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Featured Application: This paper proposes a novel method for transverse cracking detection
based on vehicle vibration response.

Abstract: Transverse cracking is thought of as the typical distress of asphalt pavements. A faster
detection technique can provide pavement performance information for maintenance administrations.
This paper proposes a novel vehicle-vibration-based method for transverse cracking detection. A the-
oretical model of a vehicle-cracked pavement vibration system was constructed using the d’Alembert
principle. A testing system installed with a vibration sensor was put in and applied to a testing road.
Then, parameter optimization of the Short-time Fourier transform (STFT) was conducted. Transverse
cracking and normal sections were processed by the optimized STFT algorithm, generating two
ideal indicators. The maximum power spectral density and the relative power spectral density,
which were extracted from 3D time–frequency maps, performed well. It was found that the power
spectral density caused by transverse cracks was above 100 dB/Hz. The power spectral density at
normal sections was below 80 dB/Hz. The distribution of the power spectral density for the cracked
sections is more discrete than for normal sections. The classification model based on the above
two indicators had an accuracy, true positive rate, and false positive rate of 94.96%, 92.86%, and
4.80%, respectively. The proposed vehicle-vibration-based method is capable of accurately detecting
pavement transverse cracking.

Keywords: asphalt pavement; transverse cracking detection; vehicle vibration; STFT; PSD

1. Introduction

Pavement distress detection is significant for road maintenance [1]. Transverse crack-
ing is a typical form of distress that indicates asphalt pavement surface or base damage [2].
If transverse cracking cannot be repaired in time, it will deteriorate pavement strength,
stiffness, and durability [3]. Furthermore, the whole transportation system cannot operate
smoothly and safely. Therefore, it is vital for highway maintenance departments to detect
transverse cracking efficiently and effectively.

Traditional detection methods for pavement distress include manual-based and image-
based techniques. The manual-based method plays an important role in low-grade highway
distress detection. This method can detect all types of distress. At the same time, its
detection efficiency and accuracy remain low. However, data reprocessing of the manual-
based method is highly subjective, complex, and does not fit the needs of large-scale road
network detection [4]. Due to the above problems, automatic detection based on images
has been proposed and applied widely [5]. Compared with the manual-based method,
its detection efficiency is superior. However, its accuracy depends on features generated
through a manual process or machine learning algorithm [6]. The automatic method mainly
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refers to an image-based method, which needs to be trained using other methods, such as
deep learning, reinforcement learning, etc. [2,5,6]. In general, if maintenance departments
expect to obtain timely pavement distress information of a huge traffic network, an image-
based method cannot fulfil this expectation.

In recent years, indirect damage detection of traffic infrastructure using a moving
test vehicle has gradually risen [7]. Yang and co-workers first proposed extracting bridge
frequencies from a moving test vehicle’s dynamic response [8]. Compared with the direct
method for setting vibration sensors on the traffic infrastructure, the indirect approach is
generally less costly, less risky, and less laborious [9].

However, pavement distress detection based on a vehicle’s dynamic response is still
in developmental stages. Yu and co-workers proposed that the mechanical response of
automobile vibrations can be used to detect pavement distress. The vibration response’s
magnitude and frequency depend on the severity of the pavement distress, including cracks
and surface rutting [10]. The MIT Laboratory of Computing and Artificial Intelligence
proposed a P2 road monitoring architecture for pothole detection. During field testing,
over 90% of the identified potholes needed maintenance [11]. In addition, smartphone-
based vibration sensing has become a significant technique for detecting road surface
conditions [12]. Nericell is a system for the monitoring of road conditions through mobile
smartphones equipped with some sensors. These conditions include bumps, potholes,
braking, and honking [13]. Wolverine is another typical traffic and road condition es-
timation system using smartphone sensors that collects acceleration in three directions.
More importantly, the system adopts a machine learning method (SVM) to improve its
false negative rates [14]. However, the smartphone sensing method has lower accuracy,
especially in transverse cracking detection. Qun Yang and his co-workers focused on
identifying transverse cracking of asphalt pavement through professional vibration sensors.
Their study included the time, frequency, wavelet, and statistical analysis of the vehicle
vibration signal [15]. Six main features were extracted from different domains, which
generated eight classification models, and the feasibility of this method was investigated
using 2292 pavement sections [6]. Bruno S’s team focus on monitoring the road network
through a low-cost system based on vehicle vibration, which reached the ideal effects for
evaluating the pavement conditions [16–18]. Apart from that, some excellent dynamic
vehicle models have been established to illustrate the basic principle between the pavement
condition and the vehicle [19].

Most studies concentrate more on time or frequency domain analysis. The features
extracted from the time or frequency domain are better when passing by some obvious
distress, such as potholes and rutting. However, the features caused by transverse cracking
are limited in the time or frequency domain, making them hard to detect. Pavement
transverse cracking hardly affects the threshold of vehicle acceleration amplitude because
of its limited length along the driving direction. Similarly, the Fourier transform just reflects
the whole frequency distribution of the vehicle’s vibration signal. It is challenging to
express small signal mutations caused by transverse cracking, including its location. Apart
from that, vehicle parameters are also important. Different locations can generate different
dynamic responses. Different vehicle types, including fuel-driven and electric-driven, also
affect the response amplitude [20]. So, it is necessary to select the right car and the ideal
response location [21].

Consequently, the present work aims to accurately identify pavement transverse
cracking damage using a vehicle dynamic response. To that end, this paper formulates a
novel strategy to explore time–frequency features using a Short-time Fourier transform
(STFT) and better characterization indicators. More importantly, this novel method can
balance the key points, including detection accuracy, equipment cost, and efficiency. The
detection method based on a vehicle’s dynamics response solves the problems of low
detection frequency and the high cost of existing detection methods. Through the optimized
STFT algorithm, the method overcomes the lack of detection accuracy caused by traditional
time-domain analysis or frequency-domain analysis. This is because the optimized STFT
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algorithm focuses more on transverse cracking detection, which takes into account the
accuracies of both time- and frequency-domain information recognition.

2. Theoretical Modeling

Suppose the vertical displacement between the wheel and the body is Z1 and Z2,
respectively. The coordinate origin is the equilibrium position between the wheel and the
body, shown in Figure 1. m1 and m2 denote the quality of the wheel and body, respectively.
k1 and k2 denote the stiffness of the tire and spring, and c2 denotes the damping coefficient
of the shock absorber. In this study, we see the tire as an undamped linear spring system.
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Figure 1. A quarter vehicle–pavement system.

For a quarter vehicle-normal pavement system, the equation of motion is constructed
based on the d’Alembert principle [22], which is shown in Equations (1) and (2):

m2
· ·
Z2 + c2 (

·
Z2 −

·
Z1) + k2 (Z2 − Z1) = 0 (1)

m1
· ·
Z1 − c2 (

·
Z2 −

·
Z1)− k2 (Z2 − Z1) + k1Z1 = k1q (2)

where the first-order derivation of the vertical displacement denotes the vertical speed and
the second-order derivation of the vertical displacement indicates the vertical acceleration.

The equation of motion for a quarter vehicle-cracked pavement system is constructed
following Equations (3) and (4).

m2
· ·
Z2 + c2 (

·
Z2 −

·
Z1) + k2 (Z2 − Z1) = 0 (3)

m1
· ·
Z1 − c2 (

·
Z2 −

·
Z1)− k2 (Z2 − Z1) + k1Z1 = k1q′ (4)

In Equations (2) and (4), the system’s input is expressed as q (normal pavement) and q’
(cracked pavement), which denotes the pavement’s surface profile. They can be represented
in the complex exponential form:

q = qiωt
0 (5)

q′ = qiωt
0 + δ(∆t) (6)

where ω denotes angular frequency, and q0 is the initial profile. δ denotes the transient
impulse caused by transverse cracking, which is affected by the crack’s cracking degree. ∆t
is the response time that the wheel passes by the transverse crack.



Appl. Sci. 2023, 13, 12527 4 of 19

The tire-cracked pavement contact process is shown in Figure 2a. During actual
driving, the tire and the pavement are always in contact with a certain geometry, defined
as ground contact (GC). In addition, the contact shape between transverse cracking and the
tire is not a point but a certain geometric area, defined as the Areas of Crack Action (ACA).
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Figure 2. The tire-cracked contact model. (a) Tire-cracked pavement contact process; (b) AACA and
its action length.

The cracks are located at the junction of the ground surface (GC1) and the action
surface when first touching the transverse cracked pavement (t = t1). The action area is
virtual, defined as the Potential Action of Crack Action (PACA), since the tire has not yet
begun to adequately feel the excitation of the transverse crack.

As the wheel rolls forward (t = t2), the transverse crack and the tire act continuously,
giving a sufficient transient shock. GC2 continues to iterate forward and overlaps each
other, which makes up the action areas. The action areas are defined as the Actual Action
of Crack Action (AACA).

By the end of the excitation of the crack (t = t3), the crack is at the AACA’s end and the
end of the next ground contact (GC3). It can be seen that the displacement between the
crack and the tire is the length of the AACA along the direction of the vehicle (L), which
is shown in Figure 2b. The geometric size of the GC is certain when the tire pressure and
spring load mass are certain. As a result, the grounding area remains unchanged. While
passing by different pavement conditions (transverse cracks, potholes, bumps), the AACA
differs due to the significant differences in interaction characteristics caused by the changed
space shape.

Therefore, the tire-cracked pavement action time can be calculated by the length (L)
and the speed (v) of the grounded rectangle, which is shown in Equation (7).

∆t =
L
v

(7)
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The wheel and body frequency expression are analyzed if q and q’ are substituted into
the motion equation.

For the vehicle-normal pavement model:

Z1(ω) =
k1(k2 + iωc2 −m2ω2)

(k1 + k2 + iωc2 −m1ω2)(k2 + iωc2 −m2ω2)− (k2 + iωc2)
·q0

iωt (8)

Z2(ω) =
k1(k2 + iωc2)

(k1 + k2 + iωc2 −m1ω2)(k2 + iωc2 −m2ω2)− (k2 + iωc2)
·q0

iωt (9)

For the vehicle-cracked pavement model:

Z1(ω) =
k1(k2 + iωc2 −m2ω2)

(k1 + k2 + iωc2 −m1ω2)(k2 + iωc2 −m2ω2)− (k2 + iωc2)
·(q0

iω(t+ L
v ) + δ(

L
v
)) (10)

Z2(ω) =
k1(k2 + iωc2)

(k1 + k2 + iωc2 −m1ω2)(k2 + iωc2 −m2ω2)− (k2 + iωc2)
·(q0

iω(t+ L
v ) + δ(

L
v
)) (11)

Since the vibration system’s frequency response function is independent of external
input, the frequency response function P(ω) of the above two systems is the same.

P(ω)x1−q =
k1(k2 + iωc2 −m2ω2)

(k1 + k2 + iωc2 −m1ω2)(k2 + iωc2 −m2ω2)− (k2 + iωc2)
(12)

P(ω)x2−q =
k1(k2 + iωc2)

(k1 + k2 + iωc2 −m1ω2)(k2 + iωc2 −m2ω2)− (k2 + iωc2)
(13)

The Fourier transform of the two system’s input T(ω) is:

T(ω) =
∫ ∞

−∞
qiωt

0 e−iωtdt (14)

T′(ω) =
∫ ∞

−∞

[
q0

iω(t+ L
v ) + δ(

L
v
)

]
e−iωtdt (15)

According to the Fourier transform, the time-domain expression for the response of
the body (x2) and wheel (x1) on normal pavement/transverse cracking is:

x1 =
1

2π

∫ ∞

−∞

T(ω)

T′(ω)
e−iωt|P(ω)|x1−q e−ϕ1idω (16)

x2 =
1

2π

∫ ∞

−∞

T(ω)

T′(ω)
e−iωt|P(ω)|x2−q e−ϕ2idω (17)

where ϕ indicates the amplitude angle.
As can be seen from the above equation, the vertical vibration response is affected

by the characteristics of the vehicle system (position, structure), driving speed, transverse
cracking degree, and the contact geometry.

3. Field Testing
3.1. Testing System

A testing vehicle, vibration sensor, action camera, location equipment, and vibration
data processing system constitute the testing system, which can be seen in Figure 3. The
test car was an eighth generation Honda Accord. The vehicle’s length and height are:
4945/1845/1480 mm, displacement is 2.03, and maximum power is 115 kw, with a top
speed of 197 km/h.
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Figure 3. Testing system.

The vibration acceleration sensor is mounted below the suspension. The goal is to
strengthen the stimulation caused by the transverse cracks without a shock absorber. The
vibration sensor is Piezoelectric, with physical and technical parameters listed in Table 1.
One host, two GNSS antennae and their cables, one 4G all-network antenna, and one power
supply data cable constitute the positioning equipment. The antenna is mounted outside
of the car to avoid a weak signal in a small area. When operating, the GNSS positioning
module collects the vehicle’s location in real-time and transmits it to the computer. The
action camera collects the pavement surface’s video to verify the identification accuracy.
The action camera is a Go-Pro, which allowed for the acquisition of a pavement surface
video with a high speeds. It has 12 million pixels and is secured to the front cover by a
magnetic suction bracket to capture surface conditions more clearly. The data processing
system showed the time-domain features of pavement conditions on a Lenovo computer
that was used in this study that had an available storage space of 480G-SSD.

Table 1. Vibration sensor physical and technical parameters.

Parameter Type

Technical principle Piezo
Size (cm) ϕ15 × 25

Weight (g) 42
Range (g) −10~10 g

Frequency range (Hz) 0.5–3000
Sensitivity 500 mv/g

Bandwidth resolution (mg) 0.1
Resonant frequency (kHz) 5

Overload impact (g) 100

3.2. Testing Plan

A typical asphalt pavement with a semi-rigid base was chosen in Shanghai. Its
service life was over ten years. The pavement structure is shown in Figure 4. The main
pavement distress was transverse cracking. The driving velocity was 40 km/h and the
sampling frequency was 1280 Hz. Selection of the sampling frequency requires balancing
identification requirements with data storage. When the sampling frequency is increased,
the mutation signal caused by the crack can be better recognized and presented, but the
excessive sampling frequency will also cause the data volume to be too large, resulting in
longer processing times. On the other hand, when the sampling frequency is decreased so
that the processing system can be read at high speeds, this may lead to a lower accuracy of
identification, resulting in increased leakage in the detection of cracks. Considering that the
parameters of the subsequent short-time Fourier transform algorithm vary in the 2 integer
times, the sampling frequency is set to the 2 integer times as much as possible. In general,
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road surface lateral cracking is not entirely perpendicular to the traffic direction but has a
certain width of expansion. To divide the road sections reasonably, this study investigated
the expansion width of many asphalt pavement transverse cracks with a maximum width
of less than 4 m. Therefore, 4.0 m is determined to be the length of divided sections (D),
which is also the window length for signal analysis (Figure 4).
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4. Optimized Short-Time Fourier Transform (STFT) Algorithm
4.1. Basic Principle

Traditional Fourier transforms can only reveal a signal’s overall frequency component,
and cannot indicate the time of each component. Therefore, two signals with significant
temporal domain differences might have the same spectrum map. It is challenging to record
the Fourier transform for signals that change, such as vehicle vibration signal mutations
caused by minute transverse cracks. Such mutations are frequently crucial in highway
pavement damage investigation.

The short-time Fourier transform (STFT) is a joint time–frequency analysis technique
for time-varying and non-stationary signals. It intercepts the time domain signal using
a fixed-length window function. Then, the STFT uses the intercepted signal to conduct
a Fourier transform. This results in the local spectrum across a brief time window. The
final transformation generates a two-dimensional function about time and frequency do-
mains [23].

STFT(ω, t) =
∫ +∞

−∞
F(t) G(t− τ)e−iωtdt (18)
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As is shown in Equation (18), STFT is a Fourier transform made by multiplying the
signal F(t) by a τ-centered window function G(t − τ).

4.2. Parameter Optimization

The key parameters of the STFT include window type, window length, and overlap.
These affect the time–frequency features, including time resolution and frequency reso-
lution. The study takes a transverse sample and a normal pavement sample to analyze
their different features in the time–frequency domain. Window type is an important part of
spectrum analysis. The window function corrects the measurement inaccuracy due to the
aperiodic nature of the signal and reduces leakage in the spectrum. The added window
represents point multiplication in the time domain and convolution in the frequency do-
main. Therefore, the energy in the original signal at a certain frequency point is expressed
in conjunction with the properties of the window function, thereby reducing leakage.

4.2.1. Window Type

Five window types were adopted, which are shown in Table 2:

Table 2. Different window types.

No. Title 2

a Rectangle window
b Triangular window
c Hanning window
d Hamming window
e Blackman window

There is no obvious difference between the time resolution and frequency resolution
of the five window functions for normal pavement samples (Figure 5). The rectangular win-
dow has insufficient detail in the frequency resolution for cracked pavement samples. There
is a large highlight entry in the map, which indicates a higher frequency intensity caused
by transverse cracks. The time–frequency features of the other four window functions
are similar. Therefore, it can be concluded that the triangular window, Hanning window,
Heming window, and Brackman window are not very different in their time–frequency
characteristics of a vibration signal for transverse cracking and normal pavement. Since
the Hamming window is more common, we adopt the Hamming window as the standard
window type.

4.2.2. Window Length (wl)

We select wl = 8, 16, 32, 64, and 128 for the analyzed values. Compared with normal
pavement, transverse cracks show a significant high-frequency intensity area at the central
position. The yellow part indicates the high-frequency intensity and the power spectral
density of signal frequency (Figure 6). Normal pavement is relatively uniform, and no
concentrated frequency intensity appears. STFT can overcome the problem that noise in
the time domain greatly affects the crack feature. By increasing the window movement, the
mutation of the signal at the crack can be reflected as the mutation of the intensity of each
frequency component in a very short time.
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(b) 

(c) 

(d) 

(e)

Figure 5. Different features in the time–frequency domain based on five window types between a
transverse crack sample (left) and a normal section sample (right). (a) Rectangle window; (b) triangu-
lar window; (c) Hanning window; (d) Hamming window; (e) Blackman window.
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Figure 6. Time–frequency diagrams based on different wl between a transverse crack sample (left)
and a normal section sample (right). (a) wl = 128; (b) wl = 64; (c) wl = 32; (d) wl = 16; (e) wl = 8.
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Regarding spatial resolution, the window function length is equal to 128, which allows
for the maximum frequency resolution. The frequency intensity in the fracture area presents
a normal mountain distribution.

As the wl increases, the frequency resolution increases. The bar becomes column-like
when using the minimum window function length included in this study, 8. The difference
in frequency strength between cracks and the intact pavement is no longer obvious. But as
the window function length decreases, the time resolution of cracks gradually increases.

The perception of change on the time scale is more detailed. When wl is equal to 128,
the crack position is located at 0.2–0.3 s, which is quite different from the time domain.

When wl is equal to 64, it shows that the crack position is at 0.12–0.23 s, which is still
different from the time domain. When wl is equal to 32, 16, or 8, the crack position is at
0.12–0.18 s, which is the same as the time domain.

Therefore, we select 32 as the optimal window function length considering both the
frequency and time resolutions.

4.2.3. Overlap (op)

Overlap (op) indicates the size of the area where the window function overlaps the
position of the previous window during movement. When op is 0, the signal is spaced by
the window function without overlap, and each wl is performed. Corresponding to FFT,
the image appears as a significant stretch in the time domain, with op increasing. Every
interval length (wl-op) is updated once the frequency axis is updated. As op is close to
wl, the image appears to be more delicate (Figure 7). However, the resulting increase also
increases the number of calculations.

At op ≤ 8, the entire image is not apparent in the time resolution, and it is difficult to
reflect where the crack signal feature begins in the time domain.

At op = 16, three sets of signal power spectral density peaks begin to appear.
At op = 30, three more perfect bright columnar features reflect the crack’s feature.
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But blindly increasing the op value is not economical for computing efficiency. Because
the vehicle vibration test is expected to be used in road network asphalt surface crack
detection, the greater the op value, the slower the timeliness of the vibration recognition for
a crack. Therefore, op = 16 is recommended as the optimal parameter for the op value.

4.3. Parameter Optimization Results

The optimized STFT parameters for transverse cracking damage detection includes
three key parameters: using a Hanning window type, with a window length of 32 and
overlap equal to 16.

5. Data Analysis and Discussion

Based on the optimized STFT algorithm, the study chooses 30 manually labeled
samples (transverse crack: 15, normal: 15) to explore their time–frequency features.

It was found that the power spectral density of the mutation feature caused by trans-
verse cracks was above 100 dB/Hz (yellow highlight entry). While the normal pavement
samples are below 80 dB/Hz (Figure 8). However, it was noted that the highlights of
the three crack samples are not obvious. This results in an unreliable judge when only a
feature has been mutated. The STFT algorithm demonstrates time-varying characteristics
of the frequency domain brought about by signal mutations. A mutation at the cracked
section causes a change in a certain frequency range. To verify this idea, we convert a two-
dimensional time–frequency picture (the x-axis is time, the y-axis is frequency, and color
depth denotes the power spectrum density) into a three-dimensional time–frequency map
(the x-axis is time, the y-axis is frequency, and the z-axis is the power spectrum density).
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It was found that there are obvious differences between the cracked section and the
normal section in the three-dimensional time–frequency diagram (Figure 9). All of the
signals have a characteristic frequency range in the 0–50 Hz range. The PSD in the 0–0.1 s
range is less than 30 dB/Hz for a transverse crack sample. When a signal is mutated
(0.1–0.2 s), the power spectral density in the 0–50 Hz range increases rapidly, up to 102.2 Hz.
As the mutation disappears (0.2–0.36 s), the PSD returns below 30 dB/Hz. The maximum
power spectral density for the entire signal segment range (0–0.36 s) for the intact pavement
samples is 42.5 dB/Hz. The maximum power spectral density (PSDmax) of the STFT is
expected to be a good classification indicator.

To validate the above idea, the PSDmax of 15 transverse cracks and 15 normal pave-
ments were calculated as shown in Figure 10. As can be seen in Figure 10a, the transverse
crack’s PSDmax distribution range is from 100 dB/Hz to 340 dB/Hz, with a maximum
of 338.7 dB/Hz and a minimum of 102.2 dB/Hz. As shown in Figure 10b, the normal
pavement’s PSDmax distribution range is from 29 dB/Hz to 63 dB/Hz, with a maximum of
62.0 dB/Hz and a minimum of 29.8 dB/Hz. The mean, standard deviation, and variation
coefficients are shown in Table 3. Based on comparison of the standard deviation and
coefficient of variation, the transverse crack’s PSDmax distribution is more discrete than
the normal pavement.
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Table 3. Statistical parameters of PSDmax.

Statistic Parameter Transverse Crack Normal

Maximum 338.7 62.0
Minimum 102.2 29.8

Mean 214.3 42.7
Standard deviation 79.3 9.4

Coefficient of variation 37.0% 22.0%

In addition, it can be seen that the minimum value of the transverse crack’s PSDmax
is greater than the maximum value of the intact pavement sample, PSDmax. So, it is
reasonable to select the PSDmax as a classification indicator.

It should be noted that the standard deviation of the crack’s PSDmax is much higher
than that of the normal pavement. This can be explained by the field measurement affecting
the crack’s vibration response more. This is due to the varying degrees of pavement
cracking (length, width, and depth), which leads to different transient shocks when the
vehicle passes. This also results in a different degree of signal mutation at the cracked
sections. This variability is strengthened by pavement roughness and the influence of
sand and gravel. A sample of normal pavement’s signal features is likely to be similar
to transverse cracks, especially in the time–frequency domain. A cracked section is more
easily mistaken for a normal section because it is difficult to cause a significant signal
mutation due to its poor level. This ignores the structural damage of the pavement at the
site and will make it difficult to carry out conservation activities in time.
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Considering the above variability, the PSDmax may have a poor classification effect
during field testing. The difference between a transverse crack and normal pavement
is very small. However, the vibration signal at the cracked sections has three phases:
stationary—non-stationary—stationary. In the time–frequency domain, these three stages
are reflected in the power spectral density of the characteristic band (0–50 Hz). Therefore,
the difference among the three PSD values (initial location t1, peak position tPSDmax, and
terminal position t2) can be considered as additional features, as defined below.

∆PSD1 = PSDmax − PSD1 (19)

∆PSD2 = PSDmax − PSD2 (20)

PSDmax is the peak of maximum power spectral density (Figure 11). PSD1 is the
initial PSD of the characteristic spectral band (0–50 Hz), where PSDmax is located. PSD2 is
the final PSD of the characteristic spectral band (0–50 Hz).
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Considering that PSDmax may occur at the initial or end position, we adopt the larger
one (∆PSD) in this study, comparing ∆PSD1 and ∆PSD2 as an additional feature, defined
as the relative power spectral density. This is shown in Equation (21).

∆PSD = max(∆PSD1, ∆PSD2) (21)

The two key classification features generated, PSDmax and ∆PSD, are mathematically
linearly related. This is because the equation of the ∆PSD shows that the difference between
the two variables is a linear function. For the same highway, the frequency changes due
to the relative equilibrium of the roughness are small compared to cracks. Therefore, the
difference is relatively stable. This fitting process is shown in Figure 12. The stability of
features at normal sections is similarly verified in Figure 13. The ∆PSD at normal sections
presents an agglomeration phenomenon. The data mean of this group was defined as the
coordinate origin, and the radius was defined as the distance from the farthest point that
makes up the circle function. All samples are strictly confined within this circle function.

Figures 14 and 15 show the above two index’s classification effects. There is a divided
zone between cracks and normal pavements, which can provide a flexible
classification threshold.
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6. Application Effect

The classification thresholds were set for 100 dB/Hz (PSDmax) and 95 dB/Hz (∆PSD).
If the PSDmax > 100 dB/Hz and ∆PSD > 95 dB/Hz, it is judged to be a transverse crack, and
otherwise is classed as normal pavement. We applied this criterion to a large verification
set of 139 sections (crack: normal = 14:125). The confusion matrix is shown in Figure 16.

Ac =
TP + TN

TP + FN + FP + TN
(22)

TPR =
TP

TP + FN
(23)

FPR =
FP

FP + TN
(24)
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This study adopts accuracy (Ac), TPR, and FPR as evaluation indicators (Table 4).
The overall accuracy is high, reaching 94.96%, which is satisfactory because there is no
machine learning training. It was also noted that the likelihood of detection in all crack
samples is 92.86% (TPR). The probability of being misjudged as transverse cracks in all
normal pavement samples is 4.80% (FPR). As most pavement sections are normal, a lower
FPR means that the classification model can help to reduce the maintenance personnel’s
on-site error correction workload. At the same time, transverse cracks require repair to be
effectively detected. Therefore, using the PSDmax and ∆PSD as classification indices is
reasonable.

Table 4. Comprehensive evaluation indices of the classification model (%).

Index Ac TPR FPR

value 94.62 92.86 4.80

7. Conclusions

In this paper, a vehicle-cracked pavement dynamic model illustrated the pavement
transverse cracking detection principle based on vehicle dynamic response. As the typical
features of pavement transverse cracking cannot be revealed better in the time or frequency
domain, the raw vibration signal was transformed into a time–frequency-PSD map using
optimized STFT. Two key classification indices distinguished transverse cracking sections
from normal sections. The detailed conclusions of this paper are as follows:

Based on the d’Alembert principle, a vehicle-cracked pavement dynamic model was
established. The model’s time domain solution indicates that the vertical vibration response
is affected by the characteristics of the vehicle system’s driving speed, transverse cracking
degree, and the vehicle–crack contact geometry feature.

The optimized STFT algorithm parameters for detecting transverse cracking were set
through a parameter optimization process. The window type was a Hanning window with
a length of 32, and an overlap of 16.
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It was found that the power spectral density (PSD) caused by transverse cracks was
above 100 dB/Hz. The PSD at normal sections was below 80 dB/Hz. The distribution of
the PSD at cracked sections is more discrete than at normal sections.

The classification model based on the maximum power spectral density (PSDmax) and
the relative power spectral density (∆PSD) performed well. The accuracy reached 94.96%.
TPR and FPR reached 92.86% and 4.80%, respectively.

In terms of recognition accuracy, this novel method is close to the current mainstream
methods based on deep learning. In addition, this method can overcome the disadvantages
of traditional signal time domain and frequency domain analysis’s low accuracy. Moreover,
this novel method could express small signal mutations caused by transverse cracking,
including its moment.

However, the training set used in this novel method was smaller, data processing was
faster, and real-time feedback was met. It was also verified that the novel model had a
better effect on pavement transverse cracking detection.
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