSE feature fusion recalibrates the local feature maps by using a set of channel weights.
Since the fused feature maps are the ones who enter the classification process, the channel
weights could be computed such that the fused feature maps provide very discriminative
information. Therefore, unlike the SE mechanism, we design the MSE feature fusion such
that, at each branch, it computes the channel weights based on both local feature maps and
fused feature maps. As a result, when we consider a set of C local feature maps, the c-th
local feature map will be emphasized if either it is important to the classification or the
corresponding c-th fused feature map is useful to the classification.

The MSE feature fusion consists of three steps: pre-merging step, squeeze-and-
excitation step, and post-merging step. In the pre-merging step, the feature maps from
all branches are merged together to obtain a set of pre-merged feature maps. Thereafter,
during the squeeze-and-excitation step, the feature maps from each branch are recalibrated
according to their importance measured from both the channel-wise statistics obtained
from themselves and the channel-wise statistics obtained from the pre-merged feature
maps. Finally, in the post-merging step, the MSE feature fusion applies the same merging
operation used in the first step to combine the output feature maps from all branches and
obtain a set of channel-weighted and merged feature maps which will be used to classify
the activities of interest. In this work, we have applied three DL models (i.e., LeNet5,
AlexNet, and VGG16) as feature extractors and four merging methods (addition, maximum,
minimum, and average) as merging operations in the pre-merging step and post-merging
step. Furthermore, we also modify the proposed MSE feature fusion by adding local skip
connections, adding a global skip connection, using global channel attention, and stacking
a series of the MSE feature fusions to create deep MSE feature fusions. Their performances
are evaluated on three public HAR datasets: PAMAP2, DaLiAc, and DSAD.

The main contributions of this work are summarized as follows:

1. We propose five MSE feature fusion architectures for wearable-sensor HAR using
multi-branch architectures such that the feature maps will be recalibrated according
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to their importance during the fusion. Three DL models and four merging methods
used in the MSE feature fusion are studied and investigated.

2. Extensive experiments are conducted to evaluate and compare the performances of
the proposed methods and baseline architectures by using the PAMAP2, DaLiAc,
and DSAD datasets. The results show the following findings:

• The MSE feature fusion with a global skip connection when using the average
merging and AlexNet achieves the highest accuracy score of 99.24% on classifying
the PAMAP2 dataset.

• The MSE feature fusion with local skip connections when using the minimum
merging and AlexNet achieves the highest accuracy score of 98.59% on classifying
the DaLiAc dataset.

• The original MSE feature fusion using the average merging and AlexNet achieves
the highest accuracy score of 98.04% on classifying the DSAD dataset.

• Among the merging methods studied in the proposed methods, the addition
merging offers the worst accuracy scores. The maximum, minimum, and average
merging have similar performances.

• All of the highest accuracy scores are from using AlexNet as the feature extractor.

The rest of this paper is organized as follows. Section 2 reviews the previous work
focusing on using the SE block in HAR, proposing multi-branch DL architectures for HAR,
and presenting SE-based feature fusion methods. The data collection and preparation are
described in Section 3. Sections 4 and 5 present the proposed MSE feature fusion and its
extensions, respectively. Their performances are evaluated and compared in Section 6.
Finally, conclusions and future work are provided in Section 7.

The main symbols used in this paper are summarized as follows. Lower-case and
upper-case bold letters represent vectors and three-dimensional (3D) arrays, respectively.
The symbols R1×C and RC denote the space of C-real-number row vectors and the space
of C-real-number column vectors, respectively. The symbol RH×W×C denotes the space of
3D arrays (of real numbers) whose height, width, and channel number are equal to H, W,
and C, respectively. Tables 1 and 2 summarize the main symbols used in this paper.

Table 1. List of main symbols used in Sections 4, 5.1 and 5.2.

Symbol Definition

g(n) ∈ RC A vector of channel-wise statistics according to the local feature maps A(n) at the n-th branch.
h(n) ∈ RC A vector of channel-wise statistics according to the addition of g(n) and u at the n-th branch.
s(n) ∈ RC A vector of channel weights for the local feature maps A(n) at the n-th branch.
u ∈ RC A vector of channel-wise statistics according to the pre-merged feature maps B.
v ∈ RC A vector of channel weights for the pre-merged feature maps B.
A(n) ∈ R1×L×C A 3D array of local feature maps at the n-th branch.
B ∈ R1×L×C A 3D array of pre-merged feature maps.
P(n) ∈ R1×L×C A 3D array of channel-weighted feature maps according to the local feature maps A(n) at the n-th

branch.
Q(n) ∈ R1×L×C A 3D array of channel-weighted feature maps according to the addition of P(n) and B at the n-th

branch.
R ∈ R1×L×C A 3D array of channel-weighted feature maps according to the pre-merged feature maps B.
X(n) ∈ R1×W×C A 3D array of sensor data at the n-th branch (obtained from the n-th IMU).
Ygca ∈ R1×L×C A 3D array of channel-weighted and merged feature maps, which is the output of the MSE feature

fusion with global channel attention.
Ygsc ∈ R1×L×C A 3D array of channel-weighted and merged feature maps, which is the output of the MSE feature

fusion with a global skip connection.
Ylsc ∈ R1×L×C A 3D array of channel-weighted and merged feature maps, which is the output of the MSE feature

fusion with local skip connections.
Ymse ∈ R1×L×C A 3D array of channel-weighted and merged feature maps, which is the output of the MSE feature

fusion.
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Table 2. List of main symbols used in Section 5.3.

Symbol Definition

g̃(d,n) ∈ RC A vector of channel-wise statistics according to the feature maps P̃(d−1,n) at the n-th branch in
the d-th MSE feature fusion block.

h̃(d,n) ∈ RC A vector of channel-wise statistics according to the addition of g̃(d,n) and ũ(d) at the n-th branch
in the d-th MSE feature fusion block.

s̃(d,n) ∈ RC A vector of channel weights for the feature maps P̃(d,n) at the n-th branch in the d-th MSE feature
fusion block.

ũ(d) ∈ RC A vector of channel-wise statistics according to the merged and channel-weighted feature maps
Ỹdeep,(d) in the d-th MSE feature fusion block.

A(n) ∈ R1×L×C A 3D array of local feature maps at the n-th branch.
B ∈ R1×L×C A 3D array of pre-merged feature maps.
P̃(d,n) ∈ R1×L×C A 3D array of channel-weighted feature maps according to the feature maps P̃(d−1,n) at the n-th

branch in the d-th MSE feature fusion block.
X(n) ∈ R1×W×C A 3D array of sensor data at the n-th branch (obtained from the n-th IMU).
Ỹmse,(d) ∈ R1×L×C A 3D array of channel-weighted and merged feature maps, which is the output of the weighted

feature merging in the d-th MSE feature fusion block.
Ỹdeep,(d) ∈ R1×L×C A 3D array of channel-weighted and merged feature maps, which is the output of the d-th MSE

feature fusion.

2. Related Work

The SE block was proposed to improve the performances of the CNNs and to demon-
strated its potential in image classification [16]. It consists of two successive operations:
squeeze and excitation. In the squeeze operation, the inputted feature maps will be passed
to a global-average pooling (GAP) layer to generate channel-wise statistics, where each
value is an average of the corresponding feature map. Thereafter, in the excitation operation,
the SE block will compute an appropriate weight for each feature map by using the channel-
wise statistics and fully connected (FC) layers. The SE block multiplies inputted feature
maps by their weights and obtains the channel-weighted feature maps. Due to its success in
image classification, the SE block has been adopted in many applications, including HAR.
Zhongkai et al. [17] investigated the potential of the SE blocks by adding them to a list of
state-of-the-art CNN models (e.g., VGG16, Inception, ReNet18, and PyramidNet18) and
comparing the corresponding HAR performances. Mekruksavanich et al. [18] proposed a
DL model called the SEResNet-BiGRU, which is a combination of residual blocks, SE blocks,
and bidirectional gate recurrent units (BiGRUs), and applied it for transitional activity
recognition. Khan et al. [21] proposed a multi-branch DL architecture where each branch
uses a CNN model with an SE block to extract and re-weight feature maps. The above DL
models with SE blocks are summarized in Table 3.

Table 3. A summary of DL models with SE blocks for HAR using sensor data.

Year Ref. Dataset Device DL Model

2021 [21] UCI HAR, WISDM Smartphone CNN with an SE block
2022 [17] HASC, UCI HAR, WISDM Smartphone State-of-the-art CNNs

with SE blocks
2022 [18] HAPT, MobiAct v2.0 Smartphone CNN with a residual block,

an SE block, and BiGRU

Several DL architectures have been extensively proposed and investigated in HAR
using sensor data. In order to improve the HAR performances, instead of using only one
branch, we can implement DL architectures with multiple branches such that several differ-
ent and unique sets of feature maps will be obtained and helpful in classifying the activities.
There are two common categories of the multi-branch architectures. In the first category,
we consider a scenario wherein there is a set of wearable sensors (e.g., IMUs) attached to
parts of the user body (e.g., a wrist, an ankle, the chest). Therefore, different sets of sensor
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data are obtained initially. These sets of sensor data are inputted into a multi-branch DL
architecture. Each branch will receive each set and extract the corresponding features by
using the same DL model independently [19,22,23]. In order to obtain a set of feature maps
on each branch, Rueda et al. [19] applied a series of convolutional layers and max pooling
layers, Liu et al. [22] implemented stacked convolutional layers, and Al-qaness et al. [23]
employed a CNN model with residual blocks. The feature maps of all branches are fused
(i.e., feature fusion) by using concatenation. In the second category, we apply a set of
sensor data to a multi-branch DL architecture where each branch uses a different DL model
and results in a different set of features. Three-branch DL architectures were proposed
in [20,21,24–28], where a CNN model [20,24,27,28], a hybrid of a CNN model, and a bidi-
rectional long short-term memory (LSTM) layer [25], as well as a CNN model with an SE
block [21], and a hybrid of convolutional layers and gated recurrent unit (GRU) layers [26]
were used on each branch to extract a set of features. The differences among these branches
are the kernel sizes of the convolutional layers [20,21,24–28] and the number of layers [20].
Similarly, the output feature sets are combined by using concatenation. We summarize the
aforementioned multi-branch DL architectures in Table 4.

Table 4. A summary of multi-branch DL architectures for HAR using sensor data.

Year Ref. Dataset Device Category DL Model Feature Fusion

2018 [19] Opportunity, IMUs Multiple Inputs CNN Concatenation
Order Picking, PAMAP2

2019 [20] UCI HAR, WISDM Smartphone Multiple DL Models CNN Concatenation
2020 [22] DG, DSAD, IMUs Multiple Inputs CNN Concatenation

PAMAP2,
RealWorld-HAR

2020 [24] WISDM Smartphone Multiple DL Models CNN Concatenation
2020 [25] MHEALTH, WISDM IMUs, Multiple DL Models CNN and LSTM Concatenation

Smartphone
2021 [21] UCI HAR, WISDM Smartphone Multiple DL Models CNN with Concatenation

an SE block
2021 [26] PAMAP2, UCI HAR, IMUs, Multiple DL Models CNN and GRU Concatenation

WISDM Smartphone
2021 [27] Self-Recorded Data, IMUs, Multiple DL Models CNN Concatenation

UCI HAR Smartphone
2022 [28] PAMAP2, UCI HAR, IMUs, Multiple DL Models CNN Concatenation

WISDM Smartphone
2023 [23] Opportunity, PAMAP2, IMUs, Multiple Inputs CNN and Concatenation

UniMiB-SHAR Smartphone Residual Blocks

Recently, the SE mechanism (i.e., squeeze and excitation operations) has been applied
to feature fusion in multi-branch DL architectures where feature maps from each branch
will be recalibrated before fusing them together. Li et al. [29] proposed a model called
the temporal-spectral-based squeeze-and-excitation feature fusion network (TS-SEFFNet)
to classify motor imagery tasks by using electroencephalography (EEG) signals. The TS-
SEFFNet receives EEG signals and uses two branches with different DL models called
the deep-temporal convolution block and the multi-spectral convolution block to extract
two different sets of feature maps. The feature maps of each set are recalibrated by using
the SE mechanism. The TS-SEFFNet combines the outputs of these two branches by
using concatenation.

Instead of using sensor data from one modality, multimodal classification [30] receives
data from multiple modalities and has gained a significant amount of attention [31–33].
Essentially, a multi-modal classification model will be implemented based on a multi-
branch architecture where each branch will receive different modal data and extract the
corresponding features. These features obtained from various modalities will be combined
and sent to the classification process. Since the feature maps from each modality contribute
information unequally, an efficient fusion method must be investigated [31–33].

In addition, several SE-based feature fusion methods were extensively investigated
in multi-modal classification. Jia et al. [34] proposed a feature fusion method called the
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multi-modal SE feature fusion module to combine feature maps from EEG signals and
feature maps from electrooculogram (EOG) signals for sleep-staging classification. Un-
like [16,29] where each branch computes the weights for the feature-map calibration in the
excitation operation separately, the multi-modal SE feature fusion module will calculate
the channel weights based on the channel-wise statistics from both EEG feature maps and
EOG feature maps.

Shu et al. [35] proposed a DL model called the expansion-squeeze-excitation fusion net-
work (ESE–FN) for elderly activity recognition using RGB videos and skeleton sequences.
The ESE–FN applies two successive fusion modules (modal fusion and channel fusion)
to combine RGB features and skeleton features properly. The modal-fusion module per-
forms the modal attention where modal-wise weights are computed and multiplied to the
corresponding modalities’ feature maps. The channel-fusion module obtains the channel
attention by calculating channel-wise weights and multiplying them to the feature maps.
Both modules apply a new attention mechanism called the expansion-squeeze-excitation,
which consists of three operations: expansion, squeeze, and excitation. The expansion is
operated by using convolutional layers to expand the depth along the modality dimension
for the modal fusion and expand the depth along the channel dimension for the channel
fusion. The squeeze and excitation operations are similar to those in [16]. A summary of
the work [29,34,35] is shown in Table 5.

Table 5. A summary of related SE fusion.

Year Ref. Modality Dataset Classification Fusion Mechanism

2021 [29] EEG BCI IV 2a, HGD Motor imagery tasks SE mechanism
2022 [34] EEG, EOG MASS-SS3 Sleep staging Multimodal SE mechanism
2022 [35] RGB videos, ETRI-Activity3D Elderly activities Expansion SE mechanism

skeleton sequences

3. Data Collection and Preparation

In order to evaluate the proposed HAR classification architectures in Sections 4 and 5,
we select the datasets whose sensor data are from IMUs attached to various locations of
the user body. Thereafter, we preprocess the sensor data by scaling and segmentation.
The details are explained as follows. The sensor data are from the following three wearable-
sensor datasets:

• PAMAP2: The PAMAP2 dataset [36] contains the sensor data collected from nine
subjects who performed 18 physical activities. However, here, only 12 activities are
considered: lying, sitting, standing, ironing, vacuum cleaning, descending stairs,
walking, Nordic walking, cycling, ascending stairs, running, and rope jumping. Three
IMUs were attached to a wrist, the chest, and an ankle of each subject. Each IMU was
equipped with two triaxial accelerometers, one triaxial gyroscope, and one triaxial
magnetometer. As a result, 12 types of sensor data (M = 12) were obtained from each
IMU. The sampling rate was set to 100 Hz.

• DaLiAc: The DaLiAc dataset [37] contains the sensor data collected from 19 subjects
who performed 13 physical activities: sitting, lying, standing, washing dishes, vac-
uuming, sweeping, walking, ascending stairs, descending stairs, treadmill running
(8.3 km/h), bicycling on ergometer (50 Watt), bicycling on ergometer (100 Watt), and
rope jumping. A total of four IMUs were attached to the right hip, the right wrist,
the chest, and the left ankle. Each IMU was equipped with one triaxial accelerometer
and one triaxial gyroscope. As a result, six types of sensor data (M = 6) were obtained
from each IMU. The sampling rate was set to approximately 200 Hz.

• DSAD: The DSAD dataset [38] contains the sensor data collected from eight subjects
who performed 19 physical activities: sitting, standing, lying on back, lying on right
side, ascending stairs, descending stairs, standing in an elevator still, moving around
in an elevator, walking in a parking lot, walking on a treadmill with a speed of 4 km/h
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in flat, walking on a treadmill with a speed of 4 km/h at 15 degree inclined positions),
running on a treadmill with a speed of 8 km/h, exercising on a stepper, exercising
on a cross trainer, cycling on an exercise bike in horizontal position, cycling on an
exercise bike in vertical positions, rowing, jumping, and playing basketball. Five
IMUs were attached to the torso, right arm, left arm, right leg, and left leg. Each IMU
was equipped with one triaxial accelerometer, one triaxial gyroscope, and one triaxial
magnetometer. As a result, nine types of sensor data (M = 9) were obtained from
each IMU. The sampling rate was set to 25 Hz.

The sensor data used to predict the current activity are obtained from different sensor
types and varied within different ranges. It is a common step to apply the data scaling
such that the values of these sensor data will be within the same range. In this work,
the standardization method is applied to transform the sensor data such that their mean
and standard deviation are zero and one, respectively. Let z(n)t,m be the sensor value at the
t-th point obtained from the m-th sensor data of the n-th IMU. Its standardized value is
obtained from:

z̃(n)t,m =
z(n)t,m − µ

(n)
m

σ
(n)
m

, (1)

where µ
(n)
m and σ

(n)
m are the mean and standard deviation, respectively, of the values from

the m-th sensor data of the n-th IMU.
Next, a series of the standardized values z̃(n)t,m is divided into segments by using a

non-overlapping window method. Each segment consists of L values. Let x(n)m ∈ R1×L be a
segment of the standardized values from the m-th sensor data of the n-th IMU. The row
vector x(n)m can be expressed as

x(n)m =
[
z̃(n)1,m, z̃(n)2,m, . . . , z̃(n)L,m

]
. (2)

The length L is set to 300, 600, and 125 data points for PAMAP2, DaLiAc, and DSAD,
respectively (which are equal to three-second window, three second window, and five-
second window, respectively). A summary of the sensor data which will be used in the
evaluation is shown in Table 6.

Table 6. A summary of sensor data from three datasets.

PAMAP2 DaLiAc DSAD

Sensor 2 accelerometers, 1 gyroscope, 1 accelerometer, 1 gyroscope 1 accelerometer, 1 gyroscope,
1 magnetometer 1 magnetometer

Sampling Rate 100 Hz 200 Hz 25 Hz
No. IMUs (N) 3 4 5
Positions wrist, chest, ankle right wrist, chest, right hip, torso, right arm, left arm,

left ankle right leg, left leg
No. Sensor Data Types 12 6 9
per IMU (M)
No. Subjects 9 19 8
No. Activities 12 13 19
Window Size 3 s 3 s 5 s
Segment Length (L) 300 data points 600 data points 125 data points
No. Segments 5764 7802 9120

4. Proposed Architecture

The proposed architecture is shown in Figure 1, which is based on a multi-branch
architecture. There are N branches to receive the inputs from N IMUs. The number N
will be equal to 3, 4, and 5, for the PAMAP2, DaLiAc, and DSAD datasets, respectively,
as shown in Table 6. Each branch receives the input X(n) from an IMU and uses a one-
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dimensional (1D) CNN model to extract a set of feature maps A(n). Since each feature map
owns different significance of information, we propose the merging-squeeze-excitation
(MSE) feature fusion to combine these N sets of feature maps A(n) by applying the SE
mechanisms [16] and produce the channel-weighted and merged feature maps Ymse, which
will be used to predict the corresponding activity. The details are provided as follows:

Figure 1. Proposed MSE feature fusion architecture. It consists of the following stages: data inputs,
feature extraction, merging-squeeze-excitation feature fusion, and classification. The inputs are the
sensor data X(n) from N IMUs attached to several parts of the user body. Each branch extracts
a set of feature maps A(n) independently by using a 1D CNN model. In the merging-squeeze-
excitation feature fusion stage, each set of feature maps is calibrated by using a set of channel weights.
A merging method combines the sets of channel-weighted feature maps P(n) and produces a new set
of channel-weighted and merged feature maps Ymse, which is used later in the classification process.

4.1. Input and Feature Extraction

The input X(n) ∈ R1×L×M is a three-dimensional (3D) array (consisting of the height,
width, and channel dimensions) storing data segments of all sensor data from the n-th IMU,
where M is the number of sensor data types per IMU and L is the number of data points
in one segment. It can be expressed as X(n) = [x(n)1 ; x(n)2 ; . . . ; x(n)M ], where x(n)m is a data
segment of the m-th sensor from the n-th IMU and expressed in Equation (2). Note that
[(·); (·); . . . , (·)] denotes that the elements inside are arranged along the channel dimension.
Each branch will apply a 1D CNN model to extract feature maps A(n) ∈ R1×W×C, where
W and C are the width and number of channels, respectively. The feature maps A(n) can be
expressed as A(n) = [a(n)1 ; a(n)2 ; . . . ; a(n)C ], where the row vector a(n)c = [a(n)1,c , a(n)2,c , . . . , a(n)W,c] is

a 1D feature map and a(n)w,c is a value at the w-th data point of the c-th channel. The following
CNN models are considered as feature extractors due to their simplicity, low number of
layers, and low computational complexities: LeNet5 [39], AlexNet [40], and VGG16 [41].
Note that these models originally consist of two-dimensional (2D) layers since they are
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applied to image processing. Here, we implement their 1D versions by changing all
2D layers to be 1D layers. For example, 2D convolutional layers are replaced by 1D
convolutional layers and 2D max pooling layers are replaced by 1D max pooling layers.
The other parameters are unchanged such as numbers of filters and kernel sizes. These 1D
CNN structures are summarized in Appendix A. The width W and the number of channels
C of A(n) according to the considered CNN models are shown in Table 7. In addition to
these three CNN models, other CNN models can be applied to extract A(n).

Table 7. The width W and the number of channel C of the feature maps A(n) obtained from LeNet5,
AlexNet, and VGG16 by using the PAMAP2, DaLiAc, and DSAD datasets.

CNN Model
PAMAP2 DaLiAc DSAD

W C W C W C

LeNet5 69 120 144 120 25 120
AlexNet 8 256 17 256 2 256
VGG16 9 512 18 512 3 512

4.2. Merging-Squeeze-Excitation Feature Fusion

Conventional feature fusion methods [19–28] combine all feature maps from all
branches equally without considering which feature maps are useful. However, some
feature maps in A(n) may be unhelpful for the classification and they should be suppressed
while the informative feature maps in A(n) should be emphasized. Therefore, in this
work, inspired by the SE mechanism [16], we propose a feature fusion method called the
merging-squeeze-excitation, which is aware of this issue. As shown in Figure 1, all sets of
feature maps A(n), for n = 1, 2, . . . , N, are firstly combined in the pre-merging step to create
a set of pre-merged feature maps B. Unlike [16], in the squeeze step, the channel-wise
statistics h(n) used to compute the channel weights s(n) are computed according to the
feature maps A(n) and pre-merged feature maps B. This implies that the importance of
each feature map in A(n) is measured not only from A(n) but also from B. Accordingly,
we find the corresponding channel weights s(n), multiply them to A(n), and obtain the
channel-weighted feature maps P(n) in the excitation step. Finally, in the post-merging step,
we recombine P(n), for n = 1, 2, . . . , N, using the same merging method in the pre-merging
step to obtain the channel-weighted and merged feature maps Ymse, which will be used in
the classification process later. The details of these steps are explained as follows.

4.2.1. Pre-Merging

We use the pre-merging step to initially combine feature maps A(n) from all N
branches together and to produce the pre-merged feature maps B ∈ R1×W×C, which
will be used along with A(n) to compute the channel weights. The feature maps B can
be expressed as B = [b1; b2; . . . ; bC], where the row vector bc ∈ R1×W is expressed as
bc = [b1,c, b2,c, . . . , bW,c] and bw,c is a value at the w-th data point of the c-th channel. Sev-
eral feature merging methods are available [42]. Here, we investigate and compare the
following methods:

• Addition merging creates feature maps B by using the element-wise addition. The value
bw,c is obtained from

bw,c =
N

∑
n=1

a(n)w,c, (3)

where a(n)w,c is a value at the w-th data point of the c-th channel of A(n).
• Maximum merging creates feature maps V by using the element-wise maximum

operation. The value bw,c is obtained from

bw,c = max
{

a(1)w,c, a(2)w,c, . . . , a(N)
w,c

}
. (4)
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• Minimum merging creates feature maps B by using the element-wise minimum
operation. The value bw,c is obtained from

bw,c = min
{

a(1)w,c, a(2)w,c, . . . , a(N)
w,c

}
. (5)

• Average merging creates feature maps B by using the element-wise averaging opera-
tion. The value aw,c is obtained from

bw,c =
1
N

N

∑
n=1

a(n)w,c. (6)

For a future usage, we denote the merging operation as FMerge(·). Specifically, we have

B = FMerge
(
A(1), A(2), . . . , A(N)

)
. (7)

4.2.2. Squeeze and Excitation

In the squeeze-and-excitation step, we recalibrate each set of feature maps A(n) such
that the informative feature maps will be emphasized and ambiguous feature maps will
be suppressed by using channel weights, which will be computed according to both
A(n) and B. First, we obtain the channel-wise statistics u ∈ RC by passing B to a 1D
GAP layer and the channel-wise statistics g(n) ∈ RC by passing A(n) to another 1D GAP.
The statistics u are expressed as u = [u1, u2, . . . , uC]

T and the statistics g(n) are expressed as
g(n) = [g(n)1 , g(n)2 , . . . , g(n)C ]T , where [·, ·, . . . , ·]T is the transpose, uc is obtained by averaging

the values in the c-th 1D feature map of B, and g(n)c is obtained by averaging the values in
the c-th 1D feature map of U(n). Specifically, we have

uc =
1

W

W

∑
w=1

bw,c, (8)

and

g(n)c =
1

W

W

∑
w=1

a(n)w,c. (9)

Thereafter, we obtain a channel-wise statistics h(n) ∈ RC from

h(n) = u + g(n). (10)

The statistics h(n) are expressed as h(n) = [h(n)1 , h(n)2 , . . . , h(n)C ]T .

Next, a set of channel weights s(n) ∈ RC, where s(n) = [s(n)1 , s(n)2 , . . . , s(n)C ]T , for indi-
vidual A(n), is obtained by using two fully connected (FC) layers with the ReLU activation
after the first FC layer and the Sigmoid activation after the second FC layer [16]:

s(n) = σ
(

W(n)
2 δ

(
W(n)

1 h(n))), (11)

where σ(·) is the Sigmoid activation function, δ(·) is the ReLU activation function, W(n)
1 ∈

R C
r ×C is the weight matrix of the first FC layer, W(n)

2 ∈ RC× C
r is the weight matrix of the

second FC layer, and r is the reduction ratio which is used to reduce the first FC layer’s
output dimension.

Finally, we recalibrate the feature maps A(n) according to the channel weights s(n) to
emphasize useful feature maps and suppress ambiguous feature maps and, then, obtain
a set of channel-weighted feature maps P(n) ∈ R1×W×C. The feature maps P(n) can be
expressed as P(n) = [p(n)

1 ; p(n)
2 ; . . . ; p(n)

C ], where p(n)
c = [p(n)1,c , p(n)2,c , . . . , p(n)W,c] is a 1D feature
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map and obtained from multiplication between the channel weight s(n)c and the 1D feature
map a(n)c :

p(n)
c = s(n)c a(n)c (12)

For a future usage, we denote the squeeze-and-excitation operation to compute P(n) as

P(n) = FSE
(
A(n), B

)
. (13)

4.2.3. Post-Merging

The post-merging step will apply the merging method used in the pre-merging step to
combine the N sets of channel-weighted feature maps P(n) and obtain the channel-weighted
and merged feature maps Ymse. Similar to Section 4.2.1, we can express

Ymse = FMerge
(
P(1), P(2), . . . , P(N)

)
. (14)

The set of feature maps Ymse will be used in the classification process.

4.3. Classification

In this work, the classifier as shown in Figure 1 consists of a 1D GAP layer and two FC
layers whose ReLU activation functions are used in the first FC layer while the Softmax
activation function is used in the second FC layer. The numbers of neurons in the first and
second FC layers are 1024 and K, respectively, where K is the number of classes (depending
on the datasets). As specified in Section 3, the number of classes K is 12, 13, and 19 for the
PAMAP2, DaLiAc, and DSAD datasets, respectively. Note that other classifiers’ structures
are applicable.

5. Extensions of Merging-Squeeze-Excitation Feature Fusion

In this section, we present four extensions of the MSE feature fusion: MSE feature
fusion with local skip connections, MSE feature fusion with a global skip connection,
MSE feature fusion with global channel attention, and deep MSE feature fusion. Their
performances will be evaluated and compared in Section 6.

5.1. MSE Feature Fusion with Skip Connections

Skip connections were used in ResNet models [43] to solve the vanishing-gradient
issue. Here, we will apply this technique to the MSE feature fusion such that feature maps
entering the classification will be at least as good as the feature maps obtained from the
earlier step. We consider two possible positions to add skip connections.

• The MSE feature fusion with local skip connections is shown in Figure 2a, where we
add a skip connection to each branch of A(n). As a result, we have

Q(n) = A(n) + P(n). (15)

The feature maps Ylsc that will enter the classifier are obtained from

Ylsc = FMerge
(
Q(1), Q(2), . . . , Q(N)

)
. (16)

• The MSE feature fusion with a global skip connection is shown in Figure 2b. We create
a skip connection on the MSE feature fusion such that the pre-merged feature maps B
from the pre-merging step will be added to the channel-weighted and merged feature
maps Ymse. Thereafter, we have Ygsc entering to the classifier as follows:

Ygsc = Ymse + B, (17)

where Ymse is defined in (14). The prediction will be based on both Ymse and B.
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(a) (b)

Figure 2. MSE feature fusion architectures with skip connections. There are two types: (a) MSE
feature fusion with local skip connections. A skip connection is added to each branch. As a result,
we combine the feature maps Q(n) = P(n) + A(n) instead of P(n). The output Ylsc still contains the
feature maps directly obtained from 1D CNN models and (b) MSE feature fusion with a global
skip connection. The pre-merged feature maps B are added to the feature maps Ymse. As a result,
the output feature maps Ygsc contain both pre-merged feature maps (no channels weighted) and
channel-weighted feature maps.

5.2. MSE Feature Fusion with Global Channel Attention

In the proposed MSE feature fusion shown in Figure 1, the channel-weighted and
merged feature maps Ymse are obtained from FMerge

(
P(1), P(2), . . . , P(N)

)
. In addition, we

may compute a different set of channel-weighted feature maps based on the channel
dependency of B (the output of the pre-merging step) directly. Figure 3 shows the MSE
feature fusion with a global channel attention, where we create an additional set of channel-
weighted feature maps R ∈ R1×W×C according to B. The set of feature maps R is denoted
as R = [r1; r2; . . . ; rC], rc = [r1,c, r2,c, . . . , rW,c], and rw,c is a value. Similar to the previous
calculation, we can obtain R according to the following steps. We find the channel weights
v ∈ RC, where v = [v1, v2, . . . , vC]

T and vc is a value, from

v = σ
(
W†

2δ(W†
1u)
)
, (18)

where u is the channel-wise statistics as shown in Section 4.2.2, W†
1 ∈ R C

r ×C is the weight

matrix of the first FC layer, and W†
2 ∈ RC× C

r is the weight matrix of the second FC layer.
The c-th 1D feature map rc is equal to the feature map bc weighted by vc:

rc = vcbc. (19)
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Finally, the set of channel-weighted and merged feature maps Ygca entering the classi-
fier is from

Ygca = Ymse + R, (20)

where Ymse is defined in (14). As a result, the prediction will be computed from both
local-channel-attention and global-channel-attention feature maps.

Figure 3. MSE feature fusion architecture with global channel attention. We compute an additional
set of channel-weighted feature maps R which is obtained from the pre-merged feature maps B.
The output feature maps Ygca contain both Ymse (where feature maps are calibrated and, then, merged)
and R (where feature maps are merged and, then, calibrated).

5.3. Deep MSE Feature Fusion

Instead of using only one-level MSE feature fusion to combine and recalibrate the
feature maps A(n) as shown in Figure 1, we can stack a series of MSE feature fusion blocks
to create deep MSE feature fusion, where feature maps are merged and weighted mul-
tiple times. The structure of deep MSE feature fusion is shown in Figure 4a, where D
MSE feature fusion blocks are connected in series. The d-th block as shown in Figure 4b
receives the channel-weighted feature maps P̃(d−1,n), for n = 1, 2, . . . , N, and the channel-
weighted and merged feature maps Ỹdeep,(d−1) from the previous block to create the new
channel-weighted feature maps P̃(d,n) and the new channel-weighted and merged fea-
ture maps Ỹmse,(d). Note that P̃(0,n) and Ỹdeep,(0) are equal to A(n) and B (defined in
(7)), respectively. Similar to Section 4.2.2, we have P̃(d,n) = FSE

(
P̃(d−1,n), Ỹdeep,(d−1))

and Ỹmse,(d) = FMerge
(
P̃(d,1), P̃(d,2), . . . , P̃(d,N)

)
. Thereafter, the new merged feature maps

Ỹdeep,(d) will be obtained from

Ỹdeep,(d) = Ỹdeep,(d−1) + Ỹmse,(d), (21)
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where a skip connection is used to keep the deep MSE feature fusion stable. The feature
maps Ỹdeep,(D) of the last block will be used in the classification process.

(a) (b)

Figure 4. Deep MSE feature fusion. We implement a series of D MSE feature fusion blocks such that
the feature maps A(1), A(2), . . ., A(N) are calibrated and merged several times as shown in (a) deep
MSE feature fusion architecture, where the structure of the d-th MSE feature fusion block is shown
in (b). The output feature maps Ỹdeep,(D) are used in the classification process.
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6. Experimental Results and Discussion
6.1. Experimental Setup

All experiments were implemented by using Python programming language and
Python libraries such as Scikit-learn, TensorFlow, Keras, etc. They were run on the Google
Colab Pro+ platform. The performances of the investigated models were measured by the
accuracy score, which is obtained from

Accuracy =

[
1
K

K

∑
k=1

TPk + TNk
TPk + FPk + TNk + FNk

]
× 100, (22)

where K is the number of classes, TPk is the number of true positives of the k-th class, FPk
is the number of false positives of the k-th class, TNk is the number of true negatives of
the k-th class, and FNk is the number of false negatives of the k-th class. There are two
basic approaches to evaluate the model performances: training–validation–testing split and
k-fold cross validation. The training–validation–testing split will divide a dataset into three
separated parts: training set, validation set, and testing set. Therefore, the performance
results of the investigated model will highly depend on the data in the testing set. In
order to avoid this problem, similar to [18,22,25,27], we applied the k-fold cross validation,
where k is set to 10, to the experiments. The 10-fold cross validation will divide a dataset
into 10 parts. One part will be selected as the testing set while the remaining nine parts
will be the training set. We evaluate an investigated model 10 times. For each time, we
select a different part to be the testing set. Thereafter, the performance results will be the
average of the testing scores. The investigated models were trained by minimizing the
categorical cross-entropy using the Adam optimizer with the settings β1 = 0.9, β2 = 0.999,
and ε = 10−7. The training rate was set to 0.001. The batch size was 32. The number of
epochs was 40. We did not experience an overfitting issue. Our training scores are slightly
higher than the testing scores.

6.2. Baseline Architectures

We consider a single-branch DL architecture and a multi-branch DL architecture shown
in Figure 5 as our baseline architectures for the performance comparison. The classifiers
in these two architectures are similar to those used in the proposed MSE feature fusion as
shown in Figure 1 and explained in Section 4.3.

• For a single-branch DL architecture, all available sensor data will be combined first
before we extract a set of features [13]. Here, all sensor data X(n) (from N IMUs) are
concatenated together along the channel dimension. We denote this new array as X ∈
R1×L×NM. Thereafter, a 1D CNN model extracts a set of feature maps A ∈ R1×W×C

which will be used in the classification process.
• A multi-branch DL architecture consists of N branches to receive the sensor data X(n)

individually [19,22,23]. Each branch extracts a set of feature maps A(n) using a 1D
CNN model. Here, we concatenate these N sets of feature maps together along the
channel dimension and obtain a new array Ymb ∈ R1×W×NC, which will be sent to
the classifier.

Note that the sensor data X(n) and feature map A(n) were defined in Section 4. The val-
ues W and C were shown in Table 7.

(a) (b)

Figure 5. Baseline architectures. (a) Single-branch architecture. (b) Multi-branch architecture.
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The performances of these architectures are evaluated by classifying the PAMAP2,
DaLiAc, and DSAD datasets where three CNN models (including LeNet5, AlexNet,
and VGG16) are used as feature extraction. The accuracy scores are shown in Table 8,
which will be compared to those achieved by the proposed architectures. We observe
that the single-branch architectures outperform the multi-branch architectures in many
cases. A reason is that the multi-branch architectures have extracted too many features (the
output of the GAP in the classifier) and some of them may be ambiguous. The number of
features out of the GAP in the multi-branch architectures is equal to NC while the number
of features out of the GAP in the single-branch architectures is equal to C. As seen in
Table 8, the single-branch architectures using AlexNet offer the highest accuracy scores of
98.77%, 97.60%, and 97.18% for the PAMAP2, DaLiAc, and DSAD datasets, respectively.

Table 8. Accuracy scores (%) of the baseline architectures on classifying the PAMAP2, DaLiAc,
and DSAD datasets where LeNet5, AlexNet, and VGG16 are applied as feature extractors. The asterisk
(*) indicates the highest accuracy score of each dataset.

Model
PAMAP2 DaLiAc DSAD

LeNet5 AlexNet VGG16 LeNet5 AlexNet VGG16 LeNet5 AlexNet VGG16

Single-Branch Model 96.79 98.77 * 98.75 95.37 97.60 * 95.53 91.39 97.18 * 96.04
Multi-branch Model 98.73 98.51 97.85 96.09 97.10 94.49 94.54 96.59 93.31

6.3. Proposed Merging-Squeeze-Excitation Feature Fusion

The performances of the proposed MSE feature fusion in Section 4 and its extensions
in Section 5 are shown in the following subsections. For each proposed architecture,
we will compare the accuracy scores among the merging methods (addition, maximum,
minimum, and average) and DL models (LeNet5, AlexNet, and VGG16) to determine
which combination offers the highest accuracy score on classifying each dataset. Thereafter,
the highest accuracy scores of the proposed architectures are compared to determine the
best architecture. Note that the reduction ratio r is fixed to eight for all experiments. Varying
r is considered as future work.

6.3.1. MSE Feature Fusion

Table 9 presents the accuracy scores of the MSE feature fusion proposed in Section 4
according to the merging methods, DL models, and datasets. We have the following results:

• The highest accuracy score in each dataset is indicated by the asterisk (*). The MSE
feature fusion using the minimum merging and AlexNet achieves the highest accuracy
score of 99.17% for the PAMAP2 dataset. The MSE feature fusion using the average
merging and AlexNet achieves the highest accuracy scores of 98.32% and 98.04% for
the DaLiAc and DSAD datasets, respectively.

• We compare the accuracy scores of the MSE feature fusion to those of the baseline
architectures in Section 6.2. According to the highest accuracy scores obtained from
these architectures, the results show that the MSE feature fusion outperforms the
baseline models.

• Among the considered merging methods, the MSE feature fusion using the addition
merging offers the worst accuracy scores. The MSE feature fusion architectures using
the other merging methods provide the same level of performance. Their accuracy
scores are rather close to each other. We do not have a conclusive result on which
merging method is the best.

• Among the considered DL models used as feature extractors, the MSE feature fusion
using ALexNet outperforms the MSE feature fusion using the other DL models.
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Table 9. Accuracy scores (%) of the MSE feature fusion on classifying the PAMAP2, DaLiAc,
and DSAD datasets where LeNet5, AlexNet, and VGG16 are applied as feature extractors. The asterisk
(*) indicates the highest accuracy score of each dataset.

Merging
PAMAP2 DaLiAc DSAD

LeNet5 AlexNet VGG16 LeNet5 AlexNet VGG16 LeNet5 AlexNet VGG16

Addition 98.59 98.91 97.99 96.82 97.63 96.22 95.53 97.45 94.64
Maximum 98.92 99.06 98.82 98.03 98.04 96.92 97.42 97.68 96.00
Minimum 98.84 99.17 * 98.72 97.59 98.18 97.72 97.34 97.75 97.50
Average 98.91 99.06 98.79 97.86 98.32 * 97.67 97.00 98.04 * 97.92

6.3.2. MSE Feature Fusion with Skip Connections

Tables 10–12 show the accuracy scores of the MSE feature fusion with skip connections
proposed in Section 5.1 on classifying the PAMAP2, DaLiAc, and DSAD datasets, respec-
tively. Each table presents the accuracy scores according to the merging methods, the DL
models, and skip-connection methods. We have the following results:

• On classifying the PAMAP2 dataset (Table 10), the MSE feature fusion with local skip
connections achieves the highest accuracy score of 99.18% when using the minimum
merging and AlexNet, while the MSE feature fusion with a global skip connection
offers the highest accuracy score of 99.24% when using the average merging and
AlexNet. Both architectures outperform the original MSE feature fusion (whose
highest accuracy score is 99.17%).

• On classifying the DaLiAc dataset (Table 11), the MSE feature fusion with local skip
connections achieves the highest accuracy score of 98.59% when using the minimum
merging and AlexNet, while the MSE feature fusion with a global skip connection
offers the highest accuracy score of 98.42% when using the minimum merging and
AlexNet. Both architectures outperform the original MSE feature fusion (whose
highest accuracy score is 98.32%).

• On classifying the DSAD dataset (Table 12), the MSE feature fusion with local skip
connections achieves the highest accuracy score of 98.02% when using the average
merging and AlexNet while the MSE feature fusion with a global skip connection
offers the highest accuracy score of 97.97% when using the average merging and
AlexNet. Both architectures offer lower accuracy scores than that of the original MSE
feature fusion (whose highest accuracy score is 98.04%).

• Since the results are not conclusive, we cannot indicate whether the MSE feature fusion
with skip connections is better than the original MSE feature fusion nor which skip
connection method is the best.

Table 10. PAMAP2 dataset: Accuracy scores (%) of the MSE feature fusion with skip connections on
classifying the PAMAP2 dataset where LeNet5, AlexNet, and VGG16 are applied as feature extractors.
The asterisk (*) indicates the highest accuracy score of each type of skip connections.

Merging
Local Skip Connections Global Skip Connection

LeNet5 AlexNet VGG16 LeNet5 AlexNet VGG16

Addition 98.68 98.75 98.16 98.49 98.77 98.23
Maximum 98.99 99.20 98.66 98.89 98.99 98.85
Minimum 99.05 99.18 * 98.70 98.87 99.13 98.77
Average 98.91 99.15 98.70 98.72 99.24 * 98.94
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Table 11. DaLiAc dataset: Accuracy scores (%) of the MSE feature fusion with skip connections on
classifying the DaLiAc dataset where LeNet5, AlexNet, and VGG16 are applied as feature extractors.
The asterisk (*) indicates the highest accuracy score of each type of skip connections.

Merging
Local Skip Connections Global Skip Connection

LeNet5 AlexNet VGG16 LeNet5 AlexNet VGG16

Addition 96.67 97.71 93.30 96.08 97.12 94.59
Maximum 98.30 97.78 97.13 98.19 97.97 97.00
Minimum 98.13 98.59 * 97.55 98.12 98.42 * 97.60
Average 98.12 97.92 97.68 98.05 98.06 98.00

Table 12. DSAD dataset: Accuracy scores (%) of the SE feature fusion with skip connections on
classifying the DSAD dataset where LeNet5, AlexNet, and VGG16 are applied as feature extractors.
The asterisk (*) indicates the highest accuracy score of each type of skip connections.

Merging
Local Skip Connections Global Skip Connection

LeNet5 AlexNet VGG16 LeNet5 AlexNet VGG16

Addition 94.98 96.61 95.96 95.16 97.16 94.57
Maximum 97.65 97.40 97.00 97.57 97.89 97.27
Minimum 97.42 97.72 97.60 97.42 97.27 97.48
Average 97.18 98.02 * 97.83 97.12 97.97 * 97.97

6.3.3. MSE Feature Fusion with Global Channel Attention

Table 13 shows the accuracy scores of the MSE feature fusion with global channel at-
tention proposed in Section 5.2 according to the merging methods, DL models, and datasets.
We have the following results:

• On classifying the PAMAP2 and DaLiAc datasets, the MSE feature fusion with global
channel attention achieves the highest accuracy score of 99.17% and 98.08%, respec-
tively, when using the minimum merging and AlexNet.

• On classifying the DSAD dataset, the MSE feature fusion with global channel attention
achieves the highest accuracy scores of 97.87% when using the average merging
and AlexNet.

• By comparing these accuracy scores to those of the original MSE feature fusion, we see
that the original MSE feature fusion outperforms the MSE feature fusion with global
channel attention. The feature maps obtained by using the global channel attention do
not provide any additional information.

Table 13. Accuracy scores (%) of the MSE feature fusion with global channel attention on classifying
the PAMAP2, DaLiAc, and DSAD datasets where LeNet5, AlexNet, and VGG16 are applied as feature
extractors. The asterisk (*) indicates the highest accuracy score of each dataset.

Merging
PAMAP2 DaLiAc DSAD

LeNet5 AlexNet VGG16 LeNet5 AlexNet VGG16 LeNet5 AlexNet VGG16

Addition 98.33 98.32 96.88 96.65 97.10 95.95 95.09 97.38 94.65
Maximum 98.94 99.06 98.04 97.73 97.55 96.85 97.54 97.81 97.12
Minimum 99.01 99.17 * 98.73 97.47 98.08 * 97.69 97.24 97.27 97.55
Average 98.82 98.99 98.73 97.60 97.78 97.28 97.08 98.03 * 97.97

6.3.4. Deep MSE Feature Fusion

Tables 14–16 show the accuracy scores of the deep MSE feature fusion (in Section 5.3)
using AlexNet as the feature extractor on classifying the PAMAP2, DaLiAc, and DSAD
datasets, respectively. We consider only AlexNet since it outperforms the other DL models
as shown in the previous subsections. Each table presents the accuracy scores according
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to the merging methods and the number of MSE feature fusion blocks (D). We see that
the deep MSE feature fusion with D = 1 offers the highest accuracy scores for all three
datasets (i.e, 99.17% for the PAMAP2 dataset, 98.32% for the DaLiAc dataset, and 98.04%
for the DSAD dataset). In fact, with D = 1, the deep MSE feature fusion is equivalent to the
original MSE feature fusion. This indicates that, for the investigated datasets, increasing
the number of MSE feature fusion blocks does not provide any further useful information
to the output feature maps Ỹdeep,(D) which are used in the classification process.

Table 14. Accuracy scores (%) of the deep MSE feature fusion on classifying the PAMAP2 dataset
where AlexNet is applied as the feature extractor.

Merging
Number of MSE Feature Fusion Blocks (D)

D = 1 D = 2 D = 3 D = 4 D = 5

Addition 98.91 98.54 98.84 98.77 98.79
Maximum 99.06 98.73 98.94 99.08 99.06
Minimum 99.17 * 99.03 99.03 99.03 98.99
Average 99.06 98.79 98.72 99.03 99.10

Table 15. Accuracy scores (%) of the deep MSE feature fusion on classifying the DaLiAc dataset
where AlexNet is applied as the feature extractor.

Merging
Number of MSE Feature Fusion Blocks (D)

D = 1 D = 2 D = 3 D = 4 D = 5

Addition 97.63 97.69 97.32 96.90 98.03
Maximum 98.04 97.90 97.83 98.21 98.17
Minimum 98.18 98.04 98.03 97.74 98.06
Average 98.32 * 98.06 97.49 97.41 98.08

Table 16. Accuracy scores (%) of the deep MSE feature fusion on classifying the DSAD dataset where
AlexNet is applied as the feature extractor.

Merging
Number of MSE Feature Fusion Blocks (D)

D = 1 D = 2 D = 3 D = 4 D = 5

Addition 97.45 97.53 97.05 97.52 97.28
Maximum 97.68 97.19 97.60 97.32 97.52
Minimum 97.75 97.31 97.18 97.28 97.45
Average 98.04 * 97.61 97.50 97.58 97.49

6.4. Computational Complexity Comparison

Tables 17–19 show the numbers of trainable parameters of the baseline architectures,
the proposed MSE feature fusion, and the extensions of the MSE feature fusion on clas-
sifying the PAMAP2, DaLiAc, and DSAD datasets, respectively. We do not specify the
numbers of trainable parameters for individual merging methods since they are the same.
The following results are obtained:

• The numbers of trainable parameters of the proposed MSE feature fusion are higher
than those of the single-branch architecture since the proposed MSE feature fusion
consists of several branches using CNN models as feature extractors. On the other
hand, the proposed MSE feature fusion requires lower numbers of trainable parame-
ters than the multi-branch architecture does since the MSE feature fusion reduces the
number of features which will enter the classification process by using the addition,
maximum, minimum, and average merging instead of the concatenation merging.

• The numbers of trainable parameters of the extensions (of the MSE feature fusion) are
slightly higher than those of the proposed MSE feature fusion since the modification
parts in the extensions require few trainable parameters.
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Table 17. PAMAP2 dataset: The numbers of trainable parameters of the baseline architectures and
the proposed MSE feature fusion architectures on classifying the PAMAP2 dataset.

Architecture LeNet5 AlexNet VGG16

Baselines Single-Branch Model 147,506 1,472,684 5,460,108
Multi-branch Model 413,710 4,315,372 16,339,852

Proposed MSE Feature Fusion 179,155 3,841,100 15,489,612

Extensions

Local Skip Connections 179,155 3,841,100 15,489,612
Global Skip Connection 179,155 3,841,100 15,489,612
Global Channel Attention 182,890 3,857,772 15,555,724
Deep MSE (D = 2) - 3,891,116 -
Deep MSE (D = 3) - 3,941,132 -
Deep MSE (D = 4) - 3,991,148 -
Deep MSE (D = 5) - 4,041,164 -

Table 18. DaLiAc dataset: The numbers of trainable parameters of the baseline architectures and the
proposed MSE feature fusion architectures on classifying the DaLiAc dataset.

Architecture LeNet5 AlexNet VGG16

Baseline Single-Branch Model 148,171 1,461,037 5,458,829
Multi-branch Model 547,477 5,725,069 21,778,445

Proposed MSE Feature Fusion 193,777 5,005,325 20,470,029

Extensions

Local Skip Connections 193,777 5,005,325 20,470,029
Global Skip Connection 193,777 5,005,325 20,470,029
Global Channel Attention 197,512 5,021,997 20,536,141
Deep MSE (D = 2) - 5,072,013 -
Deep MSE (D = 3) - 5,138,701 -
Deep MSE (D = 4) - 5,205,389 -
Deep MSE (D = 5) - 5,272,077 -

Table 19. DSAD dataset: The numbers of trainable parameters of the baseline architectures and the
proposed MSE feature fusion architectures on classifying the DSAD dataset.

Architecture LeNet5 AlexNet VGG16

Baseline Single-Branch Model 154,951 1,489,363 5,469,011
Multi-branch Model 687,359 7,174,739 27,228,499

Proposed MSE Feature Fusion 214,514 6,209,523 25,461,907

Extensions

Local Skip Connections 214,514 6,209,523 25,461,907
Global Skip Connection 214,514 6,209,523 25,461,907
Global Channel Attention 218,249 6,226,195 25,528,019
Deep MSE (D = 2) - 6,292,883 -
Deep MSE (D = 3) - 6,376,243 -
Deep MSE (D = 4) - 6,459,603 -
Deep MSE (D = 5) - 6,542,963 -

6.5. Performance Comparison to Other HAR Approaches

Table 20 shows the accuracy scores of other HAR approaches which were evaluated
by using the PAMAP2, DaLiAc, and DSAD datasets. These accuracy scores were presented
in their publications. Note that the evaluation setups and pre-processing may be different
from ours. We compare them to the highest accuracy scores achieved by the original MSE
feature fusion (Section 6.3.1). The proposed MSE feature fusion offers higher accuracy
scores than those obtained from the other approaches.
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Table 20. The accuracy scores (%) of related work who were evaluated on classifying the PAMAP2,
DaLiAc, and DSAD datasets.

Dataset Year Reference and Model Name Accuracy

PAMAP2

2018 [19] CNN-IMU 93.13
2020 [22] GlobalFusion 90.86
2021 [26] Multi-Input CNN-GRU 95.27
2022 [28] Multibranch CNN-BiLSTM 94.29
2023 [23] Multi-ResAtt 93.19
2023 Proposed MSE Feature Fusion 99.17

DaLiAc
2018 [44] Iss2Image 96.40
2021 [45] DeepFusionHAR 97.20
2023 Proposed MSE Feature Fusion 98.32

DSAD
2020 [22] GlobalFusion 94.28
2021 [45] DeepFusionHAR 96.10
2023 Proposed MSE Feature Fusion 98.04

7. Conclusions and Future Work

In this work, we proposed a feature fusion method called the merging-squeeze-
excitation (MSE) feature fusion for wearable-sensor-based HAR using multibranch ar-
chitectures. The MSE feature fusion will calibrate the feature maps during the fusion. Each
feature map will be emphasized or suppressed according to its importance measured from
both itself and the corresponding pre-merged feature map. In addition, we presented the
following four extensions of the MSE feature fusion: the MSE feature fusion with local skip
connections, the MSE feature fusion with a global skip connection, the MSE feature fusion
with global channel attention, and deep MSE feature fusion. LeNet5, AlexNet, and VGG16
were applied as feature extractors. The addition, maximum, minimum, and average merg-
ing were used in the pre-merging and post-merging steps. According to the experimental
results, the MSE feature fusion with a global skip connection (using the average merging
and AlexNet), the MSE feature fusion with local skip connections (using the minimum
merging and AlexNet), and the original MSE feature fusion (using the average merging
and AlexNet) achieve the highest accuracy scores of 99.24%, 98.59%, and 98.04% on the
PAMAP2, DaLiAc, and DSAD datasets, respectively. For future work, in addition to the
channel–attention mechanism, other attention techniques such as spatial attention, modal
attention, convolutional block attention, and selective kernel convolution can be applied to
feature fusion in order to combine feature maps from different branches effectively.
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Appendix A. Architectures of 1D LeNet5, 1D AlexNet, and 1D VGG16 Models

The architectures of 1D LeNet5, 1D AlexNet, and 1D VGG16 models used as feature
extractors in Section 4.1 are presented in Tables A1–A3. Note that, for the AlexNet and
VGG16 models, we added a batch normalization layer between the 1D convolutional layer
and its activation layer to normalize the output of the convolutional layer before passing it
to the activation layer.
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Table A1. Architecture of 1D LeNet5. The column names # Filters, K Size, Pad, and Activ are short
for number of filters, kernel size, padding, and activation, respectively.

Name Layer # Filters K Size Stride Pad Activ

Size of Output

PAMAP2 DaLiAc DSAD

W C W C W C

In Input - - - - - 300 12 600 6 125 9
C1 Conv1D 6 5 1 same tanh 300 6 600 6 125 6
S2 AveragePooling1D - 2 2 valid - 150 6 300 6 62 6
C3 Conv1D 16 5 1 valid tanh 146 16 296 16 58 16
S4 AveragePooling1D - 2 2 valid - 73 16 148 16 29 16
C5 Conv1D 120 5 1 valid tanh 69 120 144 120 25 120

Table A2. Architecture of 1D AlexNet with batch normalization (BatchNorm) layers. The column
names # Filters, K Size, Pad, and Activ are short for number of Filters, kernel size, padding, and acti-
vation, respectively.

Name Layer # Filters K Size Stride Pad Activ

Size of Output

PAMAP2 DaLiAc DSAD

W C W C W C

In Input - - - - - 300 12 600 6 125 9
C1 Conv1D + BatchNorm 96 11 4 valid ReLU 73 96 148 96 29 96
S2 MaxPooling1D - 3 2 valid - 36 96 73 96 14 96
C3 Conv1D + BatchNorm 256 5 1 same ReLU 36 256 73 256 14 256
S4 MaxPooling1D - 3 2 valid - 17 256 36 256 6 256
C5 Conv1D + BatchNorm 384 3 1 same ReLU 17 384 36 384 6 384
C6 Conv1D + BatchNorm 384 3 1 same ReLU 17 384 36 384 6 384
C7 Conv1D + BatchNorm 256 3 1 same ReLU 17 384 36 384 6 384
S8 MaxPooling1D - 3 2 valid - 8 256 17 256 2 256

Table A3. Architecture of 1D VGG16 with batch normalization (BatchNorm) layers. The column
names # Filters, K Size, Pad, and Activ are short for number of filters, kernel size, padding, and acti-
vation, respectively.

Name Layer # Filters K Size Stride Pad Activ

Size of Output

PAMAP2 DaLiAc DSAD

W C W C W C

In Input - - - - - 300 12 600 6 125 9
C1 Conv1D + BatchNorm 64 3 1 same ReLU 300 64 600 64 125 64
C2 Conv1D + BatchNorm 64 3 1 same ReLU 300 64 600 64 125 64
S3 MaxPooling1D - 2 2 valid - 150 64 300 64 62 64
C4 Conv1D + BatchNorm 128 3 1 same ReLU 150 128 300 128 62 128
C5 Conv1D + BatchNorm 128 3 1 same ReLU 150 128 300 128 62 128
S6 MaxPooling1D - 2 2 valid - 75 128 150 128 31 128
C7 Conv1D + BatchNorm 256 3 1 same ReLU 75 256 150 256 31 256
C8 Conv1D + BatchNorm 256 3 1 same ReLU 75 256 150 256 31 256
C9 Conv1D + BatchNorm 256 3 1 same ReLU 75 256 150 256 31 256
S10 MaxPooling1D - 2 2 valid - 37 256 75 256 15 256
C11 Conv1D + BatchNorm 512 3 1 same ReLU 37 512 75 512 15 512
C12 Conv1D + BatchNorm 512 3 1 same ReLU 37 512 75 512 15 512
C13 Conv1D + BatchNorm 512 3 1 same ReLU 37 512 75 512 15 512
S14 MaxPooling1D - 2 2 valid - 18 512 37 512 7 512
C15 Conv1D + BatchNorm 512 3 1 same ReLU 18 512 37 512 7 512
C16 Conv1D + BatchNorm 512 3 1 same ReLU 18 512 37 512 7 512
C17 Conv1D + BatchNorm 512 3 1 same ReLU 18 512 37 512 7 512
S18 MaxPooling1D - 2 2 valid - 9 512 18 512 3 512
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