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Abstract: Typically, images captured in adverse weather conditions such as haze or smog exhibit
light gray or white color on screen; therefore, existing hazy image restoration studies have performed
dehazing under the same assumption. However, hazy images captured under actual weather
conditions tend to change color because of various environmental factors such as dust, chemical
substances, sea, and lighting. Color-shifted hazy images have hindered accurate color perception of
the images, and due to the dark haze color, they have worsened visibility compared to conventional
hazy images. Therefore, various color correction-based dehazing algorithms have recently been
implemented to restore colorcast images. However, existing color restoration studies are limited in
that they struggle to distinguish between haze and objects, particularly when haze veils and images
have a similar color or when objects with a high saturation value occupy a significant portion of the
scene, resulting in overly grayish images and distorted colors. Therefore, we propose a saturation-
based dehazing method that extracts only the hue of the cast airlight and preserves the information
of the object. First, the proposed color correction method uses a dominant color extraction method
for the clustering of CIELAB(LAB) color images and then assigns area scores to the classified clusters.
Sorting of the airlight areas is performed using the area score, and gray world-based white balance
is performed by extracting the hue of the area. Finally, the saturation of the restored image is used
to separate and process the distant objects and airlight, and dehazing is performed by applying a
weighting value to the depth map based on the average luminance. Our color restoration method
prevents excessive gray tone and color distortion. In particular, the proposed dehazing method
improves upon existing issues where near-field information is lost and noise is introduced in the far
field as visibility improves.

Keywords: dehazing; LAB; haze; color cast

1. Introduction

Scene analysis, target tracking, remote detection systems, and other outdoor image-
based systems are affected by adverse atmospheric conditions caused by floating particles
such as haze, clouds, or smog. Outdoor images and videos captured under bad weather
often suffer from reduced visibility, low contrast, distorted colors, and low illumination
intensity, which can degrade their quality and impact the performance of these systems.
Therefore, researchers have conducted extensive studies to restore hazy images captured in
adverse weather conditions [1–8].

Typically, atmospheric particles such as fog and smog manifest as white or grayish
colors in scenes, and previous research assumed this coloration and performed dehaz-
ing accordingly. However, hazy images captured under real-world weather conditions
often exhibit color variations due to various environmental factors such as sand, chemical
substances, sea, noise, and lighting conditions [9–12]. Color-shifted hazy images have
hindered the accurate color perception of scenes, and the intense coloration of dense haze
has often resulted in worse visibility compared with standard hazy images. Consequently,
conventional dehazing methods [1–8] failed to restore the color of color-cast real hazy
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images, often producing distorted color. Therefore, unlike typical hazy images, real hazy
images have presented greater challenges in dehazing due to color-cast issues.

Color correction-based dehazing algorithms have been proposed to restore color-cast
images such as sandstorm images and underwater scenes. To address the issue of blurred
visibility, Koschmieder’s atmospheric scattering model (ASM) [13,14] has been used as
a popular single-image dehazing method [1–6]. ASM effectively defined various hazy
images that required color correction, not limited to typical hazy images, and was used for
various dehazing tasks, including underwater images [15–18], sandstorm images [19–21],
and color-cast remote detection images [22].

As He et al. proposed a dark channel prior (DCP) effective in removing haze, vis-
ibility restoration studies for various color-cast images have been conducted based on
DCP [17–21]. Li et al. [17] effectively restored underwater images by calculating the dif-
ference between the dark channel priors of green and blue channels and the red channel
prior. Shi et al. proposed halo-reduced dark channel prior dehazing (HRDCP) in which
DCP was applied to the CIELAB(LAB) color space [20] to minimize the color distortion
issue of the dehazing algorithm. Furthermore, Shi et al. proposed normalized gamma
transformation-based contrast-limited adaptive histogram equalization (NGCCLAHE) [21]
as a revised method for compensating the insufficient contrast improvement function of
HRDCP by applying a gamma correction formulation to contrast limited adaptive his-
togram equalization (CLAHE) [23], a well-known contrast improvement method. Both
HRDCP and NGCCLAHE efficiently restored color-cast hazy images using the gray world
hypothesis for white balancing. In addition, various other dehazing methods apply color
constancy to the images [15–17,22,24]. Among them, weighted scene depth adaptive color
constancy (WSDACC) [22] effectively removed color cast in heavily affected images by
correcting the loss of ambient light extinction in the medium as an image formation model.

However, existing color restoration studies have failed to consider the characteristics
of haze models affected by ambient light, resulting in unsatisfactory results in some images.
For example, color cast due to weather, scenes, or ambient light may exhibit colors similar
to haze veils; however, existing methods are unable to address this, leading to output
images with excessive grayscale or distorted colors. Furthermore, in cases where colorful
objects occupy a wide area, distinguishing between the color of the haze and the objects is
challenging, thereby posing limitations to existing methods.

Therefore, we propose a saturation-based dehazing method that preserves the informa-
tion of objects by extracting only the hue of cast airlight. The proposed method addresses
the existing color distortion issue by using the LAB color space in color correction and de-
hazing. First, the proposed color correction method uses a dominant color output method
to cluster LAB color images and assign area scores to the classified clusters. These scores
are used to identify the airlight areas, and the hue of the corresponding areas is detected to
perform gray world-based white balancing. Furthermore, using the correlation between
the luminance and saturation of the image and the depth of haze from the corrected image,
this method generates a depth map equation. To address the loss of near-field information
and the generation of far-field noise as visibility improves, this method uses the saturation
of the restored image to separate and process far-field objects from airlight and applies
a weighting value to the depth map based on the average luminance. The parameters of
the defined depth map were estimated using multiple linear regression according to the
linear characteristics and applied to the ASM for dehazing. The proposed method prevents
excessive grayscale and color distortion while preserving object colors, thus improving
upon the limitations of existing color restoration-based dehazing methods.

The remaining structure of this paper is as follows. Section 2 discusses theories related
to color restoration, and Section 3 describes the proposed dehazing method. Section 4
presents the experimental results and discussions, comparing our method with existing
methods. Finally, Section 5 concludes the paper.
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2. Dehazing for Color Restoration
2.1. Atmospheric Scattering Model

ASM, or Koschmieder’s optical model [13,14], is widely used to restore blurred images
in image processing research. ASM defines a hazy image I(x) as follows:

I(x) = J(x)t(x) + A(1− t(x)) (1)

t(x) = e−βd(x) (2)

where x is the spatial coordinate of the scene, t(x) is the transmission of the scene, A is
airlight, and J(x) is the scene without haze. Also, β in Equation (2) is a scattering coefficient,
and d(x) is the depth of the scene. In Equation (1), J(x)t(x) represents direct decay, and
A(1− t(x)) represents the airlight area. t(x) shows an exponential decay with distance
d(x) according to Equation (2). Therefore, if the distance between the observer and the
scene is very long, the transmission rate t(x) ≈ 0, and according to the definition of ASM,
the direct decay area represents 0, while A has a value very close to I(x). This can be shown
in the following equation:

I(x) ≈ A(∞) , d(x)→ ∞ , t(x)→ 0 (3)

Here, A(∞) shows the entire area of the background airlight with infinitely large d(x).
Generally, since the sky area is the farthest from the object, A(∞) can be considered as
the atmospheric particles containing most of the haze information. Based on Equation (1),
dehazing involves obtaining J(x) by estimating A and t(x).

2.2. Gray World Hypothesis

When only the aforementioned ASM is used, the biased haze color can degrade
the color recognition of the image, and the dark haze color may also degrade visibility.
Therefore, many dehazing methods for color-cast images restore image color based on the
gray world hypothesis [15,20–22].

The gray world hypothesis indicates that in a typical RGB color image, the average of
each color channel is identical. Given that the R, G, and B channel values of a color-cast
image I(x) are Ir(x), Ig(x), and Ib(x), and the white balance result is Îr(x), Îg(x), and Îb(x),
respectively, the gray world hypothesis is expressed as follows [25,26]:

Îr(x) = Gavg
Ravg

Ir(x)

Îg(x) = Ig(x)

Îb(x) = Gavg
Bavg

Ib(x)

(4)

Given that the widths of the row and column of I(x) are M and N, respectively, the
average Ravg, Gavg, and Bavg of the R, G, and B channels can be expressed as follows:

Ravg = 1
MN

MN
∑

X=1
Ir(x)

Gavg = 1
MN

MN
∑

X=1
Ig(x)

Bavg = 1
MN

MN
∑

X=1
Ib(x)

(5)

The resulting images of the gray world hypothesis from the aforementioned
Equations (4) and (5) can be verified in Figure 1.

In Figure 1, the typical hazy image produces a result very similar to the original
image, as shown in Figure 1a,c. In contrast, the color-cast image shows a biased histogram,
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as shown in Figure 1b, and the gray world hypothesis restores color by moving and
overlapping the corresponding histogram, as shown in Figure 1d.
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Figure 1. Histogram of the gray world hypothesis: (a) normal hazy image, (b) color-cast hazy image,
(c) restored normal image, and (d) restored color-cast image.

2.3. Gray World Hypothesis in the LAB Color Space

As discussed above, the gray world hypothesis restores color by correcting the reduced
R, G, and B channels. However, because the RGB channel also contains the luminance of
the image, Equation (4) can cause another color distortion due to excessive white balancing.
Therefore, to address this issue with RGB images, the gray world hypothesis using LAB
color space has been proposed [20,21].

CIELAB stands for a three-dimensional color space consisting of three channels, L,
a, and b. The L channel represents the brightness component, and the a and b channels
represent the saturation components. In particular, the a and b channels allow for the linear
process as they are expressed on a grid: the negative value in the a channel is in green, and
the positive value is in red; and the negative value in the b channel is blue, and the positive
value is in yellow. In other words, higher values of a and b result in a stronger reddish or
yellowish color cast, while a typical gray world has values of a and b close to 0.

Based on the characteristics of LAB, as shown in Equation (6), white balancing in
the LAB color space can be performed. Because the saturation and luminance channels
are separated in the LAB color space, Equation (6) does not affect L, resulting in little
color distortion.

â(x) = a(x)− aavg
b̂(x) = b(x)− bavg

(6)

Here, a(x) and b(x) represent the a and b channel values in LAB, respectively, and
aavg and bavg are the averages of a(x) and b(x).

3. Proposed Dehazing Method

A flowchart of the proposed method is shown in Figure 2. As shown in Figure 2,
the proposed dehazing method incorporates the following four stages: extraction of color
components in airlight, improved hazy color correction based on the gray world hypothesis,
depth map setting based on luminance and saturation, and dehazing. Since both color
correction and dehazing in this study used the LAB color space, the RGB color space was
first converted into the LAB color space to perform the color correction algorithm, and
the color-corrected image was used as an input image for dehazing to estimate the depth
map for the LAB color space. The estimated depth map restored the L channel through the
ASM, and the restored L, a, and b channels were converted to the RGB color space for the
final output.
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3.1. Extraction of Color Components in Airlight

Because the entire background airlight A(∞) in a hazy image comprises bright pixels,
the brightest pixels are generally aligned, and their average is considered to be airlight [1–6].
However, when there are objects in the image that have white as their inherent color, this
method can include information from these objects rather than just the airlight. In particular,
in the case of the L channel, which represents the luminance of the image, this method can
result in even less reliable airlight extraction results.

Therefore, the proposed method to prevent such an error shows a way to output
airlight by using the method which extracts the dominant color. The most dominant color
extraction methods [27–29] use the K-means algorithm in CIELAB, an RGB color space. In
recent research, Chang [29] defined the following hypotheses based on the analysis of color
palette datasets:

1. In most cases, the number of dominant colors is between 3 and 6.
2. High saturation colors are often selected, with the most vivid colors almost always

being chosen.
3. The color that occupies the largest area is almost always chosen, regardless of its

conspicuousness.
4. When multiple colors are somewhat conspicuous, there is a greater likelihood that

other colors will be chosen.
5. Colors that differ significantly from the surrounding environment are more likely to

be chosen.

In this study, clustering is performed by applying that algorithm to most hazy images;
the sky area is dominant, and the sky can be differentiated from objects into Chang’s
hypotheses 3 and 5. In particular, hypothesis 3 suggests that when the number of clusters k
is small, the range may not include large areas, so an appropriate k should be chosen. The
results depending on K are described in Section 3.1.2. In addition, Figure 3b,c show the
results of the conventional airglow detection method and the proposed method.

Figure 3a shows the clustering result of the image, and Figure 3b,c show the results
from the existing airlight extraction method and proposed method, respectively. In Figure 3,
the pink area represents the extracted airlight area.

In this study, to perform the algorithm, the RGB image is first converted to the LAB
color space in Sections 3.1.1–3.1.3 explain the proposed airlight hue extraction method.
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3.1.1. Execution of the LAB Color Space Conversion Equation

To execute the proposed method, the LAB color space conversion equation is used to
convert the entered RGB image into the CIELAB color space. The well-known LAB color
space conversion equation is shown below [20,21].

L = 116 f
(

Y
Yn

)
− 16

a = 500
[

f
(

X
Xn

)
− f

(
Y
Yn

)]
b = 200

[
f
(

Y
Yn

)
− f

(
Z
Zn

)] (7)

Here, X
Y
Z

 =

0.4124 0.3576 0.1804
0.2127 0.7152 0.0722
0.0193 0.1192 0.9502

R
G
B

 (8)

f (q) =
{

3
√

q, q > 0.008856
7.787q + 4

29 , q ≤ 0.008856
(9)

Xn = 95.047, Yn = 100.000, Zn = 108.883 (10)

Here, R, G, and B are the pixel values of the R, G, and B channels, respectively, and L,
a, and b are the pixel values of the L, a, and b channels, respectively. Further, Xn, Yn, and Zn
are the tricolor stimulation values of the reference white light in the CIE XYZ color space.

3.1.2. Division of the Image Using K-Means Clustering

The well-known K-means clustering is a non-training-based method that forms a
cluster by placing k arbitrary central points on the closest objects. It is expressed as follows:

argminS

k

∑
i=1

∑
x∈Si

‖x− µi‖2 (11)

where x is the data, S is a cluster, µ is the average of the cluster components, and k is the
number of clusters. To execute K-means according to Equation (11), the number of clusters
k and the data with which sorting is performed x must be established.

Generally, K-means algorithms for dominant color output in the CIELAB color space [28,29]
use the saturation channels a and b of the image as input data. However, if an object with
an achromatic color is present, it will form the same cluster as the airglow because its a and
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b values are almost identical. Also, if there is a color cast across the scene, the difference in
the saturation of the entire image may be small and clustering may be less effective.

Accordingly, this study sets the input value as follows:

• The whole LAB color image from Equation (7) is used as the input image.
• The number of clusters “k” is set to 6 for better separation of bright objects.
• The number of repetitions is 3, which is the default value of the algorithm.
• K-means is initialized using cluster centroid initialization and the squared Euclidean

distance measurement method.

In this paper, we segmented the images based on the K-means++ algorithm, and all
k values were set to 6, which is the number that satisfies Chang’s first hypothesis.

K, the number of clusters, affects the detection results for the sky area. Unlike tradi-
tional saturation-based methods, the proposed method uses the LAB color channel, which
bases clusters on shading and saturation differences. We measured the proposed method
for k = 3–9 and found that when k is small, the objects in the fog image are detected in the
same cluster as the sky area. Conversely, for a large k, sky areas are detected in multiple
clusters. The experimental results show that the optimal value of k is 6, so we used k = 6
for clustering in this paper.

Based on the designed value, K-means clustering is performed to divide the LAB color
image. The clustering results are shown in Figure 4, which also compares the saturation
channel-based K-means and the proposed method.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 22 
 

3.1.2. Division of the Image Using K-Means Clustering 
The well-known K-means clustering is a non-training-based method that forms a 

cluster by placing k arbitrary central points on the closest objects. It is expressed as fol-
lows:  

𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑥 − 𝜇 ‖2∈1

 (11) 

where 𝑥 is the data, 𝑆 is a cluster, 𝜇 is the average of the cluster components, and 𝑘 is 
the number of clusters. To execute K-means according to Equation (11), the number of 
clusters 𝑘 and the data with which sorting is performed 𝑥 must be established.  

Generally, K-means algorithms for dominant color output in the CIELAB color space 
[28,29] use the saturation channels a and b of the image as input data. However, if an 
object with an achromatic color is present, it will form the same cluster as the airglow 
because its a and b values are almost identical. Also, if there is a color cast across the scene, 
the difference in the saturation of the entire image may be small and clustering may be 
less effective. 

Accordingly, this study sets the input value as follows: 
• The whole LAB color image from Equation (7) is used as the input image.  
• The number of clusters “k” is set to 6 for better separation of bright objects. 
• The number of repetitions is 3, which is the default value of the algorithm. 
• K-means is initialized using cluster centroid initialization and the squared Euclidean 

distance measurement method. 
In this paper, we segmented the images based on the K-means++ algorithm, and all 

k values were set to 6, which is the number that satisfies Chang’s first hypothesis.  
K, the number of clusters, affects the detection results for the sky area. Unlike tradi-

tional saturation-based methods, the proposed method uses the LAB color channel, which 
bases clusters on shading and saturation differences. We measured the proposed method 
for k = 3–9 and found that when k is small, the objects in the fog image are detected in the 
same cluster as the sky area. Conversely, for a large k, sky areas are detected in multiple 
clusters. The experimental results show that the optimal value of k is 6, so we used k = 6 
for clustering in this paper. 

Based on the designed value, K-means clustering is performed to divide the LAB 
color image. The clustering results are shown in Figure 4, which also compares the satu-
ration channel-based K-means and the proposed method.  

   
(a) (b) (c) 

Figure 4. Clustering results of the color-cast image: (a) original hazy image, (b) clustering using only 
a and b channels, and (c) clustering using the LAB color image. 

Figure 4a,b show the sky area in the orange cluster area. However, Figure 4b also 
contains objects with low saturation; therefore, the proposed method is more favorable 
for separating the sky area. 

  

Figure 4. Clustering results of the color-cast image: (a) original hazy image, (b) clustering using only
a and b channels, and (c) clustering using the LAB color image.

Figure 4a,b show the sky area in the orange cluster area. However, Figure 4b also
contains objects with low saturation; therefore, the proposed method is more favorable for
separating the sky area.

3.1.3. Airlight Extraction Based on Area Scores

As shown in Figure 4, the clustering area sorted in Section 3.1.2 selects the optimal sky
area by calculating the area score of these clusters. The sky area shows bright pixels in the
image [1–6] with very low scattering [30]. Further, it has a relatively low saturation value
compared with neighboring areas due to floating particles [5,31]. In this paper, the sky area
consists of a set of bright, low variance, and low saturation pixels.

When the mean and variance of the L channel of the clustered group and the mean
of the a and b channels are given as µ(Li), σ(Li), and µ(µ(ai), µ(bi)), they represent the
brightness, variance, and saturation of the clusters, respectively. First, µ(Li) represents
the mean of the L channel, so the larger the µ(Li), the larger the brightness value of the
sample pixels in the cluster. Second, σ(Li) represents the distribution of brightness values,
signifying the distribution of pixels in the cluster. Finally, the µ(µ(ai), µ(bi)) represents the
mean of the saturation channels, and the higher the value, the more saturated the cluster.
Therefore, scorei, the area score for airglow estimation, is defined by Equation (12).

scorei = µ(Li)− σ(Li)− µ(µ(ai), µ(bi))
i = 1, . . . , k

(12)
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Here, µ(·) and σ(·) represent the average and scattering values of each cluster. Based
on the characteristics of the sky area, the cluster with the highest value of scorei is selected
as the airlight area. The selected airlight area is shown in Figure 3c. As shown in Figure 3c,
the selected airlight area is dominant in the image; thus, the top 1% of the pixels in this
cluster are selected as the final airlight A, and their L, a, and b channel averages of the final
airlight are entered into the 1 × 3 airlight matrix.

3.2. Improved Haze Color Correction Based on the Gray World Hypothesis

The existing color restoration methods are based on the gray world hypothesis, and
color consistency and white balance are performed by adjusting the color average. However,
depending on the scene, original images without additional hues may show a biased
histogram. This can be observed through histograms and color means, as shown in Figure 5.
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In Figure 5, when colorful objects dominate a wide range, the image exhibits a biased
histogram. In such cases, the gray world hypothesis, as shown in Figure 5c, can perceive
incorrect colors and perform excessive white balance [32]. This can be improved through
the saturation of A(∞), as shown in Figure 5d.

The saturation of A(∞) shows a value very similar to the hue added in the image.
Accordingly, the proposed method restores the color-cast image using the saturation value
of A(∞) to the gray world hypothesis. Given that the a and b channel values of the airlight
matrix extracted in Section 3.1 are aA and bA, respectively, the proposed method calculates
the corrected colors âA(x) and b̂A(x) based on Equation (6).

âA(x) = a(x)− waA

b̂A(x) = b(x)− wbA
(13)

In Equation (13), w is the constant that shows the level of white balance and is set to
0.95 ∼ 1. Weight w has a value of [0 1], and as w increases, the image becomes closer to
grayscale. In this paper, we use a w of 0.95 for all datasets to carry out white balance.
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3.3. Depth Map Setting Based on Luminance and Saturation
3.3.1. Depth Map of Haze Based on Existing Studies

The relation of a depth map to the saturation and luminance of a hazy image has
already been proven in previous studies [5,31] using linear models. Accordingly, the depth
map in the LAB channel can be expressed in a linear model as shown below.

d(x) = a1 + a2L(x) + a3(|a(x)|+ |b(x)|) + ε0 (14)

In this equation, saturation is expressed as |a|+|b|; a1, a2, and a3 indicate the parame-
ters for linear representation of the depth map. In addition, ε(x) is a random error that can
be calculated using a Gaussian distribution model, N

(
0, σ2), where the average is 0 and

the scattering is σ [5].

d(x) ∼ p
(

d(x)|x, a0, a1, a2, σ2) = N
(
a1 + a2L + a3

(
|a|+ |b|

)
, σ2) (15)

The multiple linear regression model satisfies ε ∼ N
(
0, σ2) by the normality of the

errors and has an expected value of zero. This causes the conditional expected value
of the output to mean a1 + a2L + a3(|a|+ |b|), the d(x) formula without the error term.
σ, N

(
0, σ2)’s input value, can be computed by the embedded multiple linear regression

algorithm. Based on previous studies [5,31], a depth map has a strong correlation with the
luminance and saturation of an image. Therefore, this study estimated the parameters a1,
a2, and a3 using multilinear regression, as presented Algorithm 1.

Algorithm 1. Parameter estimation algorithm using multilinear regression.

Input dataset
Depth map: 450 depth map datasets on NYU ground truth images
L, C, a, b: 450 L, |a|+ |b|, a, b channel NYU images calculated from Section 3.1.1

Output: σ for parameters a1, a2, a3, and the normal distribution of the residual zone
Begin

for index = 1:450
Constant matrix with its component only at x1 = 1; x2 = L(index); x3 = C(index);
X = [x1 x2 x3]; Y = depth map(index);
Perform the multilateral regression algorithm using X as the input and Y as the output.
Enter the parameter and scattering of the corresponding index output to the 1, 2, 3, 4
columns of the output matrix l.

End
If a value with R2 ≤ 0.5 exists, the corresponding data are deleted.
Calculate the average of the final data on the output l, and a1, a2, a3, σ.

End

To estimate the parameters in Equation (14), a depth map of a fog-free image is
required as a dataset. Thus, we use the NYU dataset included in the D-Hazy dataset [33]
as a sample. The NYU dataset provides depth maps of the hazy and ground truth images
for each of the 450 fog images. For each of the collected NYU datasets, the values of L,
a, b, and |a|+ |b| are computed and are set as the input value X for the multiple linear
regression. When setting the depth map to the output Y, according to Equation (14), the
estimated parameters are output as the matrix l of size 450× 4, and the final parameters
are computed by averaging l.

Equations (14) and (15) can effectively estimate the depth map using only a simple
linear equation. However, because the same equation is applied to the entire region, the per-
formance of restoring visibility for nearby objects’ shading or distant scene visibility is still
unsatisfactory. Therefore, this study introduces weights reflecting saturation characteristics,
as explained in Section 3.3.2.
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3.3.2. Depth Map with the Saturation Weight

Scenes in distant areas create dark shading and noise as visibility increases [5,32].
Hazy images contain scenes that require visibility due to atmospheric light; thus, a method
to distinguish between the sky area and objects is needed to address this. This study uses
the color-restored saturation of a and b channels as the method for differentiating haze
and objects.

The proposed method is explained in more detail in the saturation map shown in
Figure 6. The saturation used the |a|+|b| value, multiplied by 10, to visualize the noise in
the sky area.
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In Figure 6, the color-restored input image shows the acromatic airlight area mostly
via Equation (13). As a result, the airlight area shows the darkest value, and as shown
in Figure 6b, airlight and objects can be separated by the color of the objects. Based on
this assumption, the saturation map applied with the weighting value s(x) is proposed
as follows.

s(x) = (L(x)− µw)(|a(x)|+ |b(x)|) (16)

Here, µw is the average of the L channel of the white-balanced total image, showing
the standard by which to differentiate close and distant objects. s(x) outputs a positive
value against the distant scene, whose luminance is higher than µw, and a negative value
against the close scene, whose luminance is smaller than µw. As a result, Equation (16)
performs stronger dehazing as it is closer to airlight, and dehazing with a smaller weighting
value is performed on close objects susceptible to shading.

Since the saturation of the sky area results in a very low value close to 0, based on the
assumption of the saturation of the sky area, the multiplication of s(x) and saturation in a
distant scene leaves only the hazy object components except the sky area. The multiplication
of s(x) and saturation is shown in Figure 6c, which was amplified 10 times for visualization.

As explained, this study sets d(x) based on luminance and saturation as follows:

d(x) = a1 + a2L(x) + a3s(x) + ε0 (17)

s(x) in Equation (17) is the saturation applied with the weighting value set in Equation (16).
All parameters in Equation (17), a1, a2, and a3, and scattering σ can be calculated by resetting
the input value x3 as s(x)C in Algorithm 1, and the random error ε0 can be calculated by
applying the calculated scattering σ to Equation (15).

Because of executing Equation (17) in Algorithm 1, the values a1 = −0.2138, a2 = 0.9103,
a3 = 1.3970, and σ = 0.0224 were obtained, and σ was used to generate random error ε0,
for each location x, through the Gaussian distribution model described in Equation (15).
This study uses all of these parameters as generalized parameters for all hazy images.
Meanwhile, Figure 6b,c show some noise, and to remove it, we performed guide filtering [3].

The proposed depth map estimation, as explained above, is performed as follows:

1. Retrieve the L, a, and b channels of the image resulting from the restoration presented
in Section 3.2 and define their pixel values as L(x), a(x), and b(x).
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2. σ = 0.0224 is applied to the Gaussian distribution model of Equation (15), N
(
0, σ2),

to produce the random error ε0 to each location x.
3. Enter these into Equation (17) using a1 = −0.2138, a2 = 0.9103, a3 = 1.3970, and ε0 to

estimate d(x), the depth map to which the weighting value of saturation is applied.
4. To solve the noise of the saturation map, filtering is performed using the guide filter

on d(x).

Figure 7 illustrates the depth map and the corresponding guide filtering results.
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3.4. Dehazing

We detected the airglow A(∞) through Section 3.1 and restored the color of the image
through Section 3.2, and we estimated the depth of the fog d(x) in Section 3.3. Thus, t(x)
and J(x) can be obtained using the ASM equation.

Fog images captured in bad weather are more affected by noise than normal images
due to the influence of suspended particles. The resulting image J(x) is more susceptible to
noise and more noise can occur when the transmission rate t(x) value approaches 0 or 1. To
avoid this noise, we set t(x) in the range of 0.05 to 0.95 [5,7–10]. Using about 200 different
fog image datasets, we measured the range from 0 to 1 on both sides in 0.01 decrements,
with the best overall results obtained between 0.05 and 0.95.

t(x) = max
(

0.05, min
(

0.95, e−βd(x)
))

(18)

The aforementioned output A(∞) and t(x) in Equation (18) are entered into ASM
Equation (1). To prevent color distortion, the L channel, which shows only luminance, is
set to input image I(x) and used in the ASM equation.

J(x) =
L(x)− LA

t(x)
+ LA (19)

In Equation (19), LA is the L value of the airlight matrix A, A(1, 1); J(x) is a grayscale
image. To obtain an RGB image, the L, âA, and b̂A values are substituted in the J, a, and b
values of the LAB color space conversion equation. The equation for converting the LAB
color space to the RGB space is shown below [18,19].

X = Xn f−1
(

J+16
116 + âA

500

)
Y = Yn f−1

(
J+16
116

)
Z = Zn200

(
J+16
116 −

b̂A
200

) (20)

R
G
B

 =

 3.2410 −1.5374 −0.4986
−0.9692 1.8760 0.0416
0.0556 −0.2040 1.0570

X
Y
Z

 (21)
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In Equation (19), f−1(q) is the inverse function of f (q) in Equation (9); Xn, Yn, and Zn
show values identical to those in Equation (10).

The guide filter applied in Figure 7 can reduce the contrast of the image somewhat
because it smooths out the edge area based on the original image [5,31]. To solve this
issue, the well-known contrast improvement technique CLAHE [23] was applied to an RGB
image previously produced for correction. In this study, to prevent supersaturation of the
image, the contrast improvement limit of CLAHE was set to 0.03–0.05. CLAHE’s contrast
enhancement limit has a range of [0 1]. The proposed algorithm was simulated for various
fog images in 0.01 increments, and the best overall characteristics were obtained at 0.03.

4. Experimental Results and Discussions

This paper uses a desktop with an intel Core i5-2400 CPU (3.1GHz) and 4GB memory
as a test platform and runs the algorithms in MATLAB R2023a. In this study, recent
studies on color-added hazy images, HRDCP [20], NGCCLAHE [21], and WSDACC [22],
were compared with the proposed method to assess its performance. While HRDCP
and NGCCLAHE have often been used for dust dehazing, the authors showed that they
performed well for general hazy images and color-cast images. The proposed method and
the existing methods were visually evaluated in Section 4.1 and objectively evaluated in
Section 4.2.

4.1. Visual Comparison of Various Hazy Images

In this study, Laboratory for Image and Video Engineering (LIVE) [34] and sand dust
image [35] datasets were used as test images to perform dehazing on actual hazy and color-
cast images. Through Figures 8 and 9, the dehazing performance on various color-cast hazy
images was evaluated. Figures 8 and 9 show the visual evaluation of the hazy images of
various concentrations and hazy images damaged by various colors, respectively.

The visual evaluation in Figure 8 shows that HRDCP resulted in an intensified halo
effect, shadowing, and a grayscale effect with increased haze concentration, and in par-
ticular, the saturation of the image dropped significantly due to the excessive contrast
improvement in the image with a lower-middle concentration. In addition, HRDCP added
red color to the sky area due to the white balance in the low image, with an extremely small
addition of haze color. NGCCLAHE also added red color to the low image, and reduced
saturation in the lower-middle image. In contrast, WSDACC increased color distortion
as the yellow haze was distributed widely in the image. The proposed method showed
excellent visual results for all images in Figure 8, and in the low image, it showed superb
results in both visibility improvement and color restoration. Furthermore, it preserved as
much as possible the sky area and lighting area, which are susceptible to distortion, noise,
or shadowing.

Figure 9 presents the color restoration performance against the red, yellow, green,
and blue color-cast images in order, all of which included objects such as trees, rivers,
and lakes whose colors are similar to hazy veils. As shown in Figure 9, HRDCP, which
offers strong color restoration performance, lost the color information of the scenes in all
test images. While NGCCLAHE exhibited a considerable improvement over HRDCP, the
loss of color information was considerable in the case of large-scale scenes in the yellow
or blue image, such as trees or lakes. WSDACC introduced color distortions for images
with high saturation haze veils, similar to that in Figure 9. In contrast, our approach used
an airlight color detection algorithm to preserve the original colors of scenes, even those
closely resembling haze.
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In this study, the results of the general hazy images, in which airlight is in grayscale,
are shown in Figure 10, and the versatility of the algorithm was evaluated. To verify the
dehazing performance of the distant scenes shown in Figure 10, their detailed shots are
shown in Figure 11. The detailed areas correspond to the white squares in Figure 10.

In this paper, quality parameters and no-reference evaluation metrics are used to
evaluate the quality of typical fog images. For the resulting image in Figure 10, the edge
ratio (e) [36], the mean slope ratio (r) [36], fog reduction factor (FRF) [37], and perception-
based image quality evaluator (PIQE) [38] were used as quality evaluation metrics to show
the quantitative results. Of these, the higher the e, r, FRF, and PIQE, the better the quality,
and the lower the PIQE, the better the value. The results of all quality metrics for Figure 10
are shown in Table 1.
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Figure 10. Color-restored dehazing results of general hazy images: (a) original hazy image,
(b) HRDCP, (c) NGCCLAHE, (d) WSDACC, and (e) proposed dehazing method.

Figure 10 shows images with high saturation or those in which an object occupies a
large area of the image. In particular, test images 1~4 biased the histogram of the image
with the colors of red vehicles, orange flowers, yellow fields, and green mountains.

The detailed shots in Figure 11 show the close scenes in test 1 and the distant scenes in
tests 2–6. The assessment of the visibility improvement performance in Figure 11 shows
that HRDCP and NGCCLAHE resulted in a bluish haze that is clearly seen in tests 1
and 3, through which poor visibility from the original image could be verified. Further,
HRDCP and NGCCLAHE failed to preserve the saturation of the object and scene in all
tests, except in test 5, and as such, the distant scenes became blurry. The detailed shot in
test 5, which showed a low saturation level, also resulted in poor visibility with HRDCP
and NGCCLAHE compared to the proposed method. WSDACC showed considerably
insufficient visibility in distant scenes, similar to Figure 10, due to the dark background
color and poor dehazing performance. The proposed method preserved the hue of the
distance scenes in all detailed shots and showed superb visibility improvement. The
proposed method showed the most natural and highest contrast.
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Figure 11. Color restoration dehazing results of general hazy images: (a) original hazy image,
(b) HRDCP, (c) NGCCLAHE, (d) WSDACC, and (e) proposed dehazing method.

Table 1. Visual quality assessment results for a typical fog image.

Image HRDCP NGCCLAHE WSDACC Proposed

e

Test 1 0.0488 0.0738 0.0669 0.1049
Test 2 0.1016 0.1186 −0.1143 0.1220
Test 3 0.4725 0.3975 0.0997 0.5101
Test 4 0.0583 0.0864 −0.0107 0.0723
Test 5 0.4270 0.3816 0.0155 0.3979

Average 0.2217 0.2116 0.0114 0.2415

−
r

Test 1 2.2533 1.7719 0.4047 1.3618
Test 2 2.9243 2.1153 1.6180 1.3698
Test 3 2.2332 1.7682 0.9952 1.5707
Test 4 2.4951 1.9173 1.0384 1.3632
Test 5 2.7109 1.9456 0.7972 1.6737

Average 2.5233 1.9036 0.9707 1.4678

FRF

Test 1 0.3485 0.4788 −0.0226 0.4585
Test 2 0.0888 0.1256 −0.2988 0.1285
Test 3 0.0783 0.0237 0.0349 0.1731
Test 4 0.3383 0.3456 −0.0530 0.3544
Test 5 0.5303 0.4742 −0.0401 0.5797

Average 0.2768 0.2896 −0.0759 0.3388

PIQE

Test 1 44.4367 46.4053 50.2147 40.1527
Test 2 40.0996 35.7676 31.8466 29.2613
Test 3 43.7708 42.1776 35.8692 40.3450
Test 4 44.0385 42.1096 42.0236 36.5857
Test 5 26.1658 30.8974 38.2872 25.0304

Average 39.7023 39.4715 39.6483 34.2750

The results in Table 1 show that the proposed method exhibited lower values for
−
r , which represents the contrast between the background and the object, compared to
HRDCP and NGCCLAHE. However, visually, it produced the sharpest images in the
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results, as shown in Figures 10 and 11, and had the best visual quality for e, FRF, and

PIQE, with the exception of
−
r . In particular, the proposed method showed remarkably high

results in the fog concentration difference FRF and quality score PIQE, indicating strong
defogging performance.

4.2. Performance Evaluation Using Ground Truth Image

This study used PSNR, CIEDE2000 [39], and CIE94 [40] as evaluation indexes for the
assessment of dehazing performance and color restoration performance. PSNR evaluates
the quality of images, and CIEDE2000 and CIE94 calculate color differences between the
original and restored images to evaluate the tone of the images. For comparison, we
presented the scores of CIEDE2000 and CIE94 from the average and the square root of the
average on the CIEDE2000 and CIE94 maps, respectively. In this context, higher PSNR
scores indicate better performance, while lower CIEDE2000 and CIE94 scores indicate
superior performance.

Unfortunately, no actual haze dataset with biased colors for an objective assessment
index has been proposed for open source. Thus, we used Dense-HAZE [41], a popular
dataset that offers actual hazy images, as our input images. The Dense-HAZE dataset
provides real hazy and ground truth images using specialized fog-generating machines
on haze-free scenes as input images. In particular, Dense-HAZE generated a bluish haze
in all images, even though there was no added color because the fog machine produced
dark-colored fog. Thus, we used Dense-HAZE to evaluate both the visibility and color
restoration performance in color-biased hazy images. The Dense-HAZE images used and
the results from each algorithm are shown in Figure 12, and the quantitative evaluation
results from Figure 12 are presented in Table 2.

Dense-HAZE images in Figure 12 had limitations for visual comparison due to the
dense haze, compared with the images shown in Figure 11. However, the results from
HRDCP and NGCCLAHE showed that the images resulted in considerable performance in
the edges due to high dehazing performance, and due to strong contrast and white balance,
the overall images showed gray tone. In addition, WSDACC added a strong red color,
opposite to the blue haze, resulting in a new color cast in the output images. In contrast, our
method increased the visibility of the hazy areas and preserved the object color, similar to
that of the ground truth image. Our results, in particular, accurately recognized the original
object colors and, similar to NGCCLAHE’s results, naturally removed haze in some areas.

The quantitative comparison of the restored images from Dense-HAZE in Table 2
showed the best results for the proposed method, while in the existing methods, NGC-
CLAHE showed superior results both in PSNR and CIEDE2000, as well as CIE94, and
HRDCP showed high performance almost similar to the method proposed in PSNR in
some areas. However, the proposed method showed a particularly considerable devia-
tion in CIEDE2000 and CIE94 compared with the existing methods, including HRDCP,
demonstrating color restoration performance closer to the original.

Because the very thick haze in each image of Figure 12 made visual confirmation
difficult, the O-HAZE [42] dataset was used for visual and quantitative evaluations of the
ground truth images. While O-HAZE offered actual hazy images in the same way as Dense-
HAZE, the spreading of haze in normal concentration allowed for a visual comparison and
the determination of the effect of the color restoration algorithm on general hazy images.
The results of the visual comparison of O-HAZE in this study are shown in Figure 13, and
the quantitative results are shown in Table 3.

This paper compares the processing time of HRDCP, NGCCLAHE, and WSDACC
with the proposed method, using O-HAZE and Dense-HAZE datasets. The input images
for the experiments are the fog images in Figures 12 and 13, and the respective processing
times are shown in Table 4.
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Figure 12. Comparison of the resulting images of the Dense-HAZE dataset: (a) ground truth image;
(b) hazy image; (c) HRDCP; (d) NGCCLAHE; (e) WSDACC; (f) proposed dehazing method.

Table 2. Comparison of PSNR, CIEDE2000, and CIE94 of the Dense-HAZE dataset.

Image HRDCP NGCCLAHE WSDACC Proposed

PSNR

Column 1 25.6801 27.6232 12.9887 29.3583
Column 2 18.3533 20.6083 13.9061 21.9567
Column 3 18.5879 24.1812 14.3154 25.4478
Column 4 30.8870 30.2614 13.8340 31.8312
Column 5 18.8900 19.9033 15.2217 21.8796
Column 6 17.9036 16.6909 13.6151 18.6536
Column 7 21.8741 22.5892 12.3425 23.5417
Column 8 23.6716 23.1715 14.6542 24.4558
Average 21.9810 23.1286 13.8597 24.6406

CIEDE
2000

Column 1 65.0429 58.3551 68.994 55.5198
Column 2 80.8358 83.0109 101.178 70.1804
Column 3 71.6801 64.0757 83.9369 59.0298
Column 4 62.8703 60.0154 102.421 44.4957
Column 5 87.177 86.2875 86.9605 67.5862
Column 6 73.3669 74.9258 88.2843 71.7223
Column 7 67.9032 70.0154 97.6982 57.9881
Column 8 73.1579 75.1231 84.7146 62.4879
Average 72.75426 71.47611 89.27344 61.12628

CIE94

Column 1 40.996 37.9644 61.1512 35.6449
Column 2 56.8746 54.1844 64.2783 51.4884
Column 3 55.6438 47.5759 64.1364 46.0510
Column 4 38.7339 39.17 62.4296 37.1594
Column 5 55.4124 53.6296 59.5817 43.9504
Column 6 57.1691 57.7260 64.5412 54.5976
Column 7 50.4363 47.0993 64.8543 45.4348
Column 8 46.5830 45.4304 59.5978 43.7097
Average 50.2311 47.8475 62.5713 44.7545
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The results of the visual comparison of the O-HAZE images showed that the hazy
images in Figure 13 had general gray-tone haze as opposed to those of Dense-HAZE;
thus, the existing color restoration methods damaged the color information of objects to
some degree, as discussed in Section 4.1. When compared to the ground truth images, the
resulting HRDCP and NGCCLAHE images showed clear color distortion of the objects,
and in particular, the hue became excessively brighter than in the original images. Further,
HRDCP applied excessive contrast improvement on Figure 13, resulting in large shadows
on the images, and compared to the original images, the edges of close objects were severely
emphasized. Furthermore, WSDACC increased the red color in some hazy images, resulting
in color cast. In contrast, our method increased the visibility of hazy areas, preserving the
object color close to that of the ground truth images. In particular, our results preserved the
object color and increased the contrast of the areas where haze existed, producing natural
results without visual burdens.

The quantitative comparison of the restoration images of O-HAZE in Table 3, similar
to Table 2, showed that our proposed method showed the best results. Our proposed
method demonstrated greater deviations from Dense-HAZE compared to existing methods
and achieved superior visibility improvement and color restoration performance values.

The results in Table 4 show that the proposed algorithm has a faster execution time than
WSDACC, but it took longer than NGCCLAHE and WSDACC due to the computational
process of clustering.
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Table 3. Comparison of PSNR, CIEDE2000, and CIE94 of the O-HAZE dataset.

Image HRDCP NGCCLAHE WSDACC Proposed

PSNR

Column 1 25.4914 34.3623 25.8197 39.6625
Column 2 29.1756 35.6395 15.9377 43.3597
Column 3 26.6413 32.1664 26.1565 35.7555
Column 4 28.0609 39.7892 41.5410 55.1319
Column 5 24.4291 33.0331 14.5984 39.0183
Average 26.7597 34.9981 24.8107 42.5856

CIEDE
2000

Column 1 65.7187 57.9394 74.5331 49.2308
Column 2 57.8792 53.9991 104.156 32.3133
Column 3 56.3077 56.0603 56.4345 46.6211
Column 4 65.2795 59.8458 50.2132 38.6987
Column 5 57.8297 55.5612 85.6416 47.3394
Average 60.6029 56.6812 74.1957 42.8407

CIE94

Column 1 45.5594 34.8882 44.2823 30.2724
Column 2 45.5774 38.5965 63.0140 29.9591
Column 3 43.8257 36.1606 42.5899 31.0338
Column 4 44.7354 32.1035 32.3704 21.3600
Column 5 49.3693 38.4082 61.5174 31.1818
Average 45.8134 36.0314 48.7548 28.7614

Table 4. Comparison of execution time (sec) between O-HAZE and Dense-HAZE.

Image HRDCP NGCCLAHE WSDACC Proposed

Dense-HAZE

Column 1 0.1627 4.20× 10−6 3.5735 0.3697
Column 2 0.2981 4.20× 10−6 7.1377 0.7203
Column 3 0.4315 5.40× 10−6 10.7535 1.0884
Column 4 0.5636 4.50× 10−6 14.5247 1.4456
Column 5 0.7025 5.30× 10−6 18.1768 1.8046
Average 0.4317 4.72 × 10−6 10.8332 1.0857

O-HAZE

Column 1 0.1963 3.80× 10−6 4.5718 0.4331
Column 2 0.3885 4.50× 10−6 9.0356 0.8792
Column 3 0.6069 3.70× 10−6 13.4543 1.3217
Column 4 0.8094 3.10× 10−6 17.9645 1.7932
Column 5 1.0060 4.20× 10−6 22.4588 2.2431
Column 6 1.1899 5.00× 10−6 27.0179 2.6768
Column 7 1.3723 4.10× 10−6 31.4922 3.1199
Column 8 1.5712 4.10× 10−6 36.0234 3.5757
Average 0.8926 4.06 × 10−6 20.2523 2.0053

4.3. Limitations and Discussion of the Proposed Approach

Dehazing can be used for a wide range of image types [15–22]. However, since this
paper uses clustering to perform dehazing, color distortion occurs in some images where
airglow cannot be extracted, such as underwater images and low-light images.

In addition, the proposed method uses fixed parameter values output by the dataset
to run an algorithm that preserves the sense of space and color of the original image. Thus,
extremely distant scenes may show lower visibility compared to closer objects, as shown in
the results in Figures 10 and 13.

Finally, the computational speed of the proposed method is somewhat slower than the
existing method, as shown in Table 4. To improve the limitations of the proposed method,
we will study how to solve the saturation weighting and complex computation process.

5. Conclusions

This paper proposes an approach based on the saturation of airglow in the LAB
channel to restore color in color-cast fog images. The proposed method uses the CIELAB
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color space for both color correction and dehazing to address the problem of color distortion
in traditional RGB channels. The proposed method first white-balances only the hue of
the airglow or sky area, and not the entire scene, reflecting the nature of the fog which is
directly affected. To detect the saturation of the airglow, the dominant color output method
is used to cluster the LAB images, and the classified clusters are assigned an area score
to select the optimal airglow area. In addition, the a and b channels of the airglow are
white-balanced by running a modified gray world hypothesis in LAB.

To dehaze the color-restored fog image, a weighted depth map is computed by ana-
lyzing the correlation between brightness, saturation, and the depth of the fog. To solve
the problem of traditional dehazing where objects in the close-range view are darkened
when visibility is increased, we divide the image based on the mean of L, so that different
distances are weighted differently. To address shading and noise in the sky area, we also
take advantage of the fact that the restored airglow is achromatic to separate distant objects
from the airglow. The parameters of the depth map are estimated using multiple linear
regression based on their linear nature, and the final output depth map is applied to the
atmospheric scattering model to run dehazing.

The quantitative and visual analysis results of the existing method and the proposed
method demonstrate that the proposed method addresses the problems of existing color
restoration dehazing methods, such as scenes with fog and objects with similar saturation
and scenes with widespread highly saturated objects, and shows superior color restoration
performance. In terms of dehazing, the proposed method preserves objects in the close-
range view that are less affected by fog while improving the visibility of the distant view,
thus preserving the information in the original image as much as possible. It also handles
distant objects separately from airglow, while also addressing shading, noise, etc., in the
airglow area due to severe visibility enhancement.
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