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Abstract: This study focuses on a comparative analysis of mechanical behavior and microstructural
characteristics of Cu matrix (C87600) based hybrid composites reinforced with SiC-Grp and WC-Grp

fabricated by the stir casting process. The graphite particle percentage was kept constant, whereas the
content of SiC and WC in the respective composites was varied to analyze the mechanical properties
of the fabricated composites. The morphological observation was carried out by field emission
scanning electron microscope (FESEM), which revealed uniform dispersion of the reinforced particles
in the hybrid composites. Clear phases of SiC and WC along with the Cu alloy were identified by the
x-ray diffractometer (XRD). Further, a comparative study was conducted to analyze the mechanical
behavior of the Cu-SiC-Gr and Cu-WC-Gr hybrid composites. With the addition of the hard ceramic
materials, the tensile behavior and microhardness of both the Cu-based MMCs were improved. The
WC-Gr reinforced composites exhibited higher mechanical properties than the SiC-Gr reinforced
hybrid composites. Further, the fracture surfaces were also characterized to study the tensile behavior
of the fabricated copper-based hybrid composites, which shows that ductile fracture was mainly
associated with both hybrid composites.

Keywords: metal matrix composites; copper; stir casting; tensile strength; mechanical behavior

1. Introduction

Metal matrix composites (MMCs) are the most promising materials and find their
usage in a wide range of industrial applications such as automotive, aerospace, defense,
marine, electronics, etc. Moreover, MMCs do not lose their basic behavior even in critical
environmental conditions. Further, MMCs exhibit superior properties over monolithic
materials in terms of higher stiffness, strength, specific weight, excellent wear and corrosion
resistance, etc. [1–3]. Still, issues and the possibility of amalgamation of several matrices
and reinforcements are present in the development of MMCs. Copper alloy matrix-based
composites are widely utilized in different automobile and electronics components owing
to their exceptional corrosion and wear resistance, high weldability, high thermal conduc-
tivity, etc. [4,5]. Xiao et al. [6] studied the tensile and tribological properties of Cu matrix
composites as brake pad materials for high-speed trains, in which the copper composites
exhibited excellent mechanical and frictional behavior.

The characteristics of various copper composites can be enhanced with proper con-
sideration of the ceramic reinforcement particles. Wang et al. [7] reported the usage of
Al2O3 particulates as reinforcement in the Cu-based composite, where grain refinement
strengthening was found to be superior to particle dispersion strengthening. Similarly,
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Ramesh et al. [8] examined the mechanical characteristics of Cu-based hybrid composites.
The tensile properties and hardness of the hybrid composites were enhanced due to the
synergistic effect of the reinforcement particulates along with their interfacial bonding
with the matrix alloy. Singh et al. [9] reported the mechanical properties of pure copper
matrix composites incorporated with WC-Al2O3-Cr and WC-ZrO2-Cr reinforcements using
the stir-casting process. They reported that the alumina particulate reinforced composites
exhibited enhanced properties than zirconia owing to the load transfer effect and particle
strengthening. Similarly, Liang et al. [10] fabricated copper matrix-based composites with
TiB2 particles and TiB whiskers as reinforcements using in-situ casting followed by rolling
and annealing. With the combined influence of whiskers and particles, the hybrid compos-
ites exhibited enhanced strength. Further, Zhang et al. [11] investigated the mechanical
and microstructural characterization of Cu alloy composites reinforced with ZrB2 by the
in-situ synthesis process. The effects of cryo-rolling and aging treatment resulted in an
increment in the tensile properties with the help of precipitation and dislocation strength-
ening mechanisms. Sap et al. [12] produced Cu-SiC-Ti-B hybrid composites following
the powder metallurgy method, where the homogenous interface with the matrix was
observed. Further, the bending and tensile strength were also improved by incorporating
hybrid reinforcements.

Furthermore, Yin et al. [13] reported the mechanical characteristics of Cu-TiB2-TiN
hybrid composites prepared by high-temperature self-propagating reaction synthesis fol-
lowed by the hot pressing process. The strengthening effect resulted from the higher
load-carrying ability of the ceramic particulates yielded better tensile strength of the copper
composites. Nageswaran et al. [14] investigated the tensile behavior of the copper hybrid
composites reinforced with titanium dioxide and graphite particles synthesized by the stir
casting method. Homogenous dispersion along with a reduction in grain size gave rise to
refinement in the copper phase, which in turn strengthened the copper-based composites.
Singh et al. [15] studied the mechanical characteristics of Copper/WC hybrid composites
with highly strained stainless steel chips fabricated through the liquid metallurgy process.
The ultimate tensile strength and micro-hardness of the MMCs were enhanced consid-
erably along with the corrosion resistance as related to the base copper alloy. Further,
TiC-reinforced copper alloy composites were produced by the in-situ reaction method,
where the mechanical behavior of the composites was enhanced considerably with a decline
in electrical conductivity [16].

It can be evident from the literature that most of the studies related to copper-based
metal matrix composites utilize pure copper as the matrix phase. Further, very few works
have been reported on Cu-based hybrid composites where the Silicon brass alloy has
not yet been used as a matrix material. In this research, an effort is made to fabricate
the silicon brass copper alloy (C87600) hybrid composites by using a low-cost stir-casting
process. Furthermore, an attempt is made to study a comparative analysis of the mechanical
behavior between SiC-Gr and WC-Gr particulate-reinforced composites. The comparative
analysis was formulated in terms of tensile strength and hardness, along with the tensile
fractography behavior of the hybrid composites.

2. Materials and Methodology

In this study, commercially available silicon-brass Copper alloy, also termed C87600
alloy was considered as the matrix phase for the composites, where zinc and silicon are the
primary alloying element with traces of iron and magnesium. The elemental composition
of the C87600 alloy (as received) is presented in Table 1. This alloy exhibits high wear and
corrosion resistance behavior along with excellent conductivity. The copper alloy C87600
does not respond to heat treatment. It is usually used in marine shafting, architectural
appliances, etc., due to its exceptional wear resistance, corrosion resistance, and electrical
conductivity. Table 2 presents the physical properties of the C87600 alloy. To fabricate
the hybrid composites, SiC, WC, and Gr micro-particulates with 99% purity were bought
from Vision Casting Pvt. Ltd., Hyderabad. Besides the base matrix alloy, two sets of
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copper hybrid composites were fabricated considering SiC-Gr and WC-Gr composites. The
graphite particle being considered as secondary reinforcement, its content in the hybrid
composites was kept constant at 1 wt.%, whereas the weight percentages of SiC and
WC varied at 3 wt.%, 6 wt.%, and 9 wt.%, respectively. These hard ceramic constituents
were selected as the reinforcing phase as these materials tend to enhance the physical
characteristics to a significant extent [17,18]. The copper-based hybrid composite materials
were fabricated through the stir casting process due to their cost-effectiveness and favorable
for mass production [19].

Table 1. Elemental composition of silicon-brass Copper (C87600) alloy.

Element Zn Si Mg Fe Cu

Weight% 4.5 5.5 0.04 0.02 Remaining

Table 2. Physical properties of C87600 alloy.

Properties Values

Density 8.3 g/cm3

Hardness 120 HV
Tensile strength 350–415 MPa
Elastic modulus 110–115 GPa

Thermal conductivity 28.4 W/m.K
Melting point 1050 ◦C

Firstly, the copper alloy (C87600) ingots were kept in a high-temperature sustaining
graphite crucible and heated in an electric furnace at a temperature of 1200 ◦C, which
is above its melting limit. After the ingots reached a fully molten state, the pre-heated
reinforcements (heated at a temperature of 600 ◦C for 1 h) were introduced to the copper
melt for the manufacture of the composites. Pre-heating the reinforcement is necessary
to remove any moisture content. In this stage, the reinforcements were either SiC or WC
particles as per the compositions. The mechanical stirrer was attached to the furnace, which
was uninterruptedly stirred at 400 rpm for 15 min to obtain the homogenous distribution
of the reinforcement particles. Thereafter, the graphite particles of 1 wt.% content were
introduced to the copper melt for the development of hybrid MMCs. The stirring action
was continued for another 15 min with the same speed to effectively distribute the rein-
forcements in the molten copper alloy. The complete process was conducted with argon gas
shielding to evade any contamination of the molten metals with atmospheric gases. Further,
the degasser (C2Cl6) was added to the molten alloy to get rid of any dissolved hydrogen
gas existing in it. After removing the slag from the surface, the molten metals were poured
into a metallic split die, which was preheated at a temperature of 600 ◦C. Pre-heating the
die was necessary to minimize the temperature gradient and shun the chilling effect while
pouring the molten metals. Moreover, the pre-heating process also removes the moisture
and oil present on the exposed faces, thus avoiding any surface porosity defects. Figure 1
represents the schematic representation of the stir casting setup used for the manufacturing
of the copper-based hybrid MMCs. Different compositions of the fabricated copper MMC
are presented in Table 3.
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Figure 1. Schematic representation of the stir casting setup for composite synthesis.

Table 3. Compositions of the fabricated MMC.

Composition Composites
Developed

Base Copper Alloy C0

Cu-3%SiC-1%Gr C1
Cu-6%SiC-1%Gr C2
Cu-9%SiC-1%Gr C3

Cu-3%WC-1%Gr C4
Cu-6%WC-1%Gr C5
Cu-9%WC-1%Gr C6

The fabricated copper composites were analyzed using FESEM and XRD to analyze
the microstructural and phase behavior. The specimen for microstructural examination
were cut with 10 mm × 10 mm dimension from the as-casted composites, and the surface
irregularities were removed by the dry belt grinding machine. The specimens were polished
with several grades of emery paper (up to 1500 grade) followed by velvet cloths polishing
by aerosol and diamond suspension. Further, a chemical etchant consisting of 50 mL Nitric
acid and 50 mL distilled water was used for the etching process to reveal the microstructure
of the copper alloy composites. The compositional details along with morphological
analysis of the hybrid composites were obtained using a field emission scanning electron
microscope (FESEM) coupled with an EDX detector (ZEISS Merlin Compact Gemini).
X-ray diffractometer (BRUKER D8 ADVANCE) was utilized to characterize the phase
structure analysis of the hybrid composites, which was carried out in the 2θ incident angle
range of 20◦–90◦ [20]. In the diffraction process, Cu Kα radiation with a wavelength of
1.54 Å was generally used. An automatic Vickers hardness testing apparatus (Zwick Roell
Indentec) was employed to evaluate the micro-hardness of the copper composites, where
the experiments were conducted at an indentation load of 500 gf with a 10 sec dwell time.
Five sets of hardness values were measured at five different locations of the specimen, and
the average value along with the standard deviation was reported as the ultimate hardness
value of the composites. To evaluate the tensile strength of the fabricated composites, the
samples were machined by a wire-EDM machine from the as-casted composites according
to ASTM E8M standards which have gauge lengths of 25 mm and width of 6 mm. The
schematic diagram of the tensile sample is shown in Figure 2. The tensile tests were
conducted in a computerized universal testing machine (TUE-C-400) at room temperature
with an extension speed of 1 mm/min. Three experiments were performed for each
composition of the composite to have the average tensile strength value along with the
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standard deviation presented. The tensile fractography was also analyzed by the FESEM to
examine the fracture behavior of the composites. The experimental process followed for
the current study is shown in Figure 3.
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3. Results and Discussion
3.1. Microstructural Characterization

The microstructure of the as-received base copper alloy is shown in Figure 4. It can be
observed from the micrograph that the dendritic structure of the silicon brass alloy is clearly
visible. Similarly, the composition of the copper alloy can also be confirmed from the EDX
images, which shows the zinc and silicon element in the alloy. The FESEM microstructure of
the Cu-SiC-Gr and Cu-WC-Gr hybrid composites are shown in Figures 5 and 6, respectively.
The homogenous distribution of the reinforcement particulates could be visible from the
SEM micrographs, which was the result of the optimum stirring action throughout the
casting process. Moreover, the vortex formation due to the mechanical stirring within the
melt resulted in the uniform dispersion of the reinforcement phases during the stir-casting
process [21]. When the FESEM images were examined, it could be said that there were
no signs of agglomeration of the particles for both the hybrid composites. Pointed and
irregularly formed SiC could be easily observed from the microstructures, whereas the
spherical (round) shaped WC was observed for the respective composites. Moreover, there
were no shrinkage porosity defects which also demonstrates an effective stir-casting process.
Similarly, the intensity of the alloying elements as well as the reinforcing elements was also
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observed in the regional EDX analysis. Several elements like Zn, Si, C, O, and W existed
along with the copper matrix that established the development of the composites. The
micrographs also revealed that the concentration of the elements in the base alloy was
different from that of the composites, which corresponds to the different content of the
reinforcements. Further, the very low oxygen content, as shown in the EDX spectrum,
revealed that substantially minimum oxidation happened during the fabrication as the
whole process was carried out under the argon atmosphere. This restricted any possible
contamination with the outside oxide environment, which could have deteriorated the
quality of the casting.
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3.2. XRD Analysis

The XRD spectrum of the fabricated Cu-SiC-Gr and Cu-WC-Gr hybrid composites
are shown in Figures 7 and 8, respectively. The phase structure examination of the hybrid
composites was conducted at a diffraction angle of 20◦ to 90◦ by the x-ray diffraction.
Major diffraction peaks of Cu were found in the base alloy as well as the composites.
The peaks corresponding to the 2θ angle of 34.4◦, 50.5◦, and 74.1◦ refer to the copper
peaks, and the lattice planes are (1 1 1), (2 0 0), and (2 2 0), respectively. Similarly, clean
peaks of SiC were found in Figure 5, whereas the peaks of WC can also be observed in
Figure 6. The very small peak of graphite can be visible in both the hybrid composites
due to the small intensity as compared with the Cu peaks. The XRD pattern shows that
there are no intermediate reactions between Cu with SiC or WC and graphite that can be
confirmed from the spectrum, which shows a successful casting process. The absence of
any undesirable intermetallic reaction products in the composites was a good sign for the
hybrid composites, which otherwise would have adversely affected the properties. Sadeghi
et al. [22] fabricated nano-MMCs of Cu-reinforced in-situ TiC and carbon particles, and
they reported only diffraction peaks related to TiC and Cu without any other intermetallic
compounds. Moreover, the careful analysis revealed that the intensity of the peaks in
the case of the composites was changed with respect to the base alloy, which can be
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associated with the reinforcement content for both the hybrid composites. Further, the
major diffraction peaks of the copper elements in the hybrid composites were shifted
towards a higher two-theta angle compared to that of the base matrix, which also facilitated
the incorporation of the ceramic reinforcements.
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3.3. Micro-Hardness Evaluation

The micro-hardness values of behaviors of the Cu-SiC-Gr and Cu-WC-Gr hybrid
composites in comparison to the base copper matrix are summarized in Figures 9 and 10,
respectively. It was found that the addition of hard and stiff reinforcements contributed to
the improvement of the hardness of the copper composites. The microhardness value of the
base alloy was found to be 128 HV. It is important to note that the maximum hardness value
was observed in the case of 9 wt.% SiC-Gr and 9 wt.% WC-Gr composites in comparison to
the base matrix. However, WC-Gr reinforced hybrid composites had more hardness value
than the SiC-Gr composites. The Cu-9%SiC-1%Gr composites witnessed a microhardness
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value of 164 HV, whereas the Cu-9%WC%-1%Gr composites exhibited a value of 174 HV.
Further, the Cu-9%SiC-1%Gr composites revealed an increment of 28% in comparison to the
base alloy, whereas the Cu-9%WC-1%Gr had shown a 36% increase in hardness property.
Both SiC and WC are considered to be hard constituents, and their further addition led to
a significant enhancement of the hardness of the composites. Various factors resulted in
the strengthening of the hybrid composites. Primarily, it is associated with the uniform
distribution of the ceramics particulates in the soft copper matrix. Similarly, the hard
reinforcements caused resistance to deformation during the indentation. Moreover, the
interfacial strength of the SiC and WC with copper matrix improved the hardness properties
of the composites by transferring the load to the reinforcement particles. The well-dispersed
SiC and WC particles occupied the interstitial position in the copper alloy, therefore,
restricting the local deformation and crack growth in the composites. A sample image of
the indentation during the Vickers micro-hardness testing is presented in Figure 11. Several
previous works of literature also reported similar results. Nageswaran et al. [14] examined
the mechanical characteristics of the Copper hybrid composites reinforced with titanium
dioxide and graphite produced through stir casting, which resulted in the enhancement of
the hardness. Similarly, the Cu matrix reinforced with TiB2 particulates exhibited higher
hardness due to the homogeneity in distribution with less porosity in the composites [23].
Moreover, the 10 wt.% silicon carbide reinforced Cu-Sn alloy composites witnessed the
maximum enhancement of 50% (approx.) in the hardness behavior due to the Orowan
strengthening and particle strengthening mechanism [24]. The Orowan mechanism is
applicable in the case of the MMCs, where the reinforcements are nano and sub-micron
levels. Similarly, Meher et al. [25] investigated the hardness properties of copper hybrid
composites by powder metallurgy route. They reported that the Orowan mechanism had
contributed more to the increase in the hardness behavior of the composites due to the less
inter-particle spacing for the fine reinforcement particles.
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3.4. Tensile Strength Analysis

The effect of different reinforcements on copper alloy-based hybrid metal matrix
composite on tensile stress-strain behavior is analyzed under ambient conditions. The
tensile properties of the developed hybrid composites are analyzed in comparison with the
base copper C87600 alloy matrix. The typical image of the tensile specimens before and
after their fracture is presented in Figure 12. The variation of tensile strength of the Copper
hybrid composite with the content of reinforcement is presented in Figures 13 and 14.
Both the ultimate tensile strength (UTS) and yield strength of the hybrid composites were
measured and observed to be increased with an increase in the reinforcement content. The
physical and mechanical properties of the reinforcement materials significantly influence
the tensile strength of the developed material. The graph shows that the ultimate tensile
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and yield strength of the copper C87600 alloy is 371.5 MPa and 243.6 MPa, respectively.
The addition of SiC ceramic particulate by 3, 6, and 9 wt.% along with 1 wt.% graphite
increased the yield strength by 6.5, 13.7, and 24%. In contrast, the ultimate tensile strength
is increased by 4.5, 13.4, and 26%, respectively, compared with the base copper C87600
alloy. It was found that the Cu-9%SiC-1%Gr hybrid composite displayed maximum yield
strength of 303 MPa and ultimate tensile strength of 467 MPa. The ultimate tensile strength
and yield strength of the Cu-9%SiC-1%Gr hybrid composites are increased by 26% and
24%, respectively, in comparison to the base copper alloy.
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In the present study, Cu-9%WC-1%Gr showed the highest tensile strength among the
developed composites. It is important to note that the tensile strength of WC-reinforced
composites had shown relatively higher strength than the SiC-reinforced hybrid composites
may be due to the better mechanical properties of the reinforcement used [26]. The ultimate
tensile strength and yield strength of the materials increased by 30% and 28%, respectively,
for the Cu-9%WC-1%Gr hybrid composites. Similarly, Cu-6%WC-1%Gr hybrid composites
exhibited a 24% and 22% increment in the UTS, and yield strength was observed as com-
pared with the base alloy. This improved mechanical strength of the hybrid composites
is associated with excellent plastic strain-sustaining capability, which is increased by the
higher interfacial bonding between the materials. Furthermore, adding these reinforce-
ments hampers the dislocation motion by repulsive or attractive interactions, which is
linked to strain hardening [27]. The mechanical properties of the copper hybrid composites
consist of different concentrations of reinforcement, which are presented in Table 4. From
these mechanical results, it could be concluded that adding the silicon carbide and tungsten
carbide along with graphite particulates into the copper matrix alloy holds promise for
improved tensile properties. The improvement in the tensile properties also indicates that
the reinforcement particles exhibited great wettability with the molten copper alloy.

Table 4. Mechanical Properties of Copper hybrid composites.

Composite
Specimen

Microhardness
(HV)

Ultimate
Tensile Strength

(MPa)

Yield Strength
(MPa) Elongation (%)

C0 128.1 371.5 243.6 18.2
C1 142.5 388.1 259.4 17.2
C2 149.4 421.4 277.1 16.5
C3 164.4 467.6 303.1 14.4
C4 156.7 401.5 268.5 15.1
C5 165.2 456.2 297.3 14.2
C6 174.1 485.7 312.1 11.5

A significant increase in the strength of the materials is observed due to the transfer of
tensile load from the ceramic reinforcement (SiC and WC) to the copper C87600 alloy matrix.
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Based on the continuum mechanics, the excellent bonding between the reinforcement and
the matrix helps to enhance the tensile behavior of the materials. The yield strength of the
materials is enhanced due to the discontinuously reinforced ceramic particulate based on
the shear-lag model [28]. The theoretical yield strength of the developed composite (σyc)
can be determined based on the theoretical strength of the matrix (σym), the volume fraction
of the reinforcement (vp) and aspect ratio of the ceramic particulate (s) shear-lag model, as
shown in Equation (1) [29].

σyc = σym[
{

vp

(
1 +

s
2

)}
+
(
1 − vp

)
] (1)

The yield strength and UTS of the composite materials also increased due to the
presence of ceramic reinforcement acting as a resistance to plastic deformation and crack
propagation [30]. An earlier study by Fenghong et al. [26] indicated that adding 10 wt.%
SiC and 10 wt.% WC in the soft aluminum 6061 alloy matrix enhances the yield strength
and UTS by 30.76% and 38%, respectively, with the reduction of maximum ductility by
86%. In the present study, it was experienced that the addition of 9 wt.% of SiC along
with 1 wt.% of graphite enhanced the ultimate tensile strength by 26%, and the addition
of 9 wt.% of WC along with 1 wt.% of graphite enhanced the ultimate tensile strength
by 30%. Moreover, the thermal mismatch between the copper matrix and the ceramics
reinforcements would probably be another reason for improving the tensile properties.
The mismatch among the coefficients of thermal expansion (CTE) generates a rise in the
dislocation density in the composites. Therefore, it resulted in prismatic punching of
the dislocations at the interface, which led to the work-hardening of the composites [31].
The formation of these dislocation densities is proportional to the surface area of the
reinforcement. The homogenous dispersion of the reinforcements tends to increase the
surface area, resulting in higher work hardening in the fabricated composites.

The introduction of ceramic reinforcement like SiC and WC in the copper C87600
alloy matrix enhanced the tensile properties of the materials; however, the ductility of the
materials was reduced. The effect of ceramic reinforcement on the percentage elongation of
the developed copper-based hybrid metal matrix composites is shown in Figures 15 and 16.
The base copper C87600 alloy showed a percentage elongation of 18.2%; however, by
adding 9 wt.% SiC and 1 wt.% graphite to the copper matrix, the ductility of the materials
is reduced to 14.4%. Similarly, the ductility of the materials is decreased to 11.5% for
Cu-9%WC-1%Gr composites in comparison with the base copper alloy. The 9%SiC-1%Gr
reinforced copper composites had witnessed a 21% reduction in the elongation percentage
in comparison to the base alloy, whereas the decrease in the percentage elongation was
found to be 36% for the Cu-9%WC-1%Gr composites. The addition of these hard and stiff
particulates resulted in the increment of brittleness that subjected to the decline in the
ductility of the composite. A higher decrease in ductility was observed by the addition
of WC particulate as compared to SiC particulates. Similar results were also reported
by Mengqi et al. [32], where the elongation percentage of the copper hybrid MMCs was
linearly reduced with the higher reinforcement.

To characterize the tensile behavior, the fractured tensile surfaces of the Cu-SiC-Gr
and Cu-WC-Gr hybrid composites were also analyzed through FESEM micrographs and
are presented in Figures 17 and 18, respectively. Generally, the ductile mode of fracture is
characterized by the cup and cone structure, whereas a flat surface mechanism is associated
with the brittle mode of fracture. Most fractography in this study shows small-sized dimples
and micro-voids, indicating that the composites retained their ductile behavior up to a
significant extent [33,34]. The micro-voids were the primary reason for the tensile failure as
these became the crack initiation site during the testing. Moreover, the micro-voids were
formed as a result of the higher reinforcement content, which became stress-intensity sites.
As the tensile load gradually increased, these sites further experienced coalescence and
growth, resulting in the propagation of cracks. This might have happened due to the lack
of sites to release the strain energy. Moreover, there were not any signs of particle fracture



Appl. Sci. 2023, 13, 1754 14 of 18

as observed in the micrographs. The hybrid composites didn’t exhibit any form of cleavage
facets that showed no or minimum quantity of brittle fracture.
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4. Conclusions

Copper alloy (C87600) matrix hybrid composites were successfully fabricated by stir
casting using SiC-Gr and WC-Gr particles, from which the following conclusions are made:

i. Homogenously dispersion of the reinforcement particulates was observed with the
help of the optimum stirring action during the casting. Moreover, the elemental
composition of the hybrid composites was also analyzed through EDX analysis.

ii. Clear peaks of the SiC and WC were found along with the copper matrix from
the XRD spectrum, which also indicated the successfulness of the casting process.
Moreover, there were no intermetallic products observed between the copper and
ceramic reinforcements.

iii. The micro-hardness and tensile strength of copper hybrid MMCs were improved
significantly with the incorporation of the SiC and WC particles along with graphite,
which shows better interfacial bonding and wettability of the ceramic particulates
with molten alloy.

iv. The hybrid composites reinforced with WC particulates exhibited higher strength
compared to SiC-reinforced composites.

v. The tensile fractography was also characterized in the form of micro-dimples and
tear-ridges, which shows that the hybrid composites retained their ductility to a
significant extent.
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