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Featured Application: This study is proposed to improve performance in order to simulate a
system model using DEVS methodology, which requires a large hierarchical structure like
HDL simulation.

Abstract: The DEVS model, designed for general discrete event simulation, explores the event status
and time advance of all DEVS atomic models deployed at the time of the simulation, and then
performs the scheduled simulation step. Each simulation step is accompanied by a re-exploration
the event status and time advance, which is needed for maintaining the casual order of the entire
model. It is time consuming to simulate a large-scale DEVS model. In a similar vein, attempts to
perform an HDL simulation in a DEVS space increase simulation costs by incurring repeated search
costs for model transitions. In this study, we performed a statistical analysis of engine behavior to
improve simulation speed and we proposed a DP-based memoization technique for the coupled
model. Through our method, we can expect significant performance improvements that range
statistically from 7.4 to 11.7 times.

Keywords: DEVS formalism; simulation speedup; scheduling; memoization

1. Introduction

Discrete event system specification (DEVS) formalism is a methodology that precisely
models the behavior of complex hierarchical systems, which describes state changes around
the exchange of messages with sources for irregular events occurring inside or outside the
system, which provides a clear understanding of the characteristics and patterns of various
system behaviors. The powerful benefits of these event-based simulations allow DEVS
formalism to find applications in a variety of areas, including communication models,
logistics systems, production, transportation, and war games [1,2].

The beauty of DEVS formalism stems from the fact that we can model more complex
and realistic systems by combining time flow and event-driven transition rules based on a
finite state machine. Because the model can be modularized into certain units, hierarchical
system structure is possible; DEVS-based modeling allows large-scale systems to be divided
into multiple subsystems and it is designed from the smallest units to be integrated or
reused [3].

To design and run DEVS models to obtain simulation results, an execution environ-
ment that provides a hierarchical simulation algorithm is required. Open-source tools such
as DEVSimPy and DEVSuite are already available [4,5]. However, depending on the do-
main characteristics and simulation purposes of the designed DEVS model, there is a need
to lighten the simulation engine or to add complex functions. Thus, there have been various
efforts to change the DEVS model structure, simulation engine and environments, and
architectures to perform domain-appropriate simulation and improve performance [6,7].
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Deviating from hierarchical structures and applying distributed frameworks have been
popular topics, and the DEVStone metric exists as a performance measurement indicator
for DEVS-based simulators for this purpose [8,9]. DEVS formalism allows almost any
discrete event-based simulation to be performed, and various approaches have been at-
tempted to design a purposeful DEVS model. Various approaches have been attempted to
design fit-for-purpose DEVS models. In particular, modeling for hybrid simulations and
the expansion into unnamed aerial vehicles based on Cell-DEVS have remained popular
until recently [10,11].

In our previous work, we designed the RTL-DEVS model to enable HDL simulation
in DEVS space and we showed that it is compatible with Verilog at a minimum level [12].
Verilog is a hardware description language for designing digital circuits and systems. It
includes a module-based hierarchical design starting from basic logic circuits to complex
cells, comprising a discrete event-based simulation where the state changes by signal
input and output, and it has features such as time management to respond to transmission
delays. Although not all of these are completely consistent with DEVS formalism, they have
compatible features in many areas, so they have been used in a form such as DHMIF (DEVS-
based hardware model interchange format), which is a hardware exchange format [13].
Table 1 describes equivalent operation characteristics and incompatible characteristics of
DEVS and Verilog.

Table 1. Compatible and incompatible features of DEVS and Verilog.

Compatibility Function Description

Functionally
Compatible

Event-based behavior DEVS: Discrete event-based.
Verilog: Response to digital signals.

Modulization Support modularized structure.
State-based behavior Operates around transitions between states.

Time-driven Delay; timer; event scheduling for system behavior modeling.

Functionally
Incompatible

Language structure DEVS: Set theoretical formalism.
Verilog: Programming language style syntax.

Scheduling mechanism DEVS: Complex event scheduling and processing mechanisms.
Verilog: Operates according to signal changes.

Previously, there have been continuous efforts to supplement RTL simulation or
reduce its cost based on DEVS formalism [14,15]. Due to cost, training, and scalability
issues, there have been various attempts with Verilog compatibility simulations, including
MyHDL and PyMTL3 [16,17], with a desire in the research community to stop using
the commercial simulator and instead perform RTL simulations through discussion and
collaboration in the open-source community; for example, studies have used the open-
source toolkit Pyverilog for prototyping [18]. Performing the simulation of register transfer
level circuits using DEVS formalism has the advantage of allowing the use of simulations
through a simplified format prior to full-scale design and simulation using commercial
tools. Simplified simulations in DEVS space can only be performed on each model when the
next event occurs, i.e., when clock changes in the hardware occur. Therefore, if a completely
identical simulation environment based on DEVS formalism was designed, it would ideally
exhibit a significant cost reduction. Of course, performing a double HDL simulation at the
level possible with an open-source simulator increases costs. Therefore, we are developing
a DEVS-based simulation environment compatible with Verilog for function libraries that
are difficult to develop or to apply in open-source simulators. Our goal is to develop a
co-simulation system that performs expensive functions in the RTL-DEVS environment
that are relatively easy to develop, without requiring the use of commercial RTL design
tools or the development of additional branches of open-source simulators.

Therefore, even for incompatible features, it must be ensured that the results of
simulation in DEVS space are equivalent to the results of simulation in the Verilog simulator.
It requires a stepping stone to provide compatibility between Verilog and DEVS. It has
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been verified through various research and joint development projects that the Verilog
description can be transmitted to other tools or FPGA tools through XML [19,20], and that
the biggest problem, the difference in language structure, was resolved through the direct
development of an XML-based Verilog parser. However, the DEVS simulation engine’s
scheduling mechanism is more complex than Verilog’s, and a serious level of overhead
occurs depending on the node depth of the layered modules. Recently released high-
performance semiconductor chips have already become complex in structure, containing
anywhere from billions of transistors to over 10 billion depending on their purpose. To
design and verify such complex chips, a vast amount of logic and modules are required,
and the code complexity of Verilog has also increased.

Due to the module complexity of the RTL design stage, numerous atomic models
and coupled models are used when performing an HDL simulation with a DEVS-based
simulation engine. The entire model is designed hierarchically, so one module (coupled
model) contains another coupled model, and this is repeated recursively. When performing
a simulation based on an existing simulator or scheduling algorithm, the time for simulation
increases exponentially depending on the complexity of the model.

In other research, the issue that hierarchical simulations generate significant overhead
depending on their depth was already raised, and performance improvements of up to
seven times were obtained by using event lists and flattening [21,22]. Extracting recurring
patterns from systems that use event-based state transition models can have a significant
impact on performance improvements [23]. However, for an HDL simulation, the extended
RTL-DEVS model uses two buffers to process RHS and LHS separately, and the wire model
that connects logic also has one buffer. In this process, an event with a lifetime of 0, which
is a scenario called zero-time transition, occurs repeatedly to ensure signal transmission
without delay. As a result, a bottleneck occurred in the process of searching for the node
that should perform the next event. The challenge is to improve simulation speed while
maintaining the hierarchical structure of the model. The memoization method, which
caches the results of a function call and allows for a quick response to the same input, is a
very classic technique. Nevertheless, due to the high efficiency of the idea, it continues to
be actively discussed in the overall hardware/software field [24].

In this paper, to solve this problem, we analyzed the behavior of existing simulators us-
ing statistical methods and modeled the correlation between the DEVS model configuration
and the simulation time.

As a result of modeling and simulation, we confirmed a linear increase in simulation
time depending on the depth of the coupled model. Based on statistical insights, we pro-
pose an improved simulation model structure where a memoization technique is applied
based on dynamic programming. Section 2 provides a brief introduction to DEVS and
describes the RTL-DEVS architecture. Section 3 covers the existing DEVS simulation engine,
and Section 4 describes our improved DEVS simulation engine applying the memoization
technique and discusses the experimental results. In Section 5, we explain how the mem-
oization technique reduces the search cost in a DEVS coupled model. Finally, Section 6
concludes the study and also briefly introduces future research directions.

2. DEVS Methodology

DEVS (discrete event system specification) is a formalized modeling methodology for
discrete event systems proposed by P. B. Zeigler [25]. This methodology clearly expresses
the structure and behavior of the system mathematically, modularizing and combining
individual models into objects in a hierarchical framework based on set theory. Each DEVS
model consists of components such as states, inputs, outputs, state transition functions,
and timer functions, making it particularly suitable for event-based simulation. The basic
DEVS formalism includes an atomic model, which is the minimum unit of the system and
can no longer be decomposed, and a coupled model that can be expressed by combining
the atomic model and another coupled model into one module.
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2.1. Atomic Model

The atomic model is always the base model of the hierarchy in DEVS and represents
the behavior of the system. The mathematical expression of the atomic model M is as
follows:

M = <X, S, Y, δint, δext, λ, ta>
X is the set of input values.

S is a set of states.
Y is the set of output values.

δint: S→ S is the internal transition function.
δext: Q × Xb→ S is the external transition function.

Q ∈ {(s,e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set, e is the time elapsed since
last transition, and Xb denotes the collection of bags over X.

λ: S→ Yb is the output function.
ta: S→ R + 0, is the time advance function

(1)

The atomic model expresses the state of the target system as a set S. In general, if
there is no external input X during the time advance inside the model, the λ function is
executed and the output Y is sent. Afterwards, the internal state transition function δint
is executed to change the state of the current model, and the time advance for when the
next output will occur is determined through the ta function. The output Y acts as input
X to another atomic model, and if input X occurs during a time advance of a fixed state,
the external state transition function δext is executed to change the state and perform a
predetermined process.

2.2. Coupled Model

The coupled model internally connects multiple atomic models or coupled models.
Through this, a larger system can be expressed hierarchically in the form of relationships
between nodes and child nodes as a tree structure. The mathematical expression of the
coupled model DN is as follows:

DN = < X, Y, D, EIC, EOC, IC, SELECT >
X is the input events set.

Y is the output events set.
D is the set of all component models in DEVS.

EIC ⊆ X × ∪iXi is the external input coupling relation.
EOC ⊆ ∪iYi × Y is the external output coupling relation.

IC ⊆ ∪iXi × ∪iYi is the internal coupling relation.
SELECT: 2M-ϕ→ D is a function which chooses one model when

more than 2 models are scheduled simultaneously.

(2)

EIC (external input coupling) describes all possible couplings between the input X
coming from outside the coupled model and the input Xi of each internal model. Similarly,
external output coupling (EOC) represents the coupling of the entire output event set Y of
the coupled model with the event output Yi of each internal model. IC (internal coupling)
expresses the coupled relationship between two atomic models within a coupled model
or other coupled models, and it represents the input event set Xi and output event set
Yi of all internal models. SELECT determines the priority of event processing for a set
of models that are simultaneously active at the same time due to input/output events. If
more than one model fires events at a time, the order in which the events are processed can
cause confusion.

2.3. Coordinator for Hierarchical Simulation

Models written in DEVS formalism are executed using a simulation algorithm that
solves the DEVS model structure and helps communicate hierarchically. Figure 1 shows
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the relationship between the DEVS model and the DEVS-based simulator. In the DEVS
Model space, {ABCD, AB, CD} describes the coupled model, and {A, B, C, D} describes the
atomic model. In the simulator, the notation C: describes the coordinator corresponding
to each coupled model, and {A′:D′} describes the atomic model on which the simulation
is performed. Where C describes the coordinator assigned to each coupled model, and
the coordinator is mapped 1:1 to each layer of the DEVS model. In conclusion, the atomic
model performs a simulation, and the coordinator corresponding to the coupled model
processes the message exchange between each model based on the internal relationships of
the DEVS model. The coordinator will be discussed further in Section 3.
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3. HDL Simulation Using DEVS Methodology

In our previous research, the main proposal was how to connect the Verilog module to
the DEVS atomic model. Because Verilog and the basic DEVS model have different struc-
tures, we first had to create an RTL-DEVS atomic model that satisfies HDL requirements so
that the input and output of the digital signals are compatible [8].

3.1. RTL-DEVS Atomic Model

Figure 2 explains the single RTL-DEVS atomic model. When digital logic consisting
of 0 or 1 is transmitted to the model’s event input X, the model stores the value of the
corresponding signal in the register. The input event causes the DEVS model’s δext to be
performed, resulting in internal transition behavior. Two main functions operate during the
internal transition process: (1) A check of whether the digital signal currently contained in
the register is the same as the value of the previous event input X, which was the condition
for δext. If a new event input of the existing input and the current register input are not
the same, the model does not update the state of the state buffer connected to the output
unit, so new values are not output. (2) For compatibility with Testbench, each model has an
edge checker buffer. When the current state of the state buffer is reversed, it is processed as
rising or falling.
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Figure 3 explains an example of a 4-bit full adder in the RTL-DEVS model where a
simple logic module is expressed as an atomic model. In previous research, we tested
some models that could serve as basic modules to handle multiple inputs and outputs by
expanding the internal registers of the atomic model into vector form to reduce simulation
costs. There were no major problems with these simple logic gates or simple combinational
logic circuits, but problems arose while developing the Verilog parser and performing
larger-scale simulations to check compatibility. The wire connecting each atomic model is
not implemented separately, but a message I/O function, commonly called a bag, is used
in the DEVS engine to enable the transmission of electrical signals. The number of atomic
models is increasing, and a zero-time transition, in which one atomic model has a time
advance of 0, generates continuous input and output, resulting in too much message I/O at
the same time, resulting in confusion in the message transfer interface of the DEVS engine
and no longer ensuring proper operation.

Appl. Sci. 2023, 11, x FOR PEER REVIEW 6 of 16 
 

 
Figure 2. RTL-DEVS atomic model structure. 

Figure 3 explains an example of a 4-bit full adder in the RTL-DEVS model where a 
simple logic module is expressed as an atomic model. In previous research, we tested 
some models that could serve as basic modules to handle multiple inputs and outputs by 
expanding the internal registers of the atomic model into vector form to reduce simulation 
costs. There were no major problems with these simple logic gates or simple combina-
tional logic circuits, but problems arose while developing the Verilog parser and perform-
ing larger-scale simulations to check compatibility. The wire connecting each atomic 
model is not implemented separately, but a message I/O function, commonly called a bag, 
is used in the DEVS engine to enable the transmission of electrical signals. The number of 
atomic models is increasing, and a zero-time transition, in which one atomic model has a 
time advance of 0, generates continuous input and output, resulting in too much message 
I/O at the same time, resulting in confusion in the message transfer interface of the DEVS 
engine and no longer ensuring proper operation. 

 
Figure 3. 4-bit full adder expressed as RTL-DEVS. 

3.2. Wire Atomic Model 
To solve this problem, rather than arranging the atomic model on a module basis as 

shown in Figure 3, we converted individual wires and entire modules to the atomic model. 
{A0:B3}, {C0:C4}, and {S0:S4} mean wire connections between models. In Figure 4, a total 
of five RTL-DEVS atomic models are represented. You can see that all wire connections in 
Figure 3 have been modified to the wire atomic model. However, unlike the existing 
model, which was previously implemented as an atomic model only for modules requir-
ing regs and wires, the new model requires each wire to also be implemented as an atomic 
model. In this way, each wire atomic model continues to maintain the existing value until 

Figure 3. 4-bit full adder expressed as RTL-DEVS.

3.2. Wire Atomic Model

To solve this problem, rather than arranging the atomic model on a module basis as
shown in Figure 3, we converted individual wires and entire modules to the atomic model.
{A0:B3}, {C0:C4}, and {S0:S4} mean wire connections between models. In Figure 4, a total of
five RTL-DEVS atomic models are represented. You can see that all wire connections in
Figure 3 have been modified to the wire atomic model. However, unlike the existing model,
which was previously implemented as an atomic model only for modules requiring regs
and wires, the new model requires each wire to also be implemented as an atomic model.
In this way, each wire atomic model continues to maintain the existing value until 0 or 1 is
received as the next input, and signals can be transmitted to the connected atomic model
without confusion in the signal transmission order according to the DEVS simulation step.
Additionally, in this process, setting the latency of individual modules becomes much
easier than before. Previously, in order to output the current state of a wire in a testbench,
an individual RTL-DEVS atomic model had to output the current state, but by expanding
the wire itself into an atomic model, a monitor function can be added to a specific wire.

In the case of the improved model, for complex models, it now shows the same
behavior as the Verilog simulation without confusion about message processing in the
bag, but the disadvantage is that simple logic, which was previously expressed as one
atomic model, must be expressed as two separate models. As the number of modules
contained in the coupled model increases, the time required for simulation also increases
linearly, so a solution to this problem was required. To solve these performance problems,
an event list-based method of flattening all models with connectivity relationships has been
proposed, and nearly seven times the performance of actual existing DEVSim++ has been
reported, but to meet HDL requirements, hierarchical simulation conditions must be met.



Appl. Sci. 2023, 13, 12958 7 of 15

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16 
 

0 or 1 is received as the next input, and signals can be transmitted to the connected atomic 
model without confusion in the signal transmission order according to the DEVS simula-
tion step. Additionally, in this process, setting the latency of individual modules becomes 
much easier than before. Previously, in order to output the current state of a wire in a 
testbench, an individual RTL-DEVS atomic model had to output the current state, but by 
expanding the wire itself into an atomic model, a monitor function can be added to a spe-
cific wire. 

 
 

(a) (b) 

Figure 4. RTL-DEVS 4-bit full adder with wire atomic models. (a) Example of a wire-extended RTL-
DEVS model; (b) internal structure of a wire atomic model. Figures should be placed in the main 
text near to the first time they are cited. 

In the case of the improved model, for complex models, it now shows the same be-
havior as the Verilog simulation without confusion about message processing in the bag, 
but the disadvantage is that simple logic, which was previously expressed as one atomic 
model, must be expressed as two separate models. As the number of modules contained 
in the coupled model increases, the time required for simulation also increases linearly, 
so a solution to this problem was required. To solve these performance problems, an event 
list-based method of flattening all models with connectivity relationships has been pro-
posed, and nearly seven times the performance of actual existing DEVSim++ has been re-
ported, but to meet HDL requirements, hierarchical simulation conditions must be met. 

4. Analysis and Experiments on the DEVS Simulation Engine 
4.1. Simulation Design 

To find the cause of the problem of excessively increasing simulation time, model 
performance evaluation was performed by coupling 10,000 basic atomic models in various 
ways based on the wire model. The model used in the experiment is shown in Figure 5 
below. In Figure 5c, {C0:C10} each model means a coupled model of (a) and (b), and 
{C′0:C′10} models of (d) mean a coupled model of (c). 

  

Figure 4. RTL-DEVS 4-bit full adder with wire atomic models. (a) Example of a wire-extended
RTL-DEVS model; (b) internal structure of a wire atomic model.

4. Analysis and Experiments on the DEVS Simulation Engine
4.1. Simulation Design

To find the cause of the problem of excessively increasing simulation time, model
performance evaluation was performed by coupling 10,000 basic atomic models in various
ways based on the wire model. The model used in the experiment is shown in Figure 5
below. In Figure 5c, {C0:C10} each model means a coupled model of (a) and (b), and
{C′0:C′10} models of (d) mean a coupled model of (c).

CLK atomic model (Testbench): It outputs rising (true) and falling (false) signals
repeatedly at regular intervals. It is deployed only on the top model of the test bench.

CLK atomic model: The model stores the signal input to the clk in-port in a 1-bit buffer
and immediately outputs the buffer value to the clk out-port.

Coupled model: The coupled model is responsible for routing input and output to the
child atomic/coupled model. You can design a unit for a coupled model by placing a pre-
defined Clk model inside the coupled model, and then create various types of experimental
models by linking these units in a tree data structure. The figure below shows the process
by which a set of clk models, a coupled model, is recursively combined into a coupled
model structure.

The hierarchical coupled model structure for testing the performance of the DEVS
simulation engine suitable for the modeled wire-extended RTL-DEVS model is as follows:

1. Group 10,000 CLK models into defined units to form an initial coupled model.
2. Create a high-level coupled model by grouping these initial coupled models into

defined units.
3. This process is performed recursively to complete the hierarchical coupled model

structure of Group 1, Group 2, . . ., Group N. The types of models created for the
experiment are shown in Table 2.

Table 2. Changes in simulation time depending on the number of coupled models.

Model Name Atomic Model Coupled Model * Simulation Time(s)

{10, 10, 10, 10}

10,000

1111 188
{10, 10, 100} 1101 181
{10, 100, 10} 1011 175
{100, 10, 10} 111 73

{100, 100} 101 79
{10, 1000} 1001 168
{1000, 10} 11 56

{10000} 1 59
* Number of coupled models.
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coupled model. (d) Hierarchical representation of a {100:10:10} coupled model.

For example, a model expressed as {10, 100, 10} contains 10 atomic models in
100 coupled models, and there are 10 higher-level coupled models composed of 100 cou-
pled models.

4.2. Simulation Results and Analysis

When the total number of atomic models is the same as shown in Table 3, the Pearson
correlation coefficient for the simulation time change according to the number of coupled
models is 0.99702, and when the total number of coupled models is the same, the Pearson
correlation coefficient for the simulation time change according to the number of atomic
models is 0.99642, which can be seen as linear for both the total number of coupled models
and the total number of atomic models.

Table 3. Changes in simulation time depending on the number of atomic models.

Model Name Atomic Model Coupled Model Simulation Time (ms)

{10} 10

1

0.23
{100} 100 7.511625

{1000} 1000 505.214042
{10000} 10,000 59,600
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In simulations based on DEVS methodology, the simulation model is determined
according to the domain to be simulated, and the atomic model has the characteristic of
being user-dependent. We extended the DEVS model to the RTL-DEVS model to perform
an HDL co-simulation. However, it is the coupled model that connects each RTL-DEVS
model, and the simulation result showed a clear increase in simulation time according to
the number of coupled models, so it is necessary to improve the internal process of the
coupled model to improve the simulation time from the perspective of the entire system.

4.3. Coordinator in the DEVS Simulation Engine

The DEVS-based simulation engine operates predictably and consistently when the
life cycle (time advance) of each model is clearly defined and an accurate FSM (finite
state machine) is defined. Performance of hierarchical simulations in the DEVS engine is
controlled by a major unit called the coordinator, illustrated in Figure 1. The coordinator
plays an important role in controlling the behavior and event processing priorities of the
atomic model and the coupled model. The process of having the coordinator conduct the
simulation can be divided into four steps.

Figure 6 shows the phase in which the coordinator finds and selects the child model
with the smallest time advance within the coupled model. In the case of an atomic model,
the time for the model transition is reserved, so time advance can be found by approaching
constant time.

However, in the case of a coupled model, it is necessary to compare and reduce the
time advance of the child node, so a graph search is performed to find and compare the
atomic model with the least time advance. For models with equal time advance, the total
order is determined through the SELECT function.
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After performing the internal transition of the DEVS model, which is displayed in
green, the external transition occurs for internally coupled models, and then the time
advance of the remaining models is advanced.
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A problem with the existing simulation engine occurred when selecting the target
model for internal transition in Figure 6.

To find the model with the least time advance, you need to know the total order for the
entire DEVS model, which requires a recursive graph search, so the higher the complexity
of the simulation, the higher the linear increase in the time spent on that search, as shown
in Table 2. In the designed simulation environment, whenever 10,000 individual atomic
models perform an internal/external transition, a time advance inquiry is requested of the
connected atomic model for the entire coupled model.

This causes a very serious cost problem in the RTL-DEVS simulation model environ-
ment, where it is necessary to process a short time or zero-time advance for processing
electrical signals.

To improve this problem, there is a need to improve the time spent on graph explo-
ration. Techniques such as priority queueing and memoization can be introduced. We want
to propose a solution to the problem from the perspective of dynamic programming by
utilizing the memoization technique to reduce the time spent on the graph exploration of
the coupled model.

5. Memoization Technique to Reduce the Search Cost in the DEVS Coupled Model
5.1. Basic Approach

In step 1 for the internal transition, if the time to find the time advance of the coupled
model can be reduced to a constant time, the simulation time can be shortened by reducing
the search time. To apply this method, a function to memoization the TA of the coupled
model can be added to the simulator when the TA of the coupled model is updated. Having
the TA of the coupled model stored in the coordinator has more advantages than expected
when considering its simplicity. There are three factors that determine the model’s time
advance: internal transition, external transition, and time shift.

Internal Transition: In the case of the internal transition, the atomic model determines
the time advance in constant time according to the change in FSM. The coupled model
performs the internal transition on all sub-models, then external transition on connected
models, and then the time shift operation on the remaining models. After this processing
process is completed, the TA of all child nodes is calculated and the minimum value is
reflected in the memoization.

External Transition: In the case of internal transitions, the atomic model determines the
time advance in constant time according to the change in FSM. Coupled model performs
transition operations of event target models, receives time advance values, and reflects the
minimum value in the memoization.

Time Shift: When internal transition and external transition occur, a simple time shift
operation is performed on all unconnected child nodes. The minimum value is reflected in
the memoization.

5.2. Model Transition Behaviors Using the Memoization Technique

The internal transition (coupled model) transition algorithm shown in Algorithm 1
and the external transition (coupled model) algorithm shown in Algorithm 2 represents the
pseudocode of external and internal transitions. In the case of the time shift operation, it
was omitted because it simply performs a function that subtracts the time advance of the
model. time_advance() performs the function of receiving the TA of the model. self.select()
describes the ability to receive priority target models at the current simulation time.

Internal_transition() returns the output Y of the target model and receives the current
model and the coupled model. In this process, models with X_in connected to Y_out are
assigned to the cyx_group, and models with X_in connected to X_in of the coupled model
are assigned to the cxx_group.
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Algorithm 1: Internal Transition (Coupled Model)

Result: Update min_ta of the coupled model with the value of self.ta_cache

1. ta = self.time_adavanced();
2. target = self.select();
3. output = target.internal_transition();
4. all_group = self.childrun();
5. cyx_group = self.cyx_group(target);
6. oth_group = all_group–
7. cyx_group—target;
8. min_ta = target.time_advanced();
9. min_ta = cyx_group.external_transition(ta, output).reduce(min_ta);
10. min_ta = oth_group.time_shift(ta).reduce(min_ta);
11. self.ta_cache = min_ta;

Any other group is placed in oth_group. After traversing the connection model
cyx_group and calling the external_transition() function, min_ta is compared with the
time advance of the models in cyx_group that have completed the transition, and the
smallest value is stored in min_ta. It traverses the remaining models oth_group and
reduces oth_group.ta by the ta of the coupled model, compares the time advance of the
reduced models, and stores the smallest value in min_ta.

Algorithm 2: External Transition (Coupled Model)

Input: Event event.
Result: Update min_ta of coupled model with the value of self.ta_cache.

1. all_group = self.children();
2. cxx_group = self.cxx_group(event);
3. oth_group = all_group—cxx_group;
4. min_ta = self.time_advanced()—shift;
5. min_ta = cxx_group.external_transition(shift, event).reduce(min_ta);
6. min_ta = oth_group.time_shift(shift).reduce(min_ta);
7. self.ta_cache = min_ta;

The ta_cache of the coupled_model becomes the smallest min_ta value. Figure 7
describes the situation in which the lower lever DEVS models {M’1, M’2, W1, W2} of the
Coupled Model M1 all belong to the cyx_group, putting the ta of {W1, W2} in the Min_ta.
Similarly, for Coupled Model M0 with {M1, M2} as the lower DEVS model, we have the ta
of M1 as Min_ta.

5.3. Experiment and Evaluation

In this sub-section, we discuss the results of simulating the same set of DEVS models
that were simulated in the original DEVS engine by applying the coupled model processing
method of the coordinator with the memoization technique.

To find the cause of the problem of excessively increasing simulation time, the model
performance evaluation was performed by coupling 10,000 basic atomic models in various
ways. Table 4 summarizes the simulation results of the coupled model with memoiza-
tion applied. By applying the memoization technique to the couple model, the overall
simulation time speed was improved by about 10 times. The model configuration with
the least performance improvement was {1000, 11}, which used only 11 coupled models.
On the other hand, the configuration with the highest performance improvement was
{10, 10, 10, 10}, which shows that the greater the number of coupled models and the more
complex the hierarchical structure, the higher the performance improvement efficiency.
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Table 4. Comparison of proposal structure simulation times and the original model (coupled).

Atomic
Model Coupled Model Base Simulation

Time (s)
Proposal Simulation

Time (s) Improvement

{10, 10, 10, 10}

10,000

1111 188 16 ×11.75
{10, 10, 100} 1101 181 16 ×11.31
{10, 100, 10} 1011 175 15.6 ×11.21
{100, 10, 10} 111 73 7.2 ×10.13

{100, 100} 101 79 7.2 ×10.97
{10, 1000} 1001 168 16.9 ×9.94
{1000, 10} 11 56 7.5 ×7.46

Table 5 presents the simulation results of one coupled model containing 10, 100, 1000,
and 10,000 atomic models, and the model processing structure of the coordinator with the
proposed memoization showed performance improvement of as little as 2.1 to as much as
2.8 times even when the child node (atomic models) is increased for one coupled model.
Figure 8 visually shows the comparison results.

Table 5. Comparison of proposal structure simulation times and the original model (atomic).

Atomic
Model Coupled Model Base Simulation

Time (ms)
Proposal Simulation

Time (ms) Improvement

{10} 10

1

0.23 0.09 ×2.55
{100} 100 7.511625 2.620083 ×2.86
{1000} 1000 505.214042 198.537 ×2.54

{10000} 10,000 59,600 28,200 ×2.11
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of the coupled model comparison, with up to 11.7× improvement. (b) Visual representation of the
atomic model {10} to {10000}; there is simply one coupled model, with around 2× improvement.

6. Conclusions

We have proposed the structure of the coupled model and coordinator with the applied
memoization technique to improve the simulation time of DEVS and we have looked at its
performance improvements.

Instead of existing algorithms that require large recursive search costs to maintain
hierarchical structures and keep the casual order, time advance can be used as a cache
memoization in the coupled model to achieve large performance gains for repeated I/O
events in the hierarchical DEVS model.

The search and time advance function of the modified coordinator for the coupled
model shows a performance difference of at least 7.4 times and up to 11.7 times compared
to the conventional method, as the coupled model can return time advance without access
to the sub-models via the memoization method.

However, this can show the performance differences described when extreme hier-
archical simulations are required, such as the RTL-DEVS model compatible with HDL
requirements, and simulations based on DEVS methodology should select or implement
the appropriate execution environment depending on the domain that you want to apply.

For example, if you perform a real-time-linked DEVS simulation or co-operation with
a continuous time simulation, which is a major recent DEVS methodology application, the
engine improvement may not be an attractive option because there is only a performance
improvement for simulation within DEVS space.

Through the continuation of the study, we want to abstract the relationship between
RTL-DEVS atomic models, which were constrained by gate-level modeling, into coupled
models to create an extended RTL-DEVS model at the module level. Subsequent work
aims to insert an intermediate compiler logic that can serialize and deserialize Verilog
languages, thereby transitioning these relationships between the DEVS model we designed
and the Verilog code. Phrases generated using a Verilog parser must be restored to objects
sequentially, starting from the lower levels. Therefore, we need to focus more on the EOC,
IOC, IC, and hierarchical structure communication of each coupled model to counteract
the block in the Verilog code syntax.

The long-term goal is to fully simulate the Verilog code in our DEVS based simulator.
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DEVS Discrete Event System Specification
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FPGA Field-Programmable Gate Array
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