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Abstract: The heat dissipated from high geo-temperature underground surrounding rocks is the
main heat source of working faces, while thermal water upwelling and trickling into the roadway
will notably deteriorate the mine’s climate and thermal comfort. Predicting airflow temperature and
relative humidity (RH) is conductive to intelligent control of air conditioning cooling and ventilation
regulation. To accommodate this issue, an intelligent technique was proposed, integrating a genetic
algorithm (GA) and long short-term memory (LSTM) based on rock temperature, inlet air temperature,
water temperature, water flow rate, RH, and ventilation time. A total of 21 input features including
over 200 pieces of data were collected from an independently developed modeling roadway to
construct a dataset. Principal component analysis (PCA) was conducted to reduce features, and
GA was used to tune the LSTM and PCA-LSTM architectures for best performance. The following
research results were yielded. The proposed PCA-LSTM-GA model is more reliable and efficient
than the single LSTM model or hybrid LSTM-GA model in predicting the air temperature Tfout and
humidity RHout at the end of the water trickling roadway. The importance scores (ISs) indicate that
Tfout is mainly influenced by the surrounding rock temperature (IS 0.661) and the inlet air temperature
(IS 0.264). While RHout is primarily influenced by the rock temperature in the water trickling section
(IS 0.577), the inlet air temperature (IS 0.187), and the trickling water temperature and flow rate
(total IS 0.136), and it has an evident time effect. In addition, we developed relevant equipment and
provided engineering practice methods to use the machine learning model. The proposed model,
which can predict the mine microclimate, serves to facilitate coal and geothermal resource co-mining
as well as thermal hazard control.

Keywords: thermal hazards; machine learning; microclimate conditions; principal component
analysis; genetic algorithm; long short-term memory

1. Introduction

Unlike hazards of gas, fire, water, and roof, thermal hazards, which are considered
non-fatal and tolerable for underground workers, have not been focused on for a long
time. However, this issue has become an unavoidable global issue with deep-mining and
occupational health system improvement [1–3]. There are up to 47 deep mines with a depth
over one kilometer in China, such as Suncun Coal Mine (1500 m) and Jiahe Coal Mine
(1200 m), all of which have reached the criteria for Grade III thermal hazard (airflow tem-
perature ≥ 32 ◦C) [4–6]. Low-level thermal hazards can be alleviated by properly increasing
the airflow speed. However, mines with severe thermal hazards must be equipped with
air-conditioning cooling systems (e.g., air cooling, water cooling [7], and HEMS cooling [8]).
Mine intelligent ventilation (MIV) is an important safeguard for intelligent mining, and
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its goal for hot mines is to achieve airflow and cooling regulation according to the needs
for mine climate condition improvement and disaster relief [9]. To accommodate this goal,
firstly, the layout of sensors should be optimized, including air velocity and pressure sen-
sors, airflow temperature and humidity sensors, and fan operation monitoring sensors, to
conduct data intelligence and processing. In particular, the evaluation of the thermal com-
fort based on the underground microclimate is of necessity. Secondly, a real-time network
solution should be provided to accurately identify abnormality and give prewarning (e.g.,
gas, dust, heat). It will take a certain time from the above visualization to regulation, which
is a gray time period with hidden safety trouble, so it can be seen that such regulation has
some lag. For this reason, distributing air volume and cold capacity according to the needs
predicted in advance is the key link of intelligent decision making. Finally, coordinated
control of equipment is realized to carry out automatic regulation of the flow resistance
and the working conditions of air-conditioning and mine ventilators. Therefore, predict-
ing airflow humidity and temperature in the roadway conduces to intelligent control of
air-conditioning cooling and ventilating regulation, and finally serves to facilitate coal and
geothermal resource co-mining as well as thermal hazard control under the background of
deep mining and MIV.

In respect of heat exchange, the airflow temperature rise is mainly from the heat dissi-
pated by the surrounding rocks [10], especially when the airflow is transported through a
long distance from the pit bottom to the working face (Figure 1). The heat is exchanged
between airflow and surrounding rock unsteadily, in a complex manner [11], and its theo-
retical calculation is based on the unstable heat exchange coefficient Kτ derived from the
concept of the temperature regulation sphere. Many scholars have established methods
to find the solution of Kτ, including the accurate solution method [12,13], the Laplace
transform method [14,15], the variable separation method [16], and the numerical solu-
tion method [17,18], but the solution finding processes are relatively complex. Because
of the non-linearity of the differential equations of heat conduction, these methods have
poor usability. For this reason, some scholars have proposed empirical equations for
calculation of the airflow temperature based on the statistics and fuzzy mathematics,
etc. [19,20]. However, each of these equations is typically a multivariate function, so when
the application scope is beyond the statistical scope, the error will be relatively large. In
recent years, the numerical calculation models (e.g., FEM and FVM) for a single line of
surrounding rock–airflow heat transfer have been included in the scholars’ discussion
scope [21–23]; nevertheless, since the relationships between the air temperature and nu-
merous influencing factors (e.g., wall roughness, thermal physical parameters of rock,
and moisture content of airflow) are highly nonlinear, scholars find it extremely hard to
figure out parameters in these models. In addition, the models are rarely applied to whole
ventilation networks on engineering sites as a result of missing parameters, deficient vali-
dation, and insufficient an description of the heat and mass transfer mechanisms. In fact,
the heat released by thermal water upwelling from rock fractures or by high-temperature
surrounding rocks coming into contact with the thermal water is non-negligible in the
calculation of heat sources in a mine [24–26]. The mass transfer in a roadway with humid
air is less focused on. Liu [27] and Gao [28] introduced the “wall wetness degree” to correct
Kτ, and Li [29] constructed an airflow heat exchange coefficient correction function for
a roadway with water trickling, using an airflow rate weighted distance to describe the
change law of relative humidity of the airflow in an actual mine network area. As described
above, research efforts on the prediction of underground airflow humidity and temperature
are insufficient, for which the reasons are as follows: (1) the factors influencing temperature
or humidity are numerous; (2) it is hard to master the coupling law between heat exchange
and moisture exchange; and (3) the usability is insufficient, and the prediction accuracy
may be high for a single or short-distance line but the models cannot be popularized to the
whole network or long-distance lines.



Appl. Sci. 2023, 13, 13343 3 of 21
Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 22 
 

 
Figure 1. Microclimate conditions of Sanhejian Coal Mine: (a) airflow path at the A-Ⅰ working face; 
(b) geothermal temperature isogram at the depth of −700 m; (c) deep circulating thermal water 
upwelling and trickling (TWUT) to roadway; (note: route 2–8 is −700 m main auxiliary roadway; 
route 8–12 is track rise; route 12–13 is head entry; route 13–14 is A-Ⅰ working face; route 14–15 is tail 
entry). 
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tigated the effect of the seepage of cryogenic fluid on the surrounding rock temperature, 
and found that the fissure seepage can control the distribution of surrounding rock tem-
perature in a high-temperature roadway. Nevertheless, the modeling process in numerical 
simulation always deviates from the actual situation on the spot, leading to unsatisfactory 
results. Moreover, the numerical simulation cannot be updated in real time, thus failing 
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problems under the combination of multiple factors such as a large number of data, and 
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established an actual mathematical model based on the thermal conductivity inside tun-
nels, and compiled a corresponding program for prediction, which has been applied to 
practical projects. However, the influence of cryogenic fluid on temperature was omitted 
in this mathematical model. Currently, problems remain in utilizing ML to predict the 
underground microclimate. In particular, ML applications are exiguous, and the temporal 
correlation among mining data is ignored when predicting temperature changes for a lack 
of establishment and administration of a mine thermal environment database. In addition, 
the in situ observation and artificial acquisition of data are arduous. For example, Marc 
Bascompta [44] acquired the data of such variables as dry/wet temperature and airflow, 
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Figure 1. Microclimate conditions of Sanhejian Coal Mine: (a) airflow path at the A-I working face;
(b) geothermal temperature isogram at the depth of −700 m; (c) deep circulating thermal water
upwelling and trickling (TWUT) to roadway; (note: route 2–8 is −700 m main auxiliary roadway;
route 8–12 is track rise; route 12–13 is head entry; route 13–14 is A-I working face; route 14–15 is
tail entry).

Numerical simulation is an effective method for scholars to study the change of tem-
perature and humidity in a roadway. Based on numerical simulation, Xu et al. [30] and
Li et al. [31] explored the flow and heat transfer law of thermal fluid during geothermal
mining in rock strata. Their exploration results revealed that the temperature of the sur-
rounding rock of a roadway decreases gradually, and the temperature rise of the air flow
in a roadway is reduced during the process of water injection in rock strata. Zhang [32]
investigated the effect of the seepage of cryogenic fluid on the surrounding rock tem-
perature, and found that the fissure seepage can control the distribution of surrounding
rock temperature in a high-temperature roadway. Nevertheless, the modeling process in
numerical simulation always deviates from the actual situation on the spot, leading to
unsatisfactory results. Moreover, the numerical simulation cannot be updated in real time,
thus failing to predict the change of tunnel climate effectively. Machine learning (ML) refers
to learning algorithms adopted for searching the optimum prediction model with the aid
of big data [33–35]. In recent years, ML has been widely employed in mining engineering
applications, such as gas emission [36], mine water inflow [37], shield pressure monitor-
ing [38], and air quality and pollutant monitoring [39], to adapt to such characteristics of
various problems under the combination of multiple factors such as a large number of data,
and strong non-linearity [40–42]. In terms of predicting the underground microclimate,
Li [43] established an actual mathematical model based on the thermal conductivity inside
tunnels, and compiled a corresponding program for prediction, which has been applied to
practical projects. However, the influence of cryogenic fluid on temperature was omitted
in this mathematical model. Currently, problems remain in utilizing ML to predict the
underground microclimate. In particular, ML applications are exiguous, and the temporal
correlation among mining data is ignored when predicting temperature changes for a lack
of establishment and administration of a mine thermal environment database. In addition,
the in situ observation and artificial acquisition of data are arduous. For example, Marc
Bascompta [44] acquired the data of such variables as dry/wet temperature and airflow,
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at seven control points continuously for 3 years, and this process consumed excessive
time and funds. Fortunately, similarity simulation experiments can remarkably shorten
the time. In this study, a physical similarity simulation device was developed. Unlike
the devices designed by Wang et al. [45], Zhang et al. [46], and Zhu et al. [19], this device
was specially equipped with a water trickling system that can adjust the trickling water
flow rate and temperature and collect the humidity and temperature data of airflow after
it passes through the water trickling section of roadway. Meanwhile, the temperature
changes in surrounding rock at various depths can be observed through it in real time.
Hence, the problem of difficult data collection was solved. Furthermore, to explore the
temporal correlation among data, LSTM was applied to the prediction of the underground
microclimate, thus ensuring the accuracy of the prediction results.

In this study, a novel hybrid model PCA-LSTM-GA based on the advantages of indi-
vidual models was developed for more efficiently predicting air humidity and temperature
in an underground roadway with water trickling. Firstly, 21 input features and over
200 pieces of data were acquired with the independently developed modeling roadway.
Then, training and testing were conducted using the ML model. The predictive capability
of the model was validated with the coefficient of determination (R2) and mean square
error (MSE). Finally, analysis of variable importance was carried out to guide engineering
practice. The other highlight of the present study is that the proposed data acquisition
method can be used in engineering practice, and relevant equipment has been developed,
greatly promoting the proposition.

2. Dataset Preparation
2.1. Research Area Description

Located in Xuzhou, China, Sanhejian Coal Mine is a typical mine plagued by thermal
hazards. The heat mainly comes from high geo-temperature (HGT) surrounding rock
where the temperature at −700 m level can reach 37–40 ◦C (Figure 1b), and 42–49.4 ◦C at
−980 m level. The high temperature is mainly caused by regional geothermal accumulation
and heat transfer condition changes in the shallow crust, specifically speaking, including
the high terrestrial heat flow, high thermal resistance cover, and basement rock fluctuations.
In addition, thermal water upwelling and trickling (TWUT) also heats and humidifies
the air and notably deteriorates the mine climate. The Shunshidian Fault in the northeast
of Sanhejian mining area is cut through by the neotectonic faults. Consequently, the
Ordovician limestone aquifer remains able to laterally conduct water (Figure 1c). The water
head (~980 m) between the suboutcrop area and trickling area provides flow dynamic to
make the heated underground water deeply circulate, upwell along the fracture and fault,
and ultimately trickle into the roadway.

The microclimate parameters along the ventilation route of the A-I working face
recorded in March 2018 are given in Figure 2a. The results show that Sanhejian Coal Mine
is a typical high-humidity and high-temperature mine (Figure 2). The airflow temperature
rose from 27.4 ◦C at the pithead to 27.4 ◦C at the working face, and the relative humidities
(RH) at all measurement points exceed 85%. The enthalpy of moist air i and the enthalpy
of water vapor iv both surged after the airflow passed through the YWUT zone, and the
iv/i value at the end of the route was greater than 70%. Such a result suggests that a great
proportion of heat came from the latent heat exchange of airflow.
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Figure 2. Measuring result of mine microclimate parameters: (a) Temperature measurements;
(b) Enthalpy measurements.

2.2. Apparatus

In this study, an experimental apparatus for heat and mass transfer (EAHMT) was
designed and developed in the hope of obtaining microclimate parameters (humidity,
temperature, airflow speed, etc.) of the HGT and TWUT mine. The composition sketch
map of EAHMT is illustrated in Figure 3. The modeling cylinders poured with similar
simulation materials were electrically heated from room temperature to a constant virgin
rock temperature 60 ◦C, and the direct current (0–1000 A) converted by a rectifier flowed
through the heating electrode and alloy heating network (at 5 R), which connected the
different cylinders (a–d). To simplify the model, the surrounding rock fractures in Figure 1c
were made equivalent to a fracture zone. Therefore, in pouring of materials in the TWUT
section (1–9 L), a 2 mm fracture face towards the roadway was precast in the scope of
1–3 R along the radial direction, and a designed casing was pre-embedded at 3 R in the
axial direction (Figure 3b). The casing was a coaxial double-layer steel tube, of which
inner and outer sleeves were grooved upwards and downwards, respectively. First, the
surfactant-containing water was filled into the inner sleeve after the surface tension was
overcome. Subsequently, the water evenly flowed into the outer sleeve, and finally flowed
into the roadway along the fractures in a relatively even manner. The water temperature
and flow rate could be controlled by the thermostat and pump.
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Figure 3. The composition sketch map of the EAHMT and arrangement of sensors: (a) the composition
sketch map; (b) A-A profile of the modeling roadway; (c) B-B profile of the modeling roadway.
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2.3. Dataset Used

The values of input and output variables of the machine learning model were acquired
with the EAHMT. The arrangement of sensors is shown in Figure 3c. The experiment of
each group had three stages: in Stage 1 (~24 h), the surrounding rocks were heated to
a predetermined temperature, to simulate the virgin rock temperature before roadway
excavation; in Stage 2 (~2 h), ventilation was maintained, to cause thermal disturbance
in surrounding rocks until heat balance was reached between the surrounding rocks and
airflow; and in Stage 3 (~3 h): supply of thermal water was maintained until heat and
humidity balance was reached among the surrounding rocks, airflow, and fracture water.
The dataset used in this study was from Stage 3, in which the thermal water trickling caused
the change of the airflow microclimate to be so complex that it was difficult to predict with
conventional theoretical models.

The output variables of the model were the airflow humidity RHout and temperature
Tfout at the end of the roadway with water trickling. To better predict the output values, the
input variables included 21 features, including rock temperature T (16 measuring points),
trickling water temperature Tw, trickling water flow rate Qw, inlet airflow humidity RHin,
inlet airflow temperature Tfin

, and ventilation time τ.
T and τ: The temperature of the rock not undergoing engineering disturbance in

strata is called virgin rock temperature T0. Figure 4 shows the temperature variation of
surrounding rock in cylinder a in Stage 2. After roadway excavation, the roadway wall
temperature Ta1 fell sharply as ventilation started. Temperature difference occurred in the
surrounding rocks, so the heat conduction process occurred accordingly, and the thermal
disturbance scope in the surrounding rocks was enlarged gradually over time τ. Finally, the
heat flux in surrounding rocks tended to be consistent, indicating re-balance of temperature
field of surrounding rocks after disturbance. Therefore, during heat dissipation from
surrounding rocks to the airflow, the temperatures at 16 measuring points for surrounding
rocks in Figure 3c exhibited different variation characteristics with the ventilation time τ, in
other words, this feature also reflected the time of ventilation and that of heat dissipation
from surrounding rocks.
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and RHin: The airflow exhibits heat and humidity accumulation effects during

long-distance transport. Hence, the airflow humidity and temperature at the inlet are of
important significance for prediction of airflow humidity and temperature at the end. At
the same water vapor content, RH is related to temperature. The higher the temperature is,
the greater the saturated humidity ratio in the air will be, which means that the stronger
the hygroscopicity of the air will be.

Tw and Qw: Different upwelling water temperatures and flow rates directly influence
the humidity and temperature of airflow passing through the water upwelling section. For
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example, at high upwelling water temperature, the humidity ratio variation rates at various
points after the water upwelling section make it difficult to achieve synchronism at the
early stage. In Sanhejian Coal Mine, the water upwelling flow rate is normally not more
than 3 m3/h within 16 m, and it should not be more than 250 mL/min in the similarity
ratio conversion experiment. The Ordovician limestone water temperature in Sanhejian
Coal Mine is 50 ◦C, the maximum upwelling water temperature in China’s coal mines is
60–70 ◦C (for example, the temperature is 65 ◦C in Pingdingshan No. 8 Mine), and the
upwelling water temperature in some metal mines can reach 70–80 ◦C (for example, the
upwelling water temperature is 73.5 ◦C in Jiudian Gold Mine). Therefore, the upwelling
water flow rate in the experiment was set to 50, 100, and 200 mL/min, and the upwelling
water temperature was set to 40 ◦C, 60 ◦C, and 80 ◦C.

The preliminary analysis of data regarding feature parameters is listed in Table 1.

Table 1. Descriptive statistics regarding input and output.

Parameter Mean Value Standard Deviation Min Value Max Value

τ (min) 97 5 205

Qw (mL/min) 125 50 200

Tw (◦C) 60 40 80

Ta (◦C) 37.8 1.4 34.3 42.2

Tfin
(◦C) 23.0 0.8 21.0 24.2

Tb (◦C) 41.3 1.2 39.4 43.2

Tc (◦C) 45.4 1.2 43.4 47.2

Td (◦C) 44.8 1.5 42.5 46.9

RHin (%) 21.0 2.5 16.7 25.4

RHout (%) 26.2 7.7 12.8 40.2

Tfout (◦C) 34.3 2.5 28.2 37.4
Note: to facilitate statistics, the surrounding rock temperature was taken as the mean value in cylinders a–d, and
Ta means the mean value of Ta1 –Ta4 .

3. Machine Learning Modeling
3.1. Fundamental Theory of PCA, LSTM, and GA
3.1.1. PCA

Principal component analysis (PCA), as a kind of unsupervised feature reduction
method [47], normalizes the original data first, and then extracts important components
with non-repetitive correlations from the processed data, to effectively decrease the in-
fluences of interfering data, and thus to achieve the purpose of raising the accuracy of
recognition (regression or clustering) and lessening the feature dimensions of data [48,49].
The specific procedure is introduced bellow:

(1) The original data are normalized for the purpose of eliminating the impact of dimen-
sions on the calculation results. On this basis, the original matrix X∗ is established.

(2) The covariance matrix P can be determined based on Equation (1), and then can
eigenvalues λi and eigenvectors αi be obtained.

P =
1

S − 1
(X∗)TX∗ (1)

where S is the number of samples.

(3) The number of principal components can be calculated by Equation (2):

a = min{ k|
k

∑
i=1

λi/
n

∑
i=1

λi ≥ δ} (2)
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where δ is the threshold value of the cumulative contribution rate, normally set at 85%;

and
k
∑

i=1
λi/

n
∑

i=1
λi is the cumulative contribution rate of principal components of the first k

eigenvalues (k < n).

(4) The original matrix can be dimension reduced by combining the covariance matrix
P and the number of principal components a.

3.1.2. LSTM Networks

Long short-term memory (LSTM) is a promoted recurrent neural network (RNN)-based
network structure, and its particularity lies in the fact that the nerve cells in the RNN are
replaced with memory blocks [50,51]. Each memory block includes one or more memory
cells and three non-linear summation units, and the whole neuron is controlled by the gate.
Therefore, the LSTM not only is pretty proficient in handling issues highly related to time
series, but also resolves gradient dispersion of the RNN occurring during training [52].

Figure 5 shows the internal structure of a nerve cell of the LSTM at three consecutive
time points. It can be seen that the input part (marked in red) includes the current input xt,
the memory from the last LSTM unit Ct−1 and the output of the last LSTM unit ht−1, and the
output part (marked in blue) includes the current output ht, the next hidden state ht, and
the next cell state Ct. The keys of the LSTM are the cell state and the gates (including the
forget gate ft, the input gate it, and the output gate Ot). The cell state resembles a conveyor
belt to some extent. The structures of the gates can remove or add information to the cell
state, and thus describe the quantity of information contained in the current network. First,
the data pass through the forget gate for information filtering, during which xt (input at
time t) and ht−1 (output of the hidden layer at the previous moment) are substituted to
the σ function to generate values within the range of 0–1. Values 0 and 1, respectively,
indicate that none or all historical data are retained. Next, information that can be used
for processor state updating is determined and stored through the input gate it. Finally,
the output gate Ot determines the amount of information to be output based on the new
cell state. Ot signifies the degree of choice between the current information and the input
information, and ht represents the predicted output. The operating principle of the cell
follows Equations (3)–(8).

ft = σ
(

W f · [ht−1, xt] + b f

)
(3)

it = σ(Wi · [ht−1, xt] + bi) (4)

C̃t = tanh(WC · [ht−1, xt] + bC) (5)

Ct = ft · Ct−1 + it · C̃t (6)

Ot = σ(WO · [ht−1, xt] + bO) (7)

ht = Ot · tanh(Ct) (8)

where C denotes the cell state,
∼
C denotes the storage information of new data, tanh and σ

are both activation functions, W is the weight matrices connecting the hidden state ht−1
and the input sequence xt, and b are the bias vectors.
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3.1.3. GA

In this study, MSE was taken as the objective function for calculating the values of
the hyperparameters in the LSTM, and the genetic algorithm (GA) was applied to LSTM
optimization. GA was inspired by gene recombination, gene crossover, and gene mutation
in nature [53–55]. Its principle is illustrated in Figure 6. This algorithm mainly involves
binary encoding and decoding of the population, calculation of genetic operators, and
calculation of individual fitnesses [56,57]. The specific calculation procedure is as follows.

(1) Population initialization: binary encoding is utilized to convert feasible solutions in
the problem space into genotype string structures in the genetic space, and the initial
population is generated.

(2) Individual evaluation: the fitness function values of individuals in the initial popula-
tion are calculated.

(3) Genetic operator calculation: new individuals are generated through three paths,
namely selection operator, crossover operator, and mutation operator.

(4) Whether the iteration conditions are met is identified. If not, Step 2 is conducted;
otherwise, the optimal individual is decoded, and the optimal solution is output.Fig. 5. LSTM neural structure

Fig. 6. Framework of the PCA-LSTM-GAmodel

Fig. 7. Total enthalpy difference variations in roadway with water trickling at different water
temperatures (a) and flow rates (b)

Fig. 8. Hyperparameters tuning using GAmodel for (a) temperature ����� prediction and (b)
relative humidity ����� prediction

Figure 6. Framework of the PCA-LSTM-GA model.

3.2. Modeling and Hyperparameter Tuning

The airflow humidity and temperature data at different positions have close spatiotem-
poral relationships and have unstable gradient variation. To accommodate this issue and to
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make full use of the spatiotemporal properties implied by the data, a prediction model for
airflow humidity and temperature data was constructed here based on the LSTM model
for the time sequence problem. Since the input features of this model were as many as 21,
there might be problems of parameter redundancy and lowered training speed occurring.
Furthermore, artificial selection of model parameters will typically not make the model
have an optimal performance. In this paper, to make the model have the optimal effect,
dimension reduction was conducted for the input parameters of the model using the PCA
algorithm, and intelligent optimization was carried out for the model after dimension
reduction using the GA, to select the optimal parameter values for the model, and thus
to construct a prediction model for humidity and temperature at the end of the roadway
based on PCA-LSTM-GA.

Since how the model performs is affected by both the neural network structure and the
model parameters, the number of units in the LSTM layer, dropout layer parameter, batch
size, and optimizer learning rate were selected as optimization objects for GA (Figure 6).
An LSTM network model was established based on the values taken for the initial hyperpa-
rameters, and it was trained with the training data. Prediction was carried out with the test
data put into the trained model, and optimization was conducted with the error generated
by the model in the test dataset as the optimization target until the termination condition
was met. Finally, an LSTM network model was constructed with optimum values of the
hyperparameters.

In this study, the PCA-LSTM network model mainly contained four layers, namely the
input layer, LSTM layer, dropout layer, and output layer. MSE was used as the loss function,
and Adam was selected as the optimization algorithm. The dropout layer parameter, batch
size, and optimizer learning rate were set as hyperparameters of the LSTM network model.
The value ranges for optimization of hyperparameters were set as follows: [10, 100] for the
number of units in the LSTM layer, [0.1, 0.3] for the dropout layer parameter, [5, 25] for the
batch size, and [0.0001, 0.01] for the Adam optimizer learning rate.

Comparatively, the LSTM model comprised the input layer, LSTM layer (with number
of units of 60), dropout layer (with parameter of 0.1), and output layer, and the Adam
optimizer learning rate was 0.001. The loss function used was also the MSE.

Both the experimental models were constructed with the Keras. An introduction of
the algorithm flow is as follows:

Step 1 (dataset preprocessing): first, the original dataset is divided into the training set
and the testing set. Next, the cumulative contribution rates of the principal components are
determined. Subsequently, the original experimental data are dimension reduced (from
the initial 21 dimensions to 5 dimensions) through PCA, and the data after dimension
reduction are taken as input for the neural network model.

Step 2 (model construction): first, an LSTM neural network model is constructed.
Then, GA is utilized to calculate the batch size, learning rate, and dropout layer parameters
of the constructed model with MSE as the objective function.

Step 3 (model generalization ability verification): the prediction performance of the
model on the testing set is validated by taking R2 and MSE as evaluation indices.

3.3. Assessment

The assessment included two parts: one was to assess the energy variation of the
airflow caused by the upwelling water temperature and flow rate, and the other was to
assess the predictive capability of the models.

Humidity and heat exchange occurs between airflow and thermal water during water
passing through, and the power driving the heat and humidity exchange is an enthalpy
difference [58]. The latent heat variation can be characterized with the enthalpy difference
of the water vapor, and the sensible heat variation is characterized with the enthalpy
difference of the dry air. The total enthalpy difference of the airflow reflects the airflow
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energy change and also serves as the basis for calculation of the coldness needed for
roadway cooling, and it is calculated with Equations (9)–(12):

∆i = ∆i39L − ∆i1L = (i39L−F − i39L−S)− (i1L−F − i1L−S) (9)

i = 1.0045td + d · (2501 + 1.85td) (10)

d = 0.622 · φ f1/(P1 − φ f1) (11)

f1 = 0.6099 exp[17.27td/(237.3 + td)] (12)

where ∆i is the enthalpy difference, kJ/kg; i39L−F and i39L−S are the enthalpies at a position
39 L at the beginning and end of water passing through, respectively, kJ/kg; i1L−F and
i1L−S have a similar meaning to the above; 1.0045td represents the enthalpy of 1 kg of dry
air, kJ/kg; d denotes the humidity ratio in air, kg/kg; 2501 is the latent heat of vaporization
of water vapor, kJ/kg; 1.85 is the mean specific heat at constant pressure of water vapor
at normal temperature, kJ/(kg·K); td is the dry bulb temperature, ◦C; φ is the relative
humidity of air, %; P1 is the atmospheric pressure, KPa; and f1 is the saturated vapor
pressure of air at td, kPa.

Regarding the generalization ability of the constructed model, MSE and R2, two
parameters extensively used for reflecting the generalization ability of models from different
aspects [35,59,60], were selected as evaluation indices. Their expressions are given as:

MSE =
1
m

m

∑
i=1

(y(i) − ŷ(i))
2

(13)

R2= 1 −

m
∑

i=1
(ŷ(i) − y(i))

2

m
∑

i=1
(y − y(i))2

(14)

where m is the number of samples; y(i) is the actual value of sample i; ŷ(i) is the predicted
value of sample i; and y is the average value of the samples.

4. Results and Discussion
4.1. Total Enthalpy Difference Variation in Roadway with Water Trickling

Figure 7 shows the variation curves of total enthalpy difference ∆i of airflow in
a roadway at different upwelling water temperatures and flow rates. The increase in
upwelling water temperature results in simultaneous increase in sensible heat and latent
heat of airflow, as shown in Figure 7a. At the same upwelling water flow rate (100 mL/min),
the ∆i of humid air exhibits a non-linear ascending trend and that of dry air rises slightly
with the increase in upwelling water temperature. The increase in upwelling water flow
rate rarely influences the sensible heat of airflow. Instead, it mainly leads to the increase
in latent heat of airflow, as shown in Figure 7b. At the same temperature (60 ◦C), the ∆i
of humid air (including water vapor) exhibits a linear ascending trend and that of dry air
fluctuates with the increase in upwelling water flow rate.
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Figure 7. Total enthalpy difference variations in a roadway with water trickling at different water
temperatures (a) and flow rates (b).

4.2. Hyperparameter Tuning

It is necessary to set the parameters of GA before the LSTM is performed. After
plentiful tests, the relevant parameters were finally determined as follows: maximum
iteration number 100; chromosome number (for each generation) 20; algorithm chromosome
selection; crossover probability 0.20; and mutation probability 0.02.

The performance of the deep-learning network on the testing set was used as the
optimization target in the intelligent hyperparameter optimization based on GA, and the
specific reflection was that the MSE value of the network on the testing set was used as
the fitness value of the GA. In the GA, one chromosome was used to represent a group
of hyperparameters. The gene sequence was updated through chromosome evolution,
to minimize the fitness value. The optimal hyperparameter values were selected after
optimization of the GA. Finally, the LSTM model with the optimal hyperparameter values
was validated experimentally.

As above mentioned, the hyperparameters of the LSTM network were tuned by the GA.
As shown in Figure 8a,b, the effectiveness of the hyperparameters was tuned by tracking
the MSE value obtained from every iteration. The MSE values of both the prediction model
for temperature at the end of the roadway and that for humidity at the end of the roadway
decrease significantly in the initial stage of iteration, which is indicative of effectiveness
of the GA in tuning the hyperparameters. It is worth mentioning that both the humidity
and temperature models processed through dimension reduction by the PCA have a better
fitness performance in the initial stage of parameter optimization than those not processed
through dimension reduction by the PCA, which can also demonstrate to a certain extent
that the dimension reduction by the PCA is of positive significance for improvement of
model performance.
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Figure 8. Hyperparameters tuning using GA model for (a) temperature Tfout prediction and
(b) relative humidity RHout prediction.
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4.3. Predictive Capability of the Models
4.3.1. Prediction of Temperature Tfout at the End of the Roadway

The predicted temperature data on the testing set were compared with the actual
temperature data, as shown in Figure 9. Among the 182 pieces of data, 80% were used as
the training set, while the other 20% served as the testing set.
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The hyperparameters of the LSTM-GA and PCA-LSTM models are disclosed in Table 2.

Table 2. Optimal hyperparameters of the models for temperature prediction.

Number of Units in
LSTM Layer Batch Size Optimizer

Learning Rate
Dropout Layer

Parameter

LSTM-GA 78 11 0.0068195 0.283

PCA-LSTM-GA 34 20 0.001759 0.151

As presented in Figure 9, the values of MSE and R2 of the LSTM model are 0.0011 and
−0.5724, respectively; those of the LSTM-GA model are 1.6417 × 10−5 and 0.9762; and
those of the PCA-LSTM-GA model are 5.8713 × 10−6 and 0.9915. Moreover, it can be
observed from Figure 9 that the predicted curve of the PCA-LSTM-GA model is the closest
to the actual temperature curve.

4.3.2. Prediction of Relative Humidity RHout at the End of the Roadway

The predicted humidity data on the testing set were compared with the actual humidity
data, as shown in Figure 10. Among the 182 pieces of data, the proportions of the training
and test sets were the same as those in Section 4.3.1.
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The hyperparameters of the LSTM-GA and PCA-LSTM models are listed in Table 3.

Table 3. Optimal hyperparameters of the models for relative humidities prediction.

Number of
Units in LSTM

Layer
Batch Size Optimizer

Learning Rate
Dropout Layer

Parameter

LSTM-GA 42 20 0.00654 0.254

PCA-LSTM-GA 16 21 0.009253 0.1163

As displayed in Figure 10, the values of MSE and R2 of the LSTM model are 0.0069
and −0.1504, respectively; those of the LSTM-GA model are 4.1360 × 10−4 and 0.9314; and
those of the PCA-LSTM-GA model are 3.2413 × 10−4 and 0.9462. Furthermore, it can be
observed that the predicted curve of the PCA-LSTM-GA model is the most consistent with
the actual humidity curve.

4.3.3. Analysis of Prediction Results

Figure 11 shows how the three models perform in predicting the humidity and temper-
ature at the end of the roadway. As can be discerned, the hybrid learning model optimized
by the GA has more excellent performance in predicting the humidity and temperature at
the end of the roadway than the single LSTM model. Moreover, after dimension reduction
by the PCA, the dimensions of the input features are reduced from 21 to 5 on the basis of
reflecting the data feature information to the maximum extent, so the optimization time is
decreased significantly in the intelligent optimization by the GA. It is worth mentioning
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that the prediction performance is not lowered but even improved. This indicates that
the PCA algorithm can effectively reduce the interference of data redundancy in model
establishment and has an active effect on model optimization.
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Figure 11. Comparison of errors among the three models. (Note: A1, A2, A3 denote the prediction of
temperature Tfout by the LSTM, LSTM-GA, and PCA-LSTM-GA, respectively; B1, B2, B3 denote the
prediction of relative humidity RHout by the LSTM, LSTM-GA, and PCA-LSTM-GA, respectively).

On the whole, the PCA-GA-LSTM model succeeds in predicting the humidity and
temperature at the end of the roadway effectively. The performance of this model can be
optimized instantly according to different geological conditions of the roadway, and the
hybrid machine learning model has good robustness, so the model is suitable for predicting
the humidity and temperature at the end of the roadway.

4.3.4. Comparison of Prediction Results with Other Prediction Models

To further verify the predictive capability of the PCA-LSTM-GA model established in
this study, PCA-BP-GA, PCA-XGBOOST-GA, and PCA-RNN-GA models were constructed
for comparative tests. Among the 182 pieces of data, the proportions of the training and
test sets were the same as those in Section 4.3.2. The prediction curves of all the models
are illustrated in Figure 12, and the prediction results of these deep-learning models are
disclosed in Table 4.
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Table 4. Error of prediction results of different models.

Prediction Model
Temperature Relative Humidity

MSE R2 MSE R2

PCA-LSTM-GA 5.871310 × 10−6 0.9915 3.2413 × 10−4 0.9462

PCA-RNN-GA 7.2956 × 10−6 0.9862 3.3891 × 10−4 0.9407

PCA-BP-GA 8.4125 × 10−6 0.9841 3.5692 × 10−4 0.9359

PCA-XGBoost-GA 2.16435 × 10−6 0.9617 3.7128 × 10−4 0.9243

As can be seen from Table 4, the PCA-LSTM-GA model exhibits the finest prediction
capability for both temperature and relative humidity. Moreover, in Figure 12, the predic-
tion curves of the PCA-LSTM-GA model are the closest to the actual change curves, with
its error closer to 0 than other models.

4.4. Variable Importance

To analyze the impact of feature variables on the prediction results of the LSTM
model, the partial dependence plot (PDP) method was introduced to explain the output of
the model. PDP, a common method for local interpretation [61], visualizes the marginal
effect of single features on the prediction results of the LSTM model by taking all the
possible values of the input variables as the horizontal axis and the average value of the
output variables as the vertical axis, thereby reflecting the impact of different values of
important features on the prediction results of the LSTM model. Figure 13 shows the PDPs
of the influencing variables Tw and Qw, in which the two features do not interact strongly
with other model inputs. Clearly, the air temperature Tfout is directly correlated with the
trickling water temperature Tw, while Tfout is inversely related to the trickling water flow
rate Qw. The reason is that the heat absorption during evaporation of the trickling water
with relatively high flow rate in the roadway causes the conversion of part of the sensible
heat in the airflow into latent heat. For prediction of the airflow relative humidity RHout,
both upwelling water temperature and flow rate are positively correlated with RHout,
which is expected. In addition, after increasing to a certain extent, the upwelling water
temperature and flow rate almost have no influence on the airflow temperature, but start
to have evident influence on the airflow humidity. As can be seen from Figure 13, the latent
heat and sensible heat variations of airflow in the water upwelling section of roadway are
rather complex, so a useful mathematical model can hardly be established to predict the
influence of the thermal upwelling water on airflow humidity and temperature at the end
of the roadway.
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Figure 13. Partial dependence plots of water temperature Tw and flow rate Qw for predicting air
temperature Tfout (a,b) and air RH RHout (c,d) at the end of the roadway with water trickling.
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The importance scores (ISs) of input features were calculated in the hope of clarifying
their importance. The calculation was conducted using the random forest model based
on the mean decrease impurity of modes and depth of the tree for a variable [57,62].
Figure 14a shows the IS results for air temperature Tfout prediction. Interestingly, the water
temperature Tw and flow rate Qw have a small influence on the airflow temperature at the
end of the roadway, for which the IS is 0.002. The results also indicate that the degrees
of importance of the variables to Tfout follows the order: surrounding rock temperature
(IS 0.661) > Tfin

(IS 0.264) > RHin (IS 0.067). This means that, in respect of roadway cooling,
researchers and engineers should pay more attention to heat dissipation from surrounding
rocks. The roadway airflow temperature accumulates during long-distance transport, and
the surrounding rock temperature contributes most of the heat. The shorter the distance of
a surrounding rock section to the prediction point, the more important the temperature of
this section. For example, the IS of Tc is more than that of Tb, and Td has a smaller IS than
the former two, which may arise from the boundary effect of the model.
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Figure 14. Importance scores of input variables for (a) air temperature Tfout and
(b) air RH RHout prediction.

Thermal comfort indices, including garment insulation, metabolic rate, radiant heat,
airflow rate, air humidity, air temperature, etc., are commonly used to evaluate occupational
heat stress risk and to work out adaptation strategies for miners. RH can affect sweat
evaporation, as heat rejection from the human body is primarily realized by convective
heat transfer. Figure 14b shows the IS results on air RH RHout prediction. The results
show that the RH RHout at the end of the roadway with water trickling is affected by rock
temperature in the water upwelling section Ta (IS 0.577), inlet airflow temperature Tfin
(IS 0.187), upwelling water flow rate Qw (IS 0.097), and upwelling water temperature Tw
(0.039), and has an evident time effect. The inlet humidity RHin has a relatively low IS
(IS 0.014), which may be caused by the relatively small variation range of RHin in this
experiment.

4.5. Limitations and Superiority

Although the PCA-LSTM-GA model proves to be pretty promising in predicting
air humidity and temperature at the end of a water trickling roadway, the following
challenges still exist. Firstly, the dataset was acquired from an independently developed
modeling roadway which simplified the experimental conditions (e.g., fracture networks).
Consequently, the trained model might highly possibly fail to be generalizable to real
engineering practice. Secondly, there are still some omissions of other influencing variables
for air humidity and temperature prediction, such as wind speed, atmospheric pressure,
and ventilation resistance. Thus, for the purpose of ensuring prediction reliability and
accuracy, it is necessary to validate and improve the generalization capability after an
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increasing number of influencing features and data instances are incorporated into the
database to ensure the accuracy of prediction.

In this study, a hybrid machine learning (ML) model integrating the PCA-LSTM-
GA was proposed for air humidity and temperature prediction. The method requires no
thermodynamic parameter tests (e.g., thermal conductivity and heat and mass transfer
coefficients) and complex mathematical models once the ML model has been trained.
The only thing we need to do is to arrange temperature measurement boreholes in the
surrounding rocks at a given interval (Figure 15). The rock temperature values at different
depths in boreholes are measured with our independently developed multi-point geo-
temperature tester, and the arrangement of temperature sensors is the same as that shown in
Figure 3c. The acquired rock temperature data and inlet airflow humidity and temperature
data of roadway are transferred to the host computer. If there is thermal water trickling in
the roadway, the flow rate and temperature need to be processed for equivalence.
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Figure 15. Application of PCA-LSTM-GA model.

Another enlightenment given to us by this study is that the thermal water trickling
into the roadway, which damages the workers’ operation comfort, cannot be ignored. For
this type of roadway, we proposed that a composite heat insulation structure with heat
insulation and support for the roadway should be arranged. Concrete is sprayed onto the
stable roadway walls first, and then heat insulation materials are filled into the loose ring of
surrounding rock through grouting anchor cable or anchor rod to block the fracture water.
Afterwards, heat insulation materials are sprayed onto the outside of the concrete layer.
Finally, concrete is sprayed onto the outermost layer. This method can effectively reduce
the heat conduction and convection between rock mass and thermal water.

5. Conclusions

In this study, a ML and GA-based intelligent modeling framework was proposed
for predicting air humidity and temperature at the end of the water trickling roadway.
Twenty-one features were chosen as input variables. More than 200 pieces of data were
collected from an independently developed modeling roadway to construct the dataset, in
particular, the thermal water and flow rate were taken into comprehensive consideration
first for training and validating of the LSTM, LSTM-GA, and PCA-LSTM-GA models. The
thermal system enthalpy difference, MSE and R2 were chosen as the assessment indices.
Several conclusions are summarized as follows.

(1) Thermal water trickling into the roadway can evidently change the enthalpy of the
thermal system. The increase in upwelling water flow rate induces a linear rise of
the enthalpy difference of humid air, but it barely affects the sensible heat of air. The
increase in upwelling water temperature influences both the latent heat and sensible
heat of air. As a result, the total enthalpy difference of the humid air rises nonlinearly.
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(2) The PCA-LSTM-GA model is robust in predicting the air humidity and temperature at
the end of the trickling roadway. LSTM is suitable for processing time series data. GA
is efficient in hyperparameter tuning of the LSTM. PCA optimizes the hybrid model,
raising its convergence speed and bringing about an increase in R2.

(3) As demonstrated by the importance scores, the airflow temperature at the end of the
water trickling roadway is mainly influenced by the surrounding rock temperature
(IS 0.661) and inlet airflow temperature (IS 0.264). The airflow humidity at the end
of the roadway with water trickling is mainly influenced by the rock temperature in
water upwelling section (IS 0.577), inlet airflow temperature (IS 0.187), and upwelling
water temperature and flow rate (total IS 0.136), and it has an evident time effect.
The enlightenment given to us is that, for thermal control for this type of roadway, a
composite heat insulation structure with jet grouting and support techniques for heat
insulation should be arranged.

In future work, the generalization of the proposed model can be promoted through
employing a larger dataset with multiple variables. Moreover, we have developed relevant
equipment and have an engineering practice method to apply the ML model.
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