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Abstract: Exploring the built environment factor’s impact on metro ridership can help develop metro
station area planning strategies. This is in order to compensate for the shortcomings of previous
studies, which mostly used all uniform pedestrian catchment areas (PCA) around metro stations.
Beijing was divided into two zones and 12 built environment explanatory variables were selected as
independent variables based on the “7D” dimension of the built environment. The boarding ridership
during the morning peak hours was used as the dependent variable. Nineteen PCA radii from 200 to
2000 m were assumed. The optimal PCA of metro stations for each zone was determined by using
the eXtreme Gradient Boosting (XGBoost) model with the objective of minimizing the Mean Absolute
Percentage Error (MAPE). The nonlinear impact of the built environment factor of each zone on
metro ridership is analyzed under the optimal PCA of metro stations. The study results show that
(1) the optimal PCAs of metro stations inside the 4th Ring Road and outside the 4th Ring Road are
the circular buffer zones with a radius of 800 m and 1300 m, respectively. (2) There is a nonlinear
influence of the built environment factor on metro ridership, with strong threshold effects and spatial
heterogeneity. The PCA results can be used for the built environment’s zoning of metro stations. The
XGBoost model and the nonlinear impact results provide significant implications for the practice of
station-level ridership forecasting and integrating TOD development and built environment renewal.

Keywords: metro station-level ridership; built environment; eXtreme Gradient Boosting (XGBoost);
pedestrian catchment areas (PCA); nonlinear effect

1. Introduction

The experience of some developed Western countries with high reliance on the car
shows that car-based transport causes traffic congestion [1,2] and a range of environmental
problems [3]. Metro transport is considered to be a better way of addressing the issues
caused by high levels of car dependency [4–6] because it helps to reduce car dependency
and congestion [7–9], improve road safety [10], and reduce social exclusion [11]. Therefore,
urban policymakers highly value the construction and operation of metro transport [6,12],
especially in developing countries [13]. The planning and construction of metro transport
in China are rapidly growing. The 14th Five-Year Plan for the Development of a Modern
Comprehensive Transport System issued by the State Council of the People’s Republic
of China states that the total operational mileage of metro transport in the country will
reach 10,000 km by 2025 [14]. However, mega-cities like Beijing have already experienced
excessive ridership at some metro stations during peak morning hours. The urban metro
operator in Beijing has had to limit the ridership to ensure the safety and comfort of
metro operations [15]. Still, the measures to restrict the ridership have greatly affected the
efficiency of residents’ travel. How to ensure that metro transport can meet the commuting
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needs of urban residents has become a widespread concern [16]. So, determining the factors
influencing metro ridership is very important for the planning and operation of metro
transport [2,4,17].

Linear models are widely used by scholars. However, linear models usually assume a
linear function to fit the data. In real life, the influence of built environment factors may have
a threshold effect. Therefore, using a linear model can cause errors in the results [18–20]. To
date, Gradient Boosting Regression Tree (GBRT) models have been used to investigate the
nonlinear influence of the built environment factor on metro ridership [3,21]. But, GBRT
models suffer from over-fitting [19]. Daily and weekly ridership are widely focused and
fewer have looked separately at peak-hour inbound or outbound ridership during the day.
In addition, most existing studies have used experience, the TOD theory [22], or borrowed
from others [23,24] to identify the pedestrian catchment areas (PCA) at metro stations,
where most use a uniform size PCA of metro stations to calculate built environment factors.

Therefore, our study has three major purposes: (1) the optimal metro station PCA
for the different zoning of Beijing’s metro stations was determined; (2) to investigate the
nonlinear influence of the built environment of two zones on the ridership of the metro
stations; (3) and to investigate the spatial heterogeneity of the nonlinear influence.

2. Literature Review

As an important public transport component, metro transport has received a great
deal of scholarly attention in recent years [4,17,18,25]. Existing studies have found that
the population density [26–28], density [17,29], accessibility [29,30], and land use mix [30]
have an impact on subway ridership. This literature review focuses on four aspects of
the research methodology, the determination of the PCA, the determination of dependent
variables, and the determination of independent variables. The relevant transportation
literature is summarized in Table 1.

In terms of research methods, the Ordinary Least Squares (OLS) model [4,16,31–35],
Geographically Weighted Regression (GWR) model [23,36–40], structural equation mod-
els [31], and Multi-Scale Geographically Weighted Regression (MGWR) [17,22] model were
used by a large number of scholars. These models can only examine the linear effect. How-
ever, some scholars have found that the effect of the built environment on metro passenger
flow is nonlinear. [3,25]. With the boom in machine learning methods, random forests [41]
and deep learning [42,43] have been applied to transportation. And, some scholars have
used Gradient Boosting Regression Trees (GBRT) to analyze the nonlinear influence of
the built environment on metro ridership [3,18,21,44]. However, the GBRT model has
an overfitting problem [19]. The XGBoost model can accurately determine the nonlinear
influence of independent variables on the dependent variable and it is also an excellent
solution to the over-fitting problem [45]. In addition, XGBoost has the advantage of being
extremely accurate and better at handling missing values and outliers [46,47]. XGBoost
is currently being applied to predictive modeling [48–51], analysis of the residents’ travel
behavior [19,52,53], factors triggering traffic accidents [54], and the impact of building
configuration [55] on urban stormwater management. There are few studies using XGB to
analyze the influence of the built environment on metro passenger flow.
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Table 1. Summary of reference literature on transportation.

Author Analysis Methods Main Independent
Variables Dependent Variables PCA Travel Mode Analysis Area

Estupiñán et al. (2008)
[56] Two Stage Least Square socioeconomic

characteristics Daily ridership 250 m buffer zone BRT Bogotá, Columbia

Sohn et al. (2010) [31] OLS/SEM

socioeconomic
characteristics,

accessibility, land use
and density

Average weekday
ridership 250 m buffer zone Metro Seoul, Republic of Korea

Loo et al. (2010) [35] OLS

socioeconomic
characteristics,

accessibility, rail
transit service

Average weekday
ridership N/A Metro New York, USA and

Hong Kong, China

Gutiérrez et al. (2011)
[33] OLS

socioeconomic
characteristics, land use

and density
Monthly ridership Threshold of change Metro Madrid, Spain

Sung et al. (2011) [34] OLS
socioeconomic
characteristics,

accessibility

Ridership by time of day,
week, and mode

of transport
500 m buffer zone Metro, Bus Seoul, Republic of Korea

Cardozo et al. (2012) [36] GWR/OLS
socioeconomic
characteristics,

accessibility
Monthly ridership 800 m and 200 m

buffer zone Metro Madrid, Spain

Zhao et al. (2013) [4] OLS

socioeconomic
characteristics,

accessibility, land use
and density

Annual average
weekday ridership 800 m buffer zone Metro Nanjing, China

Zhao et al. (2013) [16] OLS accessibility, rail
transit service

Ridership between
stations 800 m buffer zone Metro Nanjing, China

Hyungun et al. (2014) [1] SER

land use and density,
socioeconomic

characteristics, rail
transit service

Average weekday
ridership

250, 500, 750, 1000, and
1500 m buffer zone Metro Seoul, Republic of Korea
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Table 1. Cont.

Author Analysis Methods Main Independent
Variables Dependent Variables PCA Travel Mode Analysis Area

Jun et al. (2015) [22] MGWR
land use and density,

socioeconomic
characteristics

600 m buffer zone Metro Seoul, Republic of Korea

Calvo et al. (2019) [37] GWR
land use and density,

socioeconomic
characteristics

Average weekday
ridership N/A Metro Madrid, Spain

Ding et al. (2019) [21] Gradient Boosting
regression trees (GBRT)

socioeconomic
characteristics,

accessibility, land use
and density, rail
transit service

Average inbound
ridership on weekdays 400 m buffer zone Metro Washington, DC, USA

Li et al. (2020) [23] GWR
land use and density,

socioeconomic
characteristics

Weekday ridership,
weekend ridership,

weekday morning peak
arrivals and evening

peak departures average,
weekday morning peak
departures and evening

peak arrivals average

800 m buffer zone Metro Guangzhou, China

Gan et al. (2020) [3] Gradient Boosting
regression trees (GBRT)

socioeconomic
characteristics, land use

and density, rail
transit service

OD ridership in different
time periods of a day 800 m buffer zone Metro Nanjing, China

Andersson et al. (2021)
[39] GWR “5D” of

Built Environment
Seasonal daily
traffic volume 600 m buffer zone Metro Tai Pei, China

Wang et al. (2022) [17] MGWR “7D” of
Built Environment

Alighting ridership
during the morning

peak hours

Overlapped by 1000 m
radius circular buffer

zone and
Thiessen polygon

Metro Beijing, China
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Table 1. Cont.

Author Analysis Methods Main Independent
Variables Dependent Variables PCA Travel Mode Analysis Area

Du et al. (2022) [18] Gradient Boosting
regression trees (GBRT)

socioeconomic
characteristics, land use

and density, rail
transit service

Weekday daily ridership,
weekend ridership,

weekday morning peak
ridership, weekday

evening peak ridership

800 m grid distance Metro Xian, China
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Determining the PCA for a metro station is considered very important before conduct-
ing research [17]. Currently, most studies use circular buffers [1,4,16,22,23,31,34,36,52,56]
centered on the metro station as the PCA. However, considering that the station study areas
overlap in areas with a dense distribution of metro stations, Tyson polygons [57] or Tyson
polygons superimposed with circular buffers to take the intersection [17,23,24] have been
used to determine the PCA. The radii of circular buffers chosen by different scholars varied
widely, with more scholars choosing a circular buffer radii of 400 m [21], 500 m [31,34],
600 m [22,39,52], 800 m [3,4,16,23,36], and 1000 m [1,17]. In addition, the choice of buffer
radius mostly relies on pedestrian accessibility [22,32,36], experience [4], and drawing on
the research of others [23]. Existing research has shown that the PCA for metro stations
varies from city to city (57) and that one cannot borrow the PCA for metro stations in other
cities. Thus, the PCA of metro stations has been determined using the goodness of fit of
regression models [17,39]. Although some scholars have found the PCA via regression
fit superiority methods, they tend to use a single PCA of metro stations. And, with the
rapid development of cities, mega-cities like Beijing are establishing new districts on the
outskirts of the city, which tend to be larger in scale. Therefore, using the uniform PCA of
metro stations would make the error of the model larger. Although, scholars have already
divided the city into three zones [39]. But, this study still uses a uniform PCA of metro
stations across the three zones. To our knowledge, no scholars have identified separate
metro station’s PCA according to different zones.

In terms of the selection of dependent variables, daily ridership was the most pop-
ular among scholars [1,4,21,31,33–37,56], while some other scholars chose monthly rider-
ship [33,36] and seasonal ridership [39] as dependent variables. In addition, some scholars
will choose several dependent variables in one article [18,23,34]. Fewer scholars consider
boarding or alighting ridership during the morning peak hours on the working day alone.
But, the fact is that for mega-cities like Beijing, the morning rush hour is the time of most
significant conflict, and there are already morning rush hour entry restrictions at metro
stations. We think that a separate analysis of boarding ridership during the morning peak
hours is important to improve metro operations’ efficiency and adjust metro station traffic
later. Fewer academics have analyzed the boarding ridership during the morning peak
hours separately.

In terms of the selection of explanatory variables, the main explanatory variables in
the existing studies include land use and density [1,4,16,22,23,31,33,37,58], socioeconomic
characteristics [4,22,31,33–37,56,58], accessibility [1,4,16,31,32,34–37,58], and metro service
(including metro service level and metro service quality) [32,35,37]. However, there is a lack
of systematic selection of explanatory variables. Therefore, scholars have systematically
selected the explanatory variables based on the “5D” dimension [59]. However, there is
a lack of population-related explanatory variables in the “5D” dimension. Scholars add
demand management and demographics to the “5D” dimension, thus introducing the “7D”
dimensions [60]. The “7D” dimension has been used in studies [17].

This study focuses on the impact of the “7D” built environment on the boarding
ridership during the morning peak hours. The XGBoostwas was used to determine the
optimal PCA for different zones. And, the nonlinear influence of the built environment
on subway passenger flow and its spatial heterogeneity are studied under an optimal
subway PCA.

3. Study Scope and Data
3.1. Study Scope and Data Sources

The study was carried out on a total of 292 metro stations that are already in service
on 19 lines in Beijing in 2020. We find that the distribution of metro stations inside the
4th Ring Road is more concentrated, while the distribution of metro stations outside the
4th Ring Road is more dispersed. So, all metro stations in Beijing are divided into two
zones: metro stations inside the Fourth Ring Road (white-filled areas) and metro stations
outside the Fourth Ring Road (yellow-filled areas) (Figure 1). The data source of the
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dependent variable is the Beijing public transport IC card data. We obtained the average
hourly inbound passenger flow of Beijing’s metro stations during the five working days
of the week from 12 October 2020 to 16 October 2020. Based on the trend of boarding
ridership (Figure 2), the morning peak of Beijing’s metro transit is 7:00–9:00. Considering
that the contradiction is more prominent in the morning peak hour and the space is limited,
this paper only analyzes the boarding ridership during the morning peak hours (hereafter
referred to as metro ridership). Figure 1 also shows the spatial distribution of passenger
flow at the station level in Beijing.
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3.2. Explanatory Variables of the Built Environment

The “7D” dimensions were constructed by adding demand management and de-
mographic factors to the built environment’s “5D” dimensions [59]. It consists of seven
sections: density, diversity, design, destination accessibility, distance, demand management,
and demographics. [60]. It has been proved that the number of POI has an impact on
metro ridership [61,62]. Therefore, the density of POIs is changed to the number of POIs in
the study. The built environment dataset was constructed on this basis and included 12
built environment explanatory variables(Table 2). For the data sources and the calculation
methods of the explanatory variables, see other research results of our research group [17].

Table 2. Explanatory variables.

Built Environment Category Interfering Factor Unit

Density Building density m2/km2

Diversity Mixed utilization of land

Design Road density km/km2

Floor area ratio

Destination accessibility

Number of entrances and exits

quantity
Number of commercial facilities

Number of office facilities

Number of public service facilities

Distance to transit Density of bus lines km/km2

Demand management
Number of parking lots

quantity
Number of bus stops

Demographics Population quantity

4. Methods
4.1. Pedestrian Catchment Areas (PCA) Delineation for Metro Stations

A key task before analyzing the nonlinear influence of the built environment factor
on ridership at metro stations is how to define the scope of the built environment analysis
for metro stations [30]. The extent of the built environment analysis for metro stations is
determined using the “maximum” walking distance or the area within walking distance



Appl. Sci. 2023, 13, 12210 9 of 21

of most users [4,63]. For this reason, a metro station’s built environment analysis area is
often referred to as pedestrian catchment areas (PCA). In existing studies, the PCA of metro
stations varies widely, from a minimum of 250 m [1,56] to a maximum of 1500 m. In order
to more accurately determine the PCA of the metro stations in the two zones of Beijing, the
circular buffer zones with a radius of 200–2000 m (interval 100 m) is selected as the PCA of
metro stations in the two zones, respectively. The minimum of Mean Absolute Percentage
Errors (MAPE) of the XGBoost models under multiple PCAs were used to determine the
optimal PCA for the two zones of metro stations.

4.2. eXtreme Gradient Boosting (XGBoost)

XGBoost is an improved algorithm based on gradient-augmented decision trees,
proposed by Chen et al. in 2016 [46]. The XGBoost model is not only an excellent solution
to the overfitting problem. It also has the advantages of high accuracy and better handling
of missing values and outliers [46,47]. The regression function of XGBoost usually consists
of two parts: training loss and regularization. Its objective function expression is:

Obj(Φ) = L(Φ) + Ω(Φ) (1)

where L is the training loss function, and Ω is the regularization term. The training loss is
used to measure the performance of the model on the training data. The purpose of the
regularization term is to control the complexity of the model, and the over-fitting of the
model can be controlled by the regularization term [64]. In this study, the training set is
70% of the total data, and the test set is 30% of the total data. The parameter configuration
of the XGBoost model we selected for this study is shown in Table 3.

Table 3. The parameter configuration of the XGBoost model.

Parameter Implication Value

max_depth
Maximum tree depth, which controls
the model complexity, can be used to

prevent overfitting
8

eta

The learning rate, which controls the
weights of each step of the fitting

process, can be used to improve the
model accuracy

0.20

subsample
Random sampling ratio, which controls
the proportion of random samples per
tree, can be used to prevent overfitting

0.75

colsample_bytree
The column sampling rate represents

the column fraction of a random
sample of each tree

0.80

n_estimators Return the number of trees 461

gamma
The leaf node split threshold, which

specifies the minimum loss reduction
that must occur for splitting

0.20

4.3. Explanation of Machine Learning Models: SHAP (Shapley Additive exPlanations)

SHAP (Shapley Additive exPlanations) is used to explain the machine learning models
and was proposed by Lundberg and Lee in 2021 [65]. The formula for calculating the SHAP
value is expressed as:

θi = ∑
S∈N\{i}

|S|!(|F| − |S| − 1)!
|F|!

[
fS∪{i}

(
XS∪{i}

)
− fS(Xs)

]
(2)

where i denotes a feature. F is the set of features containing all features. S is the set of all
features without feature i. |S|! is the factorial of the number of features contained in S. Xs is
the input feature values in S. fS∪{i} is a model trained with feature i. fS is another model
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trained without feature i.
[

fS∪{i}

(
XS∪{i}

)
− fS(Xs)

]
is the difference between the outputs

of the two models.

4.4. Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) is a measure of a relative error that uses
absolute values to avoid positive and negative errors canceling each other out. The MAPE
has been found to be a more accurate determination of the model’s accuracy [66], with
smaller MAPE values proving that the model is more accurate. The formula for calculating
the MAPE is expressed as:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (3)

where n is the total number of metro stations. ŷi is the predicted value of the explanatory
variable for the ith orbital site. yi is the actual value of the explanatory variable for the ith
orbital site.

5. Results and Discussion
5.1. Optimal Metro Stations PCA for Different Zones

In order to determine the rationality of the XGBoost model in this analysis, we com-
pared the accuracy of the XGBoost model with other machine learning models and the
comparison results of AdjR2 are shown in Figure 3. As can be seen from Figure 3, the
accuracy of the XGBoost model is better than others, and the AdjR2 of the testing set inside
the 4th Ring Road is 0.74 and the AdjR2 of the testing set outside the 4th Ring Road is
0.72. So, XGBoost can be used for this analysis. Calculate the MAPE of PCAs for the inside
and outside 4th Ring Road metro stations based on the predicted values in the XGBoost
model in the testing set and the true values in the testing set, respectively, and plot the line
graph of MAPE at different PCAs. To our knowledge, the accuracy of nonlinear models
has not been considered in previous studies. In addition, most scholars currently studying
the nonlinear influence of the built environment factor on metro ridership have used the
goodness of fit for linear models [17,39] and experience [3,18,21] to determine the optimal
PCA of metro stations. No one has used the accuracy of nonlinear models to determine
the optimal PCA of metro stations. Figure 4 shows the MAPE folds at different PCAs
of metro stations inside and outside the 4th Ring Road. The graph shows that when the
buffer zone radius is 800 m, the lowest MAPE value is reached at 9.64% for metro stations
inside the 4th Ring Road. Therefore, the optimal PCA of metro stations inside the 4th Ring
Road is the circular buffer zone of an 800 m radius. For the outside 4th Ring Road metro
stations, MAPE reaches a minimum value of 16.60% when the buffer radius is 1300 m. So,
the optimal PCA of the outside 4th Ring Road metro stations is a circular buffer of 1300 m.

Looking at the MAPEs of the metro stations inside and outside the 4th Ring Road, the
MAPE of the metro stations outside the 4th Ring Road is larger than those of the metro
stations inside the 4th Ring Road. It proves that the model accuracy is higher inside the 4th
Ring Road. That is consistent with existing research [39]. This is due to the fact that outside
the 4th Ring Road is a new urban area with a larger urban scale. Some passengers do not
start their journey in the PCA but still choose to come to this metro station.
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5.2. Global Impact on Metro Ridership

The average value of the absolute value of each explanatory variable SHAP is calcu-
lated and the influence degree of the explanatory variable on metro ridership is expressed.
The greater the mean value of SHAP, the greater the influence of the explanatory variables
on metro ridership and vice versa. The results of the average SHAP values of the explana-
tory variables for ridership at metro stations in different zones are shown in Figures 5 and 6,
with positive correlations in red and negative correlations in blue.
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For metro stations inside the 4th Ring Road, the top three explanatory variables in
the order of the influence degree are the number of entrances and exits > mixed utilization
of land > the density of bus lines. There is a positive relationship between all three
explanatory variables and SHAP values (Figure 5), i.e., the larger the eigenvalues of these
three explanatory variables, the larger the SHAP values. This means that the larger these
three explanatory variables are, the greater the impact on metro ridership. The mixed
utilization of land has a large impact on metro ridership. That proves that the mixed
utilization of land development has a strong promoting effect on metro ridership. That
is consistent with the existing research [21]. However, as a very important index of land
development, the floor area ratio is negatively correlated with metro ridership. It is proved
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that for the metro station in the 4th Ring Road, the ridership of metro stations with a higher
floor area ratio is not necessarily higher. The likely reason is that the higher floor area
ratios are generally concentrated in the core commercial office areas, where the morning
peak is dominated by alighting ridership and does not generate much boarding ridership.
Conversely, residential cores can generate high boarding ridership, but have a relatively
low floor area ratio due to design constraints. The effect of population on ridership at metro
stations inside the 4th Ring Road is positive, which is consistent with existing studies [4,36].

For metro stations outside the 4th Ring Road, the top three explanatory variables in
the order of the influence degree are the number of public services facilities > building
density > road density (Figure 6). Building density is negatively correlated with metro
ridership and road density is negatively correlated with metro ridership. And, the average
SHAP value for the number of office facilities is much greater than the average SHAP
values for building density and road density. This proves that for metro stations outside
the 4th Ring Road, the number of public service facilities is the explanatory variable with
the greatest degree of influence. That said, for metro stations outside the 4th Ring Road, it
may be more effective to adjust the ridership of metro stations by adjusting the number of
public service facilities.

Figures 5 and 6 show that there is a significant difference in the ranking of the effects
of the explanatory variables on metro ridership inside and outside the 4th Ring Road. This
demonstrates the need for this study partition to examine the built environment’s impact on
metro ridership. Understanding the global impact of built environment explanatory vari-
ables on metro ridership in both zones can help planning decision makers and operations
and design departments to adjust metro ridership from a zone-wide perspective.

5.3. Nonlinear Effects on Metro Ridership

We select the top three explanatory variables for nonlinear analysis according to the
influence degree of explanatory variables in the two zones. Figure 7 shows the nonlinear
results for the explanatory variables for metro stations inside and outside the 4th Ring
Road. For metro stations inside the 4th Ring Road, the relationship between the number of
entrances and exits and metro ridership is overall positively correlated. When the number
of entrances and exits is between five and seven, the effect of the number of entrances and
exits on metro ridership is stable. This means that if we want to adjust the ridership at a
metro station, adjusting the number of entrances in the range of 5–7 may not change the
ridership at the metro station. However, when the number of entrances and exits is greater
than seven, the impact of the number of entrances and exits on metro ridership tends to
increase (Figure 7a). When the mixed utilization of land is less than 0.84, the impact of the
mixed utilization of land on metro ridership is minimal (Figure 7b) and the overall impact
of the mixed utilization of land on metro ridership is positive. If we want to improve the
ridership of a metro station inside the 4th Ring Road, it may be more effective to increase
the land use mix degree beyond 0.84. The nonlinear effect of the density of bus lines on
metro ridership is more complex. When the density of the bus line is less than 35, the effect
of the bus line density on metro ridership is less. At the same time, when the density of the
bus line is in the range of 35–39, the effect of the bus line density on ridership is negative. In
addition, when the density of bus lines is greater than 54, the effect of the bus line density
on ridership is also negative (Figure 7c).
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For metro stations outside the 4th Ring Road, when the number of public service
facilities is less than 65, the impact of the number of public service facilities on the ridership
at metro stations is small. However, when the number of public service facilities is in the
range of 65–80, the impact of the number of public service facilities on the ridership at
metro stations increases sharply. At the same time, when the number of public service
facilities is greater than 80, the influence of the number of public service facilities on the
ridership of the metro station tends to level off and there is even a negative correlation
(Figure 7d). The overall impact of building density on metro ridership is negative. The
effect of building density on metro ridership decreases sharply when building density is
in the range of 0.07–0.10. The effect of building density on metro ridership is relatively
flat when the building density is greater than 0.10 (Figure 7e). The effect of road density
on metro ridership decreases sharply when the road density is between 1.9 and 4.5, but
levels off when the road density is greater than 4.5 (Figure 7f). This demonstrates that the
1.9–4.5 range is the most effective if road density is to be used to change metro ridership.

We find the selected explanatory variables have a strong threshold effect on the
ridership of the metro station. That is consistent with existing research findings [3,21].
Understanding the nonlinear effects of explanatory variables on metro ridership can help
us to adjust metro ridership from an urban renewal perspective. In particular, we find
that some of the explanatory variables do not have a greater impact on metro ridership at
higher eigenvalues. Therefore, while understanding the global impact of the explanatory
variables on metro ridership, the nonlinear impact of the explanatory variables on metro
ridership needs to be considered simultaneously.

5.4. Spatial Heterogeneity Effecton Metro Ridership

Previous studies have mostly used Partial Dependence Plot (PDP) dependency maps
to study the impact of the built environment explanatory variables on metro ridership
from a global perspective [3,21]. However, existing research has demonstrated spatial
heterogeneity in the influence of the built environment explanatory variables on metro
ridership [17,18] and that the influence of built environment explanatory variables on metro
ridership varies depending on the station’s location. Therefore, this study links SHAP
values to metro stations and visualizes them. In this section, the top three global influences
of the explanatory variables are still selected for spatial heterogeneity analysis. The results
of the visualization of metro station SHAP values are shown in Figure 8.

For metro stations inside the 4th Ring Road, the number of metro stations with positive
and negative SHAP values for the number of entrances and exits are roughly evenly divided.
The metro stations with high negative SHAP values are mainly located in the northern part
of the 4th Ring Road. The likely reason for this is that these metro stations are saturated
with passengers, and further upgrading the number of entrances and exits to the metro
stations will not enhance metro ridership. In addition, the metro stations with positive high
SHAP values are mainly located in the southeastern part of the 4th Ring Road (Figure 8a).
For the mixed utilization of land, there are more negative SHAP metro stations than positive
SHAP metro stations (Figure 8b). This demonstrates that for most metro stations inside
the 4th Ring Road, the mixed utilization of land dampens metro ridership. The reason for
this may be that these neighborhoods are functionally mixed. However, it is a fact that
where there is a high density of residential areas, there is also a high level of ridership at
metro stations, and an excessive mix of land use reduces the number of residential areas. In
addition, metro stations with negative SHAP values are clustered inside the 4th Ring Road.
Therefore, when urban renewal is carried out later, the agglomeration area of metro stations
with negative SHAP values can be considered uniformly. For the density of bus lines, the
number of metro stations with negative SHAP values is much greater than the number
of positive SHAP value metro stations (Figure 8c). This demonstrates that the density of
bus lines has a dampening effect on metro ridership for most metro stations inside the 4th
Ring Road. There is also a strong concentration of positive high SHAP metro stations, with



Appl. Sci. 2023, 13, 12210 16 of 21

positive high SHAP metro stations concentrated in the southeast and southwest inside the
4th Ring Road.

Figure 8. Cont.
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For the metro stations outside the 4th Ring Road, the number of public service facilities
with positive high SHAP values metro stations are clustered in the north and east of outside
the 4th Ring Road (Figure 8d). Combined with Figure 1, the ridership at the metro stations
with positive high SHAP values is high, and we can reduce the ridership at the metro
stations by reducing the number of public service facilities. Also, most of the stations
with high negative SHAP are concentrated at the end of the metro line (Figure 7d). The
possible reason is that these metro stations are located in suburban areas, where there
may be some large infrastructure and public service facilities, and these facilities lead to
fewer residential neighborhoods. The metro stations with positive building density SHAP
are mainly concentrated at the end of the metro line (Figure 8e). And, the ridership of
these metro stations are low, so we can enhance the ridership of these metro stations by
increasing the building density. In addition, the stations with high negative SHAP have
a strong agglomeration effect, especially in the north of the 4th to 5th Ring Road and the
southeastern outside the 4th Ring Road (Figure 8e). And, these metro stations can be
considered unified as a solution to regional problems. For road density, the stations with
high negative SHAP are mostly concentrated at the end of Line 4 and in the northeast of
the 4th to 5th Ring Road (Figure 8f). The probable reason is that these neighborhoods are
in dense residential areas and are very densely populated. Increasing the road density
will reduce the area of land to be used, which will result in smaller residential areas. And,
the positive high SHAP stations are concentrated in the north outside the 4th Ring Road
(Figure 7f).

By visualizing the values of the explanatory variables SHAP, we find the effect of the
explanatory variables on the ridership of different metro stations. This has substantial
practical implications for adjusting the ridership of individual metro stations [17,18]. When
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adjusting for individual metro ridership, we need to consider the SHAP values of the metro
stations and the nonlinear effects of the explanatory variables on the ridership.

6. Conclusions

This research provides empirical evidence for the delineation of the PCA of metro
stations in analyzing the nonlinear impacts of the built environment on the ridership of
metro stations by using the XGBoost model. The optimal PCAs of metro stations inside the
4th Ring Road and outside the 4th Ring Road are the circular buffer zones with a radius
of 800 m and 1300 m, respectively. Additionally, for the key explanatory variables (top
three in overall impact) in the two zones we selected, there is a nonlinear relationship and
a strong threshold effect on metro ridership. We also found spatial heterogeneity in the
effects of the explanatory variables on ridership at metro stations. It indicates that we can
develop site-specific renewal strategies around metro stations, considering the nonlinear
effects of explanatory variables on metro ridership.

Based on the results of this study, we make the following recommendations: (1) we
recommend that when considering the TOD range of Beijing, 800 m is recommended inside
the 4th Ring Road and 1300 m is recommended outside the 4th Ring Road. (2) For the metro
stations inside the 4th Ring Road, we can improve the vitality of the surrounding area by
changing the land use mix degree and bus line density around the subway stations. For the
metro station outside the 4th Ring Road, we can improve the vitality of the railway station
by changing the number of public service facilities, building density, and road density.

There are some limitations in this study. First, assuming that the PCA is a circular
buffer that cannot represent the actual range of passenger OD flow, this study did not use
other means to judge the actual travel distribution of metro passenger flow, which may be
important to improve the model accuracy. Second, OSM data was used in our study and
this non-specialized map data can bias the results. In addition, socioeconomic variables
were not included in our study, which can be included in future studies to make the model
results more accurate.
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