
Citation: Rehman, N.; Mufti,

M.-U.D.; Gupta, N. Metaheuristic

Method for a Wind-Integrated

Distribution Network to Support

Voltage Stabilisation Employing

Electric Vehicle Loads. Appl. Sci. 2023,

13, 2254. https://doi.org/10.3390/

app13042254

Academic Editor: Young-Kyu Han

Received: 25 December 2022

Revised: 4 February 2023

Accepted: 8 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Metaheuristic Method for a Wind-Integrated Distribution
Network to Support Voltage Stabilisation Employing Electric
Vehicle Loads
Nasir Rehman , Mairaj-Ud Din Mufti and Neeraj Gupta *

Department of Electrical Engineering, National Institute of Technology, Srinagar 190006, India
* Correspondence: neerajgupta@nitsri.ac.in

Abstract: Distributed generation (DG) has been incorporated into the distribution networks and,
despite the rising prevalence of electric vehicle (EV) loads that are uncertain and cause substan-
tial challenges in their operation, it is necessary to enhance the voltage profile, reduce power
losses, and consequently improve the stability of whole networks. The recently proposed beluga
whale optimisation algorithm is explored in the optimisation framework to determine the most
suitable size of wind turbine generating systems (WTGS), while the optimum placements are deter-
mined by minimising the placement index (P-Index) using the distribution load flow (DLF) method.
The voltage stability factor (VSF) is employed to formulate the P-Index to enhance voltage sensi-
tivity in distribution systems. The main purpose of this article is to assess the influence of voltage-
dependent, uncertain ZIP-form EV loads in order to analyse their potential in the active and reactive
power operations of the distribution network while retaining the system voltage within a specified
limit by significantly reducing system losses and taking distribution network-level constraints into
account. The efficacy of the methodology is validated on the standard IEEE-33 test system by formu-
lating two performance indices to determine a significant enhancement in convergence characteristics
and a reduction in system losses.

Keywords: distributed generations; electric vehicle; beluga whale optimisation; optimal location;
wind turbine generating system

1. Introduction
1.1. Background

Distributed generation (DG) is becoming more prevalent as a result of decentralisation
and the introduction of new renewable technologies. However, as renewable energy sources
(RESs) become more common and are integrated into existing networks, the number of
DGs connected to distribution networks has increased significantly. As a result, power
systems have increasingly undergone a transformation between traditional networks with
unidirectional power flows and active networks with bidirectional power flows, resulting
in significant technical hurdles for distribution system operators (DSOs) [1]. The potential
benefits of incorporating DGs have been explored in earlier studies [2,3]. A number
of challenges must be taken into account in order to integrate DG power sources into
distribution networks efficiently. These include reverse power flow, system frequency,
protection design, voltage variations, and DG power generation uncertainty.

In addition, the growing numbers of electric vehicles (EVs) have also introduced a
new integrative load to the power grid. EVs may dispatch reactive and real power via
a bidirectional charger, enhancing the performance of the distribution grid [4]. Reactive
power, which may offer auxiliary services, can reduce power losses and enhance voltage
management. Even without batteries, EVs can respond to network demands quickly and
locally and provide reactive power back into the grid [5]. Since the development of EV
technology has coincided with an increased interest in analysing and investigating the
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effects of EVs on the electrical power system and the integration of RESs in the networks,
this problem has drawn great attention from researchers. In brief, EV load analysis is
essential to determine any impacts on the power system and evaluate the effect of EVs on
active distribution networks. This data collection would allow for the upgrading of the
power grid to be planned for in the near future.

Thus, the appropriate placement of DGs and the distribution of EV loads in the system
are of utmost importance in distribution systems, and it is essential for a distribution system
to utilise optimisation techniques to address the issue of distributed generation planning
(DGP). To enhance the voltage profile and system stability of active distribution networks,
a wide range of optimisation approaches and their combinations with analytical techniques
have been devised.

1.2. Literature Review

Over the past few years, the significance of optimisation strategies has become consid-
erably more apparent due to the rising challenges and complexities of DGP. To analyse the
ambiguities in active distribution networks, previous research has employed a number of
solution methodologies, including stochastic optimisation [6], Monte Carlo simulation [7],
and probability statistical methods [8]. In addition, several methods of effective man-
agement, including reconfiguration of distribution networks, demand-side management,
voltage profile improvement through reactive power compensation, and distributed energy
storage technologies, have been implemented [9,10]. Analytical algorithms are simple
and quick to implement and execute. However, their inferences are usually indicative,
as they are based on implicit assumptions and the model of the system. Nonlinear program-
ming and sequential optimisation approaches are among the most effective deterministic
methods available for DGP [11]. The important feature of the deterministic investigation
approaches is that they ensure the identification of the global optimum; however, they
are inadequate for large, distributed systems, which is also a drawback of the nonlinear
programming method. On the other hand, heuristic approaches are resilient and offer
relatively close form solutions for large, complicated DGP challenges without requiring
any model of the system [12].

Meta-heuristic algorithms are artificial intelligence frameworks specifically for the
purpose of solving complex combinatorial optimisation problems in the real world [13,14].
To ensure optimum positioning and sizing for challenging objectives, which are usually
problem-dependent and demand substantial versatility, researchers have adopted a wide
variety of optimisation methodologies. Among them are the particle swarm optimisation
(PSO), genetic algorithm (GA), artificial bee colony (ABC), and differential evolution (DE)
algorithms, to mention a few. These strategies range from simple and basic approaches
to comprehensive teaching and learning procedures. The objective of using GA in [15,16]
is to determine the optimum position and appropriate size of DG units so as to minimise
power losses. In [17], the objective function is to reduce the economic and technical
constraints of the distribution network for DG employment. To achieve better voltage
stability in the distribution system, a stability index [18] for sizing DGs has been developed
to include DGs at appropriate locations. The authors in [19] have considered that DGs
be planned through GA in order to decrease the cost of energy loss and improve system
advancement. The effectiveness of optimum positioning of multi-DGs considering power
losses and reliability on distribution networks adopting the DE methodology is explored in [20].
To minimise system loss, PSO in [21] is used to calculate a cumulative performance index that
includes power loss reduction, loss voltage profile enhancement, and voltage stability index.
Due to the unpredictable nature of RESs, the artificial hummingbird algorithm in [22] has
been carried out to plan the distribution grid. The reactive power management strategy and
DG arrangement in [23] have been optimised to reduce cost-related characteristics. Flower-
pollination-based optimisation is used to characterise the DG placement aspect [24], with the
purposes being to minimise net operating costs, maximise voltage profile performance, improve
voltage stability, and minimise real power loss. Furthermore, in [25], a systematic strategy for
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long-term management is proposed to enhance the voltage stability and reliability of the system.
Despite these limitations, meta-heuristic approaches are being explored by a growing number
of researchers who are attempting to find the optimal combination of meta-heuristics and
other methodologies [26,27].

Meta-heuristic techniques have also been employed to determine the optimum place-
ment of EV charging stations by incorporating uncertainties in charging as well as in
demand. The objective functions to be minimised comprise energy loss, voltage deviation
of the power system network, and minimisation of resources to incorporate large-scale EV
integration. In [28], the optimal placement of EV charging stations is determined in a radial
distribution network by using DE and Harris Hawks optimisation methods, while, in [29],
the reptile search method is employed to investigate the impacts of adding significant EV
loads to active distribution networks. Techno-environmental variables are also included
in a distribution system to identify appropriate DG and EV sites using a future search
algorithm [30]. The effect of EV charging stations on the 33-bus and 85-bus test systems by
minimising power loss and maintaining voltage level in the presence of EVs is discussed
in [31]. There have also been a lot of studies regarding managing active and reactive
power [32,33] in a smart distribution network with EVs, which has shown that EVs may be
utilised to minimise congestion on the power grid [34] or provide auxiliary services, such
as frequency management [35].

1.3. Motivation and Approach

The literature is limited in the diversity of strategies and challenges presented by researchers
in ascertaining how all of the above-mentioned perturbations adversely affect the voltage
stability of systems and their infrastructure. All approaches have advantages and disadvantages
that are in accordance with the data and systems under consideration. In order to determine how
all of these disturbances adversely affect the voltage stability of systems and their infrastructure,
the literature has extensively explored the appropriate positioning and sizing of DGs within the
framework of meta-heuristic optimisation algorithms.

In this study, we use a recently developed metaheuristic technique called beluga whale
optimisation (BWO) [36] to overcome the challenging concerns involved in the strategic
planning of active distribution networks. The BWO algorithm is inspired by the swimming,
hunting, and falling (whale fall) behaviours of beluga whales. In the mathematical model
of BWO, the characteristics of exploitation, exploration, and whale fall are developed, and
the Levy flight function is employed in the exploitation phase to improve the adaptation ca-
pability of BWO. The primary objective of BWO is to create sophisticated search techniques
that may provide comparatively higher solutions to complicated issues and to achieve the
greatest possible results to simplify the resolution of challenging real-world scenarios. In
addition to wind turbine generating system (WTGS) integration, optimal placement of EV
loads is critical for maintaining a consistent voltage profile in the system. Thus, a placement
index (P-Index) is formed considering the voltage stability factor (VSF) to plan and position
EV loads in a radial distribution network that satisfy multiple operating characteristics,
such as bus voltage limits and feeder current capacity, by restricting DG generation while
significantly reducing overall losses.

1.4. Contribution

The exploring approach of BWO is carried out in distribution networks for appropri-
ate sizing of DGs so that various forms of EV loads can be optimally incorporated into
the active distribution systems to manage active and reactive power from the EV loads.
To determine the superiority of BWO, first the locations of DGs are determined by analytical
indices specified using the distribution load flow (DLF) method, then the appropriate sizing
of DGs is optimised using BWO in consideration of the incorporation of EV loads. In addi-
tion to imposing additional EV load on the active distribution network, EVs also provide
the reactive power required to maintain the stability of the network. The integration of
various DGs and the proper sizing of EV loads at the appropriate distribution network
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buses improve the voltage profile and reduce overall losses in the system, which entails the
reconfiguration of networks and raises capital expenditures. The main contribution of this
work is summarised as follows:

• The incorporation of WTGS in an active distribution network in compliance with the
uncertainty of EV loads is addressed.

• A new advanced strategic algorithm based on the behaviour of beluga whales has to be
demonstrated to determine the scalability of DGs along with the ideal configuration of
EV load units.

• An appropriate EV load distribution has to be determined based on the characteristics
of EVs in active and reactive power operations in the distribution network.

• An illustration of the viability of EVs as a distributed source for the support of reactive power.
• The network is integrated with WTGS units and EV loads in such a way that the voltage

profile is maintained and overall system losses are minimised, enhancing the stability
and performance of the network.

1.5. Paper Organisation

This work is divided into several sections: Section 2 discusses wind power charac-
teristics using mathematical modelling and Section 3 describes EV load characteristics.
In Section 4, the problem formulation with an objective function is covered in detail and, in
Section 5, the adopted optimisation algorithm is illustrated with mathematical modelling.
The proposed methodology in the study is illustrated in Section 6. Results and discussions
are presented in Section 7, and the conclusion is made in Section 8.

2. Wind Power Characterisation

Wind power is becoming more important in energy generation. In deregulated elec-
trical networks, the distribution market will vary the most, rendering wind-generated
power more expensive for commercial and residential users than industrial customers.
Electric power generally flows from the substation to the ends of feeders in distribution
networks throughout operation and planning. However, the incorporation of WTGS may
result in reverse power flow in the distribution lines. There are various approaches for
load flow using WTGS for distribution systems described in the literature. In this study,
a matrix-based approach is used to integrate power output from WTGS into distribution
systems [37]. Induction generators are explored as WTGS power conversion devices; they
primarily function as variable-reactive power generators. For the reliable inclusion of wind
energy into the grid, the impacts of wind power, which vary with wind speed, have to
be analysed using appropriate models. The wind statistics of wind power are thoroughly
illustrated in [38] and are derived as follows:

f (Vw) =
k
c

(
Vw

c

)k−1

exp
[
−
(

Vw

c

)k]
(1)

where Vw represents wind speed, c is the scaling factor, and k is the shape parameter,
which modifies the characteristics of the probability density function (PDF). The Weibull
continuous PDF is defined as the Rayleigh PDF computed by Equation (2) for k = 2 and
is the most commonly used distribution function for estimating wind speeds because it
has intervals of low and strong wind speeds. The characteristic feature of such a PDF is
the region between any two wind speeds, which represents the possibility that the wind is
somewhere between those speeds. The Weibull PDF is the basic foundation for analysing
wind speed statistics.

f (Vw) =
2Vw

c2 exp

[
−
(

Vw

c

)2]
(2)
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Power output at any specified instant is estimated using the power curve for a specific
model of wind turbine. As can be seen in Figure 1, the mechanical power produced by a
wind turbine is directly proportional to the wind speed [38].
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Figure 1. Wind speed power characteristics.

The wind turbine power curve given by the manufacturer is used to determine the
active power output and the reactive power required is expressed based on the inverter
ratings in this study as follows:

Qw =


0.3 ∗Qmax, Vi ≤ Vmin

θ1 ∗ (Vi − 1), Vmin < Vi ≤ 1
−θ2 ∗ (1−Vi), 1 < Vi ≤ Vmax

−0.3 ∗Qmax, Vi > Vmax

(3)

where,

θ1 =
Qmax

Vmin
, &θ2 =

Qmax

Vmax

Qmax is the maximum limit the inverter can support for reactive power. To account
for voltage changes at the buses, the inverter’s dynamic characteristics entail adjusting
the slope gradients. The inverter is operable in four major zones. If the voltage exceeds
the upper or lower limits, the inverter injects or absorbs 30% of Qmax in reactive power at
the bus terminals. Consequently, the remaining two regions use the droop slope gradients
(θ1, θ2) to evaluate the output corresponding to the Qmax set.

3. EV Load Characterisation

The diverse range of EVs involves a number of various approaches to modelling.
In this study, voltage-dependent load (VDL) modelling is utilised to determine the active
and reactive powers of the ZIP load model, a prominent form of EV load.

A thorough understanding of the battery profile is required for modelling the EV load for
steady-state analysis. Batteries are linked to the distribution system through chargers fitted with
two types of bidirectional converters known as AC–DC and DC–DC converters. The detailed
analysis of the charger parameters is discussed in [39]. As seen in Figure 2, the grid voltage
Vo and grid current Io are given to the battery charger from the grid side, while the terminal
voltage of the battery is VB and IB is the current absorbed by the battery. A standard layout of
an on-board EV battery charger, which features two converters: an AC–DC converter and a
DC–DC converter, is also illustrated in Figure 2 where the dynamic parameters of the battery
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describe the terminal voltage of the battery (VB), while charging, the grid-side active (Po) and
reactive (Qo) powers can be calculated using the following equations:

Po = Vo Iocosφ

Qo = Vo Iosinφ
(4)

AC Input 
Filter

AC/DC 
Converter

DC/DC 
Converter

Charger 
Control

EV Battery 
Pack

EV Battery Charger
IB

VBV0

I0
VR

IR

Figure 2. On-board EV battery charger.

The active and reactive powers utilised on the AC side are monitored at each state
of charge (SOC) and voltage level, while a set of IB and VB values are acquired at various
nominal voltage levels for a range of Vo (180 V to 230 V) and SOC (10% to 100%). These
acquired values are analysed to evaluate the VDL characteristics of the EV at various levels
of SOC. To ascertain the EV-ZIP values, a constrained least-squares approach is employed
to generate a best-fit approximation to the monitored values. Finally, the best-fit ZIP values
can be used in the ZIP equations shown below:

PZIP = Po

[
p3

(
Vi
Vo

)2

+ p2

(
Vi
Vo

)
+ p1

]

QZIP = Qo

[
q3

(
Vi
Vo

)2

+ q2

(
Vi
Vo

)
+ q1

] (5)

where Po and Qo are active load power and reactive load power acquired from Equation (4).
Vi is the bus voltage at which load is connected and Vo is the nominal rated voltage. p3, p2,
and p1 are the constant impedance, constant current, and constant power parameters of the
active fraction of the EV load. q3, q2, and q1 are the constant impedance, constant current,
and constant power parameters of the reactive fraction of the EV load. The values of these
various active and reactive parameters of Equation (5) are detailed in [29].

EVs are substantial loads comparable to all other residential loads; thus, if they do
not encourage and sustain the stability of the grid, the DSO will have to acquire addi-
tional units to assure power quality, which will raise the cost to customers. Consequently,
the converters employed in battery chargers enable the active and reactive power reg-
ulation of the EV, allowing it to be used in the operation of the distribution network.
The parking lots and parking spots of apartment buildings have access to a distribution
network that can supply the necessary energy consumption of EV batteries. As illustrated
in Figure 3, the charger must be operated in both charging and capacitive modes if the distri-
bution network demands reactive power while the EV is in charging mode. Consequently,
the distribution network provides active power to accommodate EV loads, while EVs
introduce reactive power to support the network’s reactive requirements [40,41].
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Figure 3. EV charging/discharging quadrants.

4. Problem Formulation

The literature findings demonstrate that proper placement, strategic planning,
and the appropriate sizing of DGs in accordance with the distribution of appropriate
scaling EV loads in the distribution system are some of the useful assertions to improve
system performance and effectiveness. EVs are substantial loads comparable to other
household loads; therefore, if they do not support maintaining the stability of the grid,
the DSO will have to acquire additional units to assure power quality, which will raise the
cost to customers. Therefore, we adopt an approach for multi-objective optimisation issues
subject to a number of restrictions. In the sizing of DGs, the most voltage-sensitive bus
in the network is considered for the proper placement and appropriate sizing of DGs to
form a P-Index as an objective function given in Equation (8), and a few other operational
variables such as the bus voltage profile and the current capacity of lines are included as
constraints while significantly reducing overall losses. For EV load management, the buses
with the highest bus voltages are selected as locations while attempting to maintain the
corresponding P-Index at a minimum. Thus, the objective function for scaling EV loads
is formulated for the voltage profile given in Equation (9). The primary objective of this
study is to explore how uncertain EVs affect the control of active and reactive power in
distribution networks. For the sake of convenience, many other sources, like capacitor
banks and some other power elements, are ignored.

4.1. Placement Index

The P-Index employed in this research for evaluating the optimal position of ap-
propriately sized DG is framed by stabilising the VSF index while significantly reducing
power losses in the network. Buses with a higher-than-average P-Index are given options
regarding DG installation.

P− Index =
1

VSF
(6)

The VSF index is developed in order to determine which bus in a network segment is
most sensitive to voltage fluctuations [42]. Buses with a low VSF are more likely to encounter a
collapse in voltage. The VSF index for the nth bus can be determined as follows [43]:

VSFn = |Vm|4 − 4{Pn × Xmn −Qn × Rmn}2 − 4{Pn × Rmn + Qn × Xmn}2|Vn|2 (7)

where m represents the sending end bus and n represents the receiving end bus. The sending
end bus voltage is Vm and the receiving end bus voltage is Vn. The branch resistance and
reactance for buses m to n are represented by Rmn and Xmn, respectively. The active and reactive
loads at receiving end buses are represented by Pn and Qn, respectively. The buses with the
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lowest voltage stability index are viewed as an alternative for an appropriate location for
DG integration in order to retain the voltage stability of the system.

4.2. Objective Function

In this part of the article, we explore the objective function variables and their con-
straints in order to carry out a comprehensive evaluation of the various issues used
in the conceptualisation of the problem. In identifying the best position, arrangement,
and performance of EV loads in both active and passive distribution network situations,
the significance of the objective function and constraints is raised in full accordance with
the complexity of the system.

• For sizing of WTGS

Obj.Fun1 = min
nbus

∑
i=1

P− Index(i) (8)

• For sizing of EV loads

Obj.Fun2 = max
[ nbus

∑
i=1

(Vi −Vr)
2
]

(9)

where, Vi is voltage at bus i and Vr is rated voltage.

4.3. Constraints

The primary purpose of this study is to ensure that the voltage profile of the network
is upheld by the optimisation algorithm while adhering to the constraints imposed by
loadflow to keep bus voltages within +/−5% PU. Furthermore, as general constraints
within min and max limitations are established as the optimisation algorithm’s lower and
upper bounds, the total active and reactive powers offered into the network from both
WTGS and EV loads are taken into account.

• Voltage constraint: The voltage at each bus should be limited within minimum and
maximum limits.

0.95p.u ≤ Vi ≤ 1.05p.u

• DG power generation constraints: The minimum capacity of DG is set as 10 KW and
maximum at 2.5 MW.

Pmin
gw ≤ Pgw ≤ Pmax

gw

Qmin
gw ≤ Qgw ≤ Qmax

gw

• EV power constraints: The EV load capacity is constrained by the resources at certain
locations. Thus, limiting EV load capacities is required.

0 ≤ Pgev ≤ Pmax
gev

Qmin
gev ≤ Qgev ≤ Qmax

gev

5. Optimisation Algorithm

The BWO algorithm has been recently developed in [36] and draws its inspiration
from the behaviour of beluga whales. The mathematical model of BWO reflects three
phases: the swim phase corresponding to exploration, the prey phase corresponding to the
exploitive phase, and the whale falls. In addition, the Levy flight function is used during
the exploitation stage to enhance BWO’s convergence. The following are mathematical
representations of these stages that show how the stated BWO algorithm works and how
to optimise both complex and basic problems with stated constraints.
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5.1. Mathematical Modelling of Algorithm

During the process of optimisation, each beluga whale is considered a possible can-
didate and carries an update. The belugas are moved from the exploration stage to the
exploitation stage by a balance factor in the BWO algorithm. This beluga transformation
operation is modelled as follows:

B f = B0(1− N/2Nmax ) =

{
> 0.5, exploration stage
≤ 0.5, exploitation stage

(10)

where Nmax is the highest iterative value of the current iteration (N). At each iteration,
B0 varies at random between the two values, 0 and 1. As the number of iterations (N)
increases, the variation in B f is significantly reduced in the range of values from (0, 1) to
(0, 0.5), while the probability of the exploitation phase impacts directly on the variations in N.

5.1.1. Exploration Phase

The swimming behaviour of beluga whales is analysed during the formulation of the
exploration stage of BWO. The positions of the beluga whales are defined by their pair
swim and these positions are upgraded in the following way:YN+1

i,j = YN
i,pj

+
(

YN
r,p1
−YN

i,pj

)
(1 + r1) sin(2πr2), j = even

YN+1
i,j = YN

i,pj
+
(

YN
r,p1
−YN

i,pj

)
(1 + r1) cos(2πr2), j = odd

(11)

where YN
i,j is the updated location of ith beluga in the Jth dimension and YN

i,pj
is the new current

location of ith beluga at Pj position. YN
r,p1

is the updated current location of the rth beluga. Pj is a
random number from the jth set. Random numbers r1 and r2 are between 0 and 1.

5.1.2. Exploitation Phase

During the exploitative phase of BWO, the Levy flight (LF) technique is used to improve
convergence in the hopes of catching prey with Levy flight planning. The corresponding
mathematical modelling of the exploitation process employing Levy flight is as follows:

YN+1
i = r3YN

best − r4YN
i + C1 · LF ·

(
YN

r −YN
i

)
(12)

where YN
i and YN

r represent the current locations of the ith and random beluga whales,
respectively, and YN

best is the best location among them. C1 = 2r4(1− N/Nmax) measures
the intensity of Levy’s flight by evaluating the randomisation of its jumps.

5.1.3. Whale Fall

The mathematical expression for the whale fall stage of the algorithm is illustrated as follows:

YN+1
i = r5YN

i − r6YN
r + r7Ystep (13)

where r5, r6, and r7 are three random numbers between 0 and 1. The overview of the
processes executing in the proposed optimisation algorithm is illustrated in pseudo-code
format in the algorithm represented in Figure 4.
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Figure 4. Pseudo-code of BWO algorithm.

6. Methodology for the Proposed Approach

In this study, the BWO methodology has been used to determine the appropriate
size of DGs, and strategic planning as well as scaling of EV loads are performed in the
distribution networks. The step-by-step procedure of approach in the statement of the
problem is outlined as follows:

• The bus data and line data of the test systems are initialised.
• Bus injections to branch currents and branch current to bus voltage matrices are formed

to obtain the DLF method.
• The P-Index is formulated using Equation (6), by estimating VSF at all buses given in

Equation (7).
• To determine the most suitable place for DGs and their appropriate size, the BWO is

used, which utilises the P-Index as an objective function.
• The size of WTGS as DGs to be connected are decided as candidates for the initialisation

of BWO.

– The collection of candidates produces the search agents that explore the search space
by updating their position vectors using Equation (11). The model for the matrix is
framed by minimum and maximum DG size for the first phase of optimisation.

– The sizing (candidate solutions) are employed at specified buses to determine appro-
priate sizing.

– The best solutions are identified, depending upon the intricacy of the approach.

• The WTGS as DGs are installed at the determined buses to enhance the voltage stability
of the system.

• The bus data and line data of the system are updated for the incorporation of EV loads.
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• The EV loads are modelled as ZIP loads and are placed on high-voltage buses to ensure
the voltage stability of the system. The BWO algorithm is used to restrict the charging and
discharging modes of EVs, utilising the voltage deviation at buses as an objective function.

• The EV loads are integrated at best candidate solutions.
• After the participation of EV loads, the bus and line data of the integrated system are

updated to assess the voltage profile and losses of the system.

7. Results and Discussion

An IEEE-33 test bus system is used to validate the performance and scalability of
the presented BWO algorithm and the outcomes are then compared to the standard PSO
approach. The DLF method is primarily applied to a test bus system to determine unstable
buses by evaluating voltage limit breaches in line with the voltage stability indices derived
analytically using Equation (7). The P-Index is formulated using Equation (6), considering
the VSF index, demonstrating weak buses as given in Table 1. The scalability of DGs is
optimised using the objective function by minimising Equation (8) to integrate appropriate-
sized DGs at buses determined using Equation (6). When WTGS-DGs are added to the
system, the voltage profile improves, as seen graphically in Figure 5. Incorporating ap-
propriately sized WTGS-DGs enhances the P-Index for all buses and stabilises the VSF, as
illustrated in Figures 6 and 7, respectively.
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Figure 6. P-indexes at 33 buses of modified test system.
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Figure 7. Voltage stability factors at 33 buses of modified test system.

The BWO approach is then used to optimise the number of EV load capacities such
that the enhanced voltage at buses stays within the permissible range by incorporating
additional EV loads with minimal impact on active power losses. The preferred position
and appropriate size of EV loads are optimised using quadrant operation of EV charging,
and the implications are graphically displayed in Figures 5–7 for voltage profile, P-Index,
and VSF, respectively. The voltage profile is further improved despite the addition of EV
loads, as shown in Figure 5, because EV loads not only add demand to the network but also
provide reactive power to maintain network voltage stability. In summary, the network
voltage profile is the highest possible in this scenario and the system loss rate is the lowest
possible. Table 1 outlines all the voltage level profiles in p.u. and VSF values for all of the
buses for three distinct scenarios following WTGS-DG as well as the EV load.

Table 1. Data estimated on IEEE-33 test buses with and without DGs and EV loads.

Voltage (p.u.) VSF (Index Value)

Bus
Number Base Case With DG

With DG
and EV
Loads

Base Case With DG
With DG
and EV
Loads

1 1 1 1 1 1 1.018
2 0.997 0.9987 0.9991 0.9866 0.9932 0.9933
3 0.9829 0.9936 0.9965 0.9322 0.9735 0.9847
4 0.9755 0.9929 0.9975 0.9034 0.97 0.9879
5 0.9681 0.9927 0.9989 0.8774 0.9702 0.9948
6 0.9497 0.9869 1.0007 0.8127 0.9479 1.002
7 0.9462 0.9788 1.0008 0.7988 0.915 1.0004
8 0.9414 0.9783 1.0011 0.7826 0.913 1.0012
9 0.9351 0.9742 1.0036 0.7639 0.9002 1.0138

10 0.9294 0.9709 1.0066 0.7456 0.8877 1.026
11 0.9286 0.9713 1.0071 0.7428 0.8893 1.0518
12 0.9271 0.9723 1.0081 0.7379 0.8927 1.0318
13 0.921 0.9693 1.0054 0.7186 0.8819 1.0207
14 0.9187 0.9655 1.0017 0.7106 0.8672 1.0049
15 0.9173 0.9651 1.0013 0.7074 0.8668 1.0046
16 0.9159 0.9662 1.0024 0.7031 0.872 1.0102
17 0.9139 0.9588 0.9953 0.6969 0.8435 0.9796
18 0.9133 0.9564 0.993 0.6946 0.8295 0.9644
19 0.9965 0.9982 0.9986 0.9848 0.9914 0.9931
20 0.9929 0.9946 0.995 0.9707 0.9773 0.9789
21 0.9922 0.9939 0.9943 0.968 0.9745 0.9762
22 0.9916 0.9933 0.9937 0.9655 0.9721 0.9737
23 0.9794 0.9901 0.993 0.9186 0.9596 0.9707
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Table 1. Cont.

Voltage (p.u.) VSF (Index Value)

Bus
Number Base Case With DG

With DG
and EV
Loads

Base Case With DG
With DG
and EV
Loads

24 0.9727 0.9835 0.9864 0.8893 0.9296 0.9405
25 0.9694 0.9802 0.9831 0.8771 0.9172 0.9281
26 0.9478 0.9881 1.0019 0.8061 0.9525 1.0067
27 0.9452 0.9899 1.0037 0.7974 0.9595 1.014
28 0.9338 0.9949 1.0086 0.7595 0.9788 1.0339
29 0.9255 0.9992 1.0129 0.7321 0.9949 1.0505
30 0.922 1.0036 1.0172 0.7144 1.0048 1.0607
31 0.9178 1.0144 1.0279 0.7078 1.0568 1.114
32 0.9169 1.0183 1.0317 0.7042 1.0934 1.1516
33 0.9166 1.018 1.0315 0.7051 1.0731 1.1308

7.1. Relative Comparison of BWO with Conventional PSO

The implemented BWO method has been compared with conventional PSO to assess
its performance. The voltage profile of the IEEE-33 test bus after the integration of WTGS-
DGs as well as EV loads is graphically shown in Figure 8. Moreover, Table 2 illustrates the
comparison between the determined DG and EV load locations and their appropriate sizes
using BWO and PSO. It is apparent that the presented methodology works comparatively
more effectively than conventional techniques by stabilising bus voltages at weak locations
in a distribution system, as shown in Figure 9, which eventually leads to a higher rate of
efficiency. In conclusion, this method achieves the best network voltage profile with the
fewest system losses.

Table 2. Comparison of BWO with PSO.

BWO PSO

DG locations (Bus Nos) 16 17 18 32 16 17 18 32

DG size P (Mw) 0.9425 0.6812 0.01 2.5 0.3108 1.1555 0.01 2.5
Q (Mvar) −0.4975 −0.4975 −0.4975 −0.0289 0.0455 0.0559 0.055 0.0549

EV locations (Bus Nos) 1 1 2 11 1 1 21 33

EV load size P (Mw) 0 0.5082 0.0651 0.6629 1.9445 3.0799 2.0022 0.113
Q (Mvar) 0 −1.694 0.0701 −2.2097 −2.0711 0.5229 −1.5308 −0.3767
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Figure 8. Voltage profile of modified test system using BWO and PSO.
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Figure 9. Voltage stability factors at 33 buses of modified test system using BWO and PSO.

7.2. Performance Indices

To evaluate the performance of the presented methodology scheme, two customised
performance indices (η & ξ) based on the integral square error of the voltages (ISE) and
the integral absolute error (IAE) of the voltages at different buses were calculated, both of
which are used to quantify the performance of the proposed scheme. The higher the values
of the ISE and IAE, the poorer the performance, and vice versa [44]. Mathematically, the
performance indices ISE and IAE are given by Equations (20) and (21), respectively:

η =
4

∑
n=1

(Vnom −Vn)
2 (14)

ξ =
4

∑
n=1
|Vnom −Vn| (15)

where Vnom represents the nominal bus voltage, n = nth DG unit, and Vn represents the
voltage of the nth DG connected bus.

To demonstrate the superiority of the proposed method, the following scenarios are
used: base case (without DG and EV loads), WTGS-DG incorporated, and with both WTGS-
DG and EV loads. In Table 3, the determined values for all three scenarios applying ISE
and IAE are presented in tabular format.

Table 3. Performance comparison of indices.

ISE IAE

η1 η2 η3 η4 η ξ1 ξ2 ξ3 ξ4 ξ

Base Case 0.0071 0.0074 0.0075 0.0069 0.0289 0.0841 0.0861 0.0867 0.0831 0.3400
With DG 0.0011 0.0017 0.0019 0.0003 0.0051 0.0338 0.0412 0.0436 0.0183 0.137
With DG
and EV loads 0 0 0.0078

(* 10−4 )
0.5099

(* 10−4 )
0.5177

(* 10−4 )
0 0 0.0009 0.0071 0.008

The effectiveness of the proposed methodology is further validated and highlighted by
graphical representations of these two performance indices for each of the three scenarios
obtained by employing both BWO and PSO. The IAE and ISE for all three scenarios obtained
by using BWO are less than the values obtained using PSO, as shown in Figures 10 and 11.
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Figure 10. Integral absolute error using BWO and PSO.

BWO PSO
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

IS
E

 (
)

Base Case With DG With DG-EVs

0.5177*1.0e-04
0.5177*10-4

Figure 11. Integral square error using BWO and PSO.

8. Conclusions

This paper presents the application of the beluga whale optimisation (BWO) algorithm
to determine the appropriate size of wind turbine generating systems (WTGS), while the
optimal positions have been identified using the distribution load flow (DLF) method
by minimising the P-Index, which was specified by taking voltage stability into account.
In addition, optimal electric vehicle (EV) load distribution has been assessed in order to
analyse the characteristics of EV load units in active and reactive power operations of the
active distribution network. The BWO-optimised EV load units, along with the WTGS,
effectively minimise the overall active power loss, leading to a stable bus voltage profile at
weak nodes of the system. To summarise, the work presents:

• The optimal location of WTGS is established using analytical methods based on the
matrix approach of DLF.

• The application of the BWO technique determines the suitable size of WTGS in ac-
cordance with the ideal configuration of EV load units, consequently enhancing the
stability and performance of the network.

• The influence of integrating uncertain voltage-dependent ZIP forms of EV loads is analysed
by minimising overall power losses and keeping bus voltages within acceptable parameters.

The future expansion of this study may incorporate different power distribution
challenges, such as active power curtailment of distributed generator units to prioritise
reactive power, determining the charging and discharging characteristics of EVs, and
energy storage devices employing meta-heuristic methodologies.



Appl. Sci. 2023, 13, 2254 16 of 18

Author Contributions: Conceptualization, N.R., M.-U.D.M. and N.G.; methodology, N.R., M.-U.D.M.
and N.G.; software, N.R.; validation, N.R., M.-U.D.M. and N.G.; formal analysis, N.R., M.-U.D.M.
and N.G. investigation, N.R., M.-U.D.M. and N.G.; resources, N.G.; data curation, N.R. and N.G.;
writing—original draft preparation, N.R.; writing—review and editing, N.R. and N.G.; visualization,
N.R.; supervision, N.R., M.-U.D.M. and N.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data generated in present work is already available in the
reported manuscript or cited accordingly.

Acknowledgments: The authors express their thanks to the Ministry of Education, Government of
India, for funding a scholarship during N.R.’s Ph.D.

Conflicts of Interest: The authors state that there are no conflicting interests.

Nomenclature

DG Distributed generation
EV Electric vehicle
WTGS Wind turbine generating system
P-Index Placement index
DLF Distribution load flow
VSF Voltage stability factor
RES Renewable energy source
DSO Distribution system operator
DGP Distributed generation planning
PSO Particle swarm optimisation
GA Genetic algorithm
DE Differential evolution
BWO Beluga whale optimisation
PDF Probability distribution function
VDL Voltage dependent load
SOC State of charge
ISE Integral square error
IAE Integral absolute error
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