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Abstract: In this study, we present a methodology to solve the multi-period ambulance relocation
problem based on historical data. We present a methodology to convert historical data in latitude–
longitude coordinates into cell-based network data. Then, we propose a mixed-integer programming
model that utilizes the converted data for the concomitant problem. Patient incidence is highly
uncertain. Rather than simply covering historical demand, we propose a methodology that allows
ambulances to reach as many locations as possible at any given time within a limited amount
of time, the golden time. We experimented with real data from Seoul, South Korea, and show
that the proposed mathematical model can derive an efficient ambulance operation policy with
fewer ambulances.

Keywords: ambulance relocation problem; integer programming; maximal expected covering location
problem; multi-period problem

1. Introduction

Emergency medical services are critical to the survival of patients facing life-threatening
situations. Ambulances are used as the primary means of transport to healthcare facilities,
and studies have shown a strong correlation between transport times and patient survival
outcomes [1]. This highlights the importance of fast and efficient ambulance operations.

The concept of the “golden time” is critical in emergency medical services. Defined as
the time from dispatch to first patient contact, meeting the golden hour is critical to patient
survival. Different studies have defined the golden hour in different ways. While there is
no clear definition of the golden time across countries, the general consensus is that it is
important to transport patients quickly. However, in urban centers with heavy traffic and a
high population density, arriving quickly is often a challenge. There may be a “zero zone”
where a patient cannot be reached within the designated golden time.

Traditionally, ambulances are deployed from designated locations, such as fire stations,
which facilitates vehicle maintenance, but can limit operational efficiency. Given the
dynamics of urban environments, such as changes in traffic patterns and fluctuations in
population density, a static approach to ambulance deployment can be inefficient.

This study aimed to define and optimize a multi-period ambulance relocation problem
with temporal and spatial variations in demand. We propose a mathematical optimization
model based on integer programming. We considered not only fire stations, but also other
administrative organizations as potential deployment sites. The contribution of this study
was to dynamically relocate ambulances based on real-time traffic data and historical
emergency response data. By doing so, we aimed to maximize the supply of emergency
medical services in areas where emergencies are likely to occur.

The remainder of this paper is organized as follows: Section 2 presents the related
work. Section 3 describes the proposed model. In the last section, we present a solution
analysis to validate the effectiveness of our approach.
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2. Literature Review

Optimizing ambulance relocation is crucial for effective emergency medical services
(EMSs). As urban areas grow, so does the complexity of ensuring timely medical inter-
ventions. This literature review explores key methodologies in existing research aimed at
improving EMS efficiency and response times.

Ambulance deployment studies are broadly divided into the location set covering
problem (LSCP) and the maximal covering location problem (MCLP). The LSCP is a model
that calculates the minimum number of vehicles required to fully cover the demand area.
The MCLP is a study of where to locate the maximum number of vehicles to cover the
demand area with a fixed number of vehicles.

From a firefighting force optimization perspective, the location set covering problem
(LSCP) was first introduced in [2] and has since been extended to include the study of
dynamic dispatch. The dynamic available coverage location (DACL), designed to respond
efficiently to varying demand over time, was presented in [3]. Based on the double
standard model (DSM), a mathematical model using the integer programming method was
presented [4]. The presented model ensures that all regions can be supplied with emergency
services within a certain time. A methodology incorporating real-time traffic information
and social media data to predict traffic congestion and dynamically position ambulances
was also introduced [5]. However, it should be noted that, in the LSCP, the number of
vehicles is not fixed, which could pose economic feasibility issues.

The first model of the MCLP was proposed in [6]. They did not consider the probability
of an available ambulance when an emergency call came in. The maximum expected
coverage location problem (MEXCLP) was proposed in [7]. They presented a mathematical
model based on integer programming to reflect the probability of ambulance availability.
Later, an extension of the model to a multi-period model was presented in [8]. They
validated the effectiveness of the proposed model with real data from Amsterdam. There
are studies that have evaluated the economics of static and dynamic models [9]. They
verified that dynamic dispatching is efficient based on real data from Montreal. A study [10]
examined minimizing paramedic travel distance while maximizing demand coverage. They
derived the solution based on a two-phase integer programming method and evaluated
the solution through a discrete-event simulator. Another study [11] discussed the problem
with the objective of minimizing the queue time of emergency calls in a rescue center. They
presented a methodology for dispatching and relocating ambulances to maximize demand
coverage while reducing the queue time at emergency rescue centers. In the paper, they
proposed an algorithm that integrates discrete-event simulation and mathematical models.
They validated the effectiveness of the proposed algorithm on a real dataset from Montreal.
Another study was presented that categorized and weighted the importance of emergency
medical calls [12]. They presented a mathematical optimization model based on integer
programming that considers the relocation of ambulances. They implemented a decision
support system (DSS) and verified its effectiveness through practical applications. Recent
studies on time-dependent MEXCLPs are similar to our study in that they reflect ambulance
relocation based on patterns of demand. However, our study differs in that we focused our
analysis on the zero zone, which is outside of the golden time.

Looking at other studies related to optimizing ambulance operations, one study
focused on the ambulance location problem, considering the rarity and randomness of
road crashes [13]. They presented a methodology for determining the optimal location
of ambulances using an edge maximal covering model and the Empirical Bayes method.
Another study addressed ambulance deployment by simultaneously considering demand
at one point in time and at the next point in time [14]. They defined and applied the
concept of “preparedness”, which represents the rate of readiness for emergency response.
In addition, some studies presented that COVID-19 led to a surge in demand for emergency
services and suggested strategies for efficient ambulance operations [15,16].

In addition, there exists a study that optimizes the addition of resources to a fire
department to minimize the response time to an emergency call [17]. Their research is
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similar to ours in that it focused on the addition of resources within a fire department,
but differs in that it was simulation-based. Jahangiri et al. [18] discussed the optimization of
the utilization of emergency department resources to reduce waiting times for emergencies
in the department. They studied the optimization of emergency department resource
operations based on simulation and integer programming. Their study is similar to ours
in that it focused on the efficient utilization of emergency resources, while ours focused
on multiple ambulances in a specific region. During natural disasters such as earthquakes,
there exists research on optimizing supply chains and routes to maximize the demand for
relief supplies [19]. In addition to optimizing emergency resources, Ghasemi et al. [20]
addressed the location and routing optimization of centers to ensure timely delivery of
goods to customers. These studies are similar to ours in that they optimized resource
management strategies to best satisfy demand. However, our work differs in that it
involved the dynamic reallocation of ambulances in multiple periods.

In this paper, we present a methodology for generating a network based on histori-
cal ambulance dispatch data to address the ambulance relocation optimization problem.
Furthermore, since the demand for ambulance calls is influenced by diseases and some of
these diseases exhibit seasonality, we introduced a methodology for seasonal ambulance
relocation and assessed its effectiveness. Additionally, we outline a methodology to in-
tegrate real-time traffic information into the ambulance operational strategy. Finally, we
present the results of a case study experiment to robustly calculate the number of zero
zones according to the season in order to efficiently manage zero zones, which are areas
where it is difficult for ambulances to dispatch in the golden time.

3. Problem Description and Mathematical Model
3.1. Problem Description

In this study, we first partitioned the boroughs into subzones, which are represented as
hexagonal cells. We utilized Uber’s H3 package to generate these hexagonal cells [21]. We
set the size of the hexagonal cells to be 100 m from the center of the hexagon to the vertices.
The size of Seoul, which we analyzed in this paper, is 605 km2. We determined the size
of the hexagonal cell to encompass road and terrain information suitable for ambulance
operations by conducting interviews with the person in charge of ambulance operations.
We chose hexagonal cells because they have six sides and more neighboring sides than
rectangular cells, allowing them to represent more ambulance routes.

Our model aims to determine, at each time point within a given time horizon, the num-
ber of ambulances to be allocated to each of these cells. Ambulance relocation can occur
between existing fire stations and what we term “potential centers”, which include commu-
nity centers and administrative buildings.

The purpose of the relocation is to efficiently respond to dynamically changing de-
mand. However, this strategy comes with two significant costs. First, placing an ambulance
in a potential center incurs a cost because the center was not originally designed to house
the ambulance. Second, there is a cost for the relocation itself at each point in time.

For ambulance maintenance, ambulances are ideally managed from a base center,
such as a fire station. It is also efficient for paramedics to return to the fire station where
they work to rest after a call. From a demand management perspective, the most-effective
relocation strategy is to place ambulances in hard-to-reach areas within the golden time
window for emergency medical response. However, locating ambulances away from these
base centers can be operationally inefficient. Centralizing ambulances at locations like fire
stations ensures regular maintenance, inspection, and restocking, keeping them always
ready for emergencies. Additionally, this centralized approach enhances dispatch efficiency,
ensuring quicker response times. We evaluated the cost of relocation based on the distance
required for the ambulance to return to the base center.
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3.2. Notations

Table 1 describes the notations used in this paper. In South Korea, each administrative
region has its own fire station. We define B and assumed that demand cells i ∈ Ib in each
borough b ∈ B are only covered by ambulances assigned to locations c ∈ Cb within that
borough. Let acit be 1 if location c ∈ C covers demand cell i ∈ I within the golden time,
and 0 otherwise. To check for coverage, we used the Navigation API based on real-time
traffic data. We define the golden time as 5 min.

Table 1. Sets, parameters, and decision variables.

Sets Description

B A set of Boroughs, b ∈ B
I A set of demand cells, i ∈ I
Ib A set of demand cells in borough b, Ib ⊂ I
C A set of centers to assign ambulances to, c ∈ C
Cnew A set of potential centers to assign ambulances to, Cnew ⊂ C
Cb A set of centers for assigning ambulances in borough b ∈ B, Cb ⊂ C
T A set of planning horizons, t ∈ T = {1, 2, 3, . . . , T}

Decision
Variables Description

xct Number of ambulances to assign to location c ∈ C at time t
rcc′t Number of ambulances relocated from location c ∈ C at time t− 1 to location c′ ∈ C \ {c} at time t.
yikt 1 if at least k ambulances cover demand cell i ∈ I at time t, otherwise 0
zc 1 if the new location c ∈ Cnew is used at least once, otherwise 0

Parameters Description

Pt Number of ambulances that should be assigned at time t
dit Demand in cell i ∈ I at time t
acit 1 if demand cell i ∈ I is covered by location c ∈ C at time t, otherwise 0
qt The probability that, after receiving an emergency call at time t, an ambulance will arrive within a golden time.
α Reward parameters for demand coverage expressions
βc Penalty parameters for placing an ambulance in a new potential center c ∈ Cnew

γcc′ The cost of relocating an ambulance from location c ∈ C to location c′ ∈ C \ {c}
δ Reward parameter for cells covered by at least one ambulance within the golden hour

3.3. Mathematical Model

In this section, we present a mathematical model based on integer programming for
the concomitant problem.

Max α ∑
i∈I

∑
t∈T

Pt

∑
k=1

(1− qt)qt
k−1dityikt − ∑

c∈Cnew

βczc − ∑
c∈C

∑
c′∈C\{c}

∑
t∈T \{1}

γcc′rcc′t + δ ∑
i∈I

∑
t∈T

yi1t (1)

s.t.
Pt

∑
k=1

yikt − ∑
c∈Cb

acitxct ≤ 0 ∀i ∈ Ib, b ∈ B (2)

∑
c∈C

xct = Pt ∀t ∈ T (3)

∑
t∈T

xct ≤ Mzc ∀c ∈ Cnew (4)

xct + ∑
c′∈C\{c}

rc′ct − ∑
c′∈C\{c}

rcc′t = xc(t+1) ∀c ∈ C, t ∈ T \ {T} (5)

xcT + ∑
c′∈C\{c}

rc′cT − ∑
c′∈C\{c}

rcc′T = xc(1) ∀c ∈ C (6)

yik′t ≥ yikt ∀k′ ∈ {1, . . . , k− 1}, i ∈ I , t ∈ T (7)
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yik′′t ≤ yikt ∀k′′ ∈ {k + 1, . . . , Pt}, i ∈ I , t ∈ T (8)

yikt ∈ {0, 1} ∀i ∈ I , k ∈ {1, . . . , Pt}, t ∈ T (9)

xct, rcc′t ∈ Z ∀c ∈ C, c′ ∈ C, t ∈ T , c 6= c′ (10)

The objective function consists of four terms. When we analyze an objective expression
in Section 4.3, we give it an index to analyze each term separately. The first term (a) is the
expected value to cover the demand of demand cell i ∈ I when increasing the number
of ambulances by one at each center for each time. An additional explanation of the first
term was presented in [8]. The second term (b) is the cost incurred when a potential center
c ∈ Cnew is newly used. The third term (c) is the cost incurred if an ambulance is assigned
to location c at time t and relocated to location c′ at time t + 1. As mentioned before, we
computed the relocation cost as the difference in the distance back to the base center. Finally,
the fourth term (d) minimizes the number of cells with less than one ambulance within the
golden time.

Constraint (2) implies that demand cell i is covered by at least k ambulances if k
of the ambulances deployed in the centers serving demand cell i cover demand cell i.
Constraint (3) means that the sum of the number of ambulances deployed to all centers
is equal to the total number of available ambulances at each time point. Constraint (4)
is a constraint that assigns zc a value of 1 if potential center c is used at least once in the
planning horizon. Constraints (5) and (6) are constraints that connect the values at time t
and time t + 1 by the ambulance’s relocation. Constraints (7) and (8) are constraints that are
logically established based on the number of ambulances, k, that minimally cover demand
cell i. To give an example of the constraint (7), we assumed that an arbitrary demand cell
i is covered by at least three ambulances. Since demand cell i is covered by at least three
ambulances, we can say that it is also covered by two ambulances. Similarly, it is covered
by one ambulance. To give an example of the constraint (8), we assumed that an arbitrary
demand cell i is not covered by at least four ambulances. Since demand cell i is not covered
by at least 4 ambulances, it cannot be covered by more than 5 ambulances.

4. Numerical Experiments

We tested our proposed model on real-world emergency rescue data from Seoul, South
Korea. We used the GUROBI 10.0 solver on a machine with an Intel(R) i7-4th CPU with
32 GB of RAM.

4.1. Dataset

We selected three boroughs in Seoul (Seongbuk-gu, Dongdaemun-gu, Seongdong-gu)
to conduct the experiment. The dataset we used is the emergency rescue data from a
selected region from 2021 to 2022. The total size of the data is 666,358 cases. We define
the amount of demand in each demand cell as a proportion of the total number of calls,
as shown in Equation (11).

dit =
The number of rescue calls of i at time t

∑k∈I The number of rescue calls of k at time t
∀i ∈ I , t ∈ T (11)

Figure 1 shows the regions we analyzed and a visualization of the analysis based on
hexagonal cells. Furthermore, based on the interviews with fire officials, we divided the
planning horizon into seasons because there is seasonality in the efficiency of ambulance
operations and disease outbreaks. Thus, we considered December through February to be
winter, March through May to be spring, June through August to be summer, and September
through November to be fall. The number of ambulances assigned to each time period (Pt)
was the same at 17. This is because, in Korea, all ambulances are operated around the clock
in shifts.
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Figure 1. (a) shows the regions to be analyzed. (b) is a map of the demand information after dividing
the region into hexagonal cells from the historical data for the three regions we want to analyze.
The darker the color, the higher the demand is.

4.2. Parameters

Using a grid search method, we determined the best parameters in the objective
function (1). We created a set of combinations of parameters for the 2021 dataset, conducted
the experiments, and interviewed real-world ambulance dispatchers. We set α to 30, βc to 1,
and δ to 3 for the parameters of the objective function given in Equation (1). We calculated
γcc′ as the cost of returning to the base center, as described in Section 3.1. We performed an
analysis on the dataset and defined the probability qt that an ambulance will arrive in the
golden time, when an accident is reported, as 0.9. Details regarding the parameter settings
are described in Appendix A.

4.3. Result

Table 2 is a table that compares the results of the experiments for each term of the
objective function (1).

Table 2. Experiment results.

Before Mathematical Model

Demand
Cover (a)

Open Cost
(b)

Relocation
Cost (c)

Non-Zero
Zone

Reward (d)

Demand
Cover (a)

Open Cost
(b)

Relocation
Cost (c)

Non-Zero
Zone

Reward (d)

Value 66.78 0 0 156 67.67 6 −2.4 372

For each column, the number in parentheses indicates the index assigned to each
term in the objective function (1). The “Before” column represents the current operational
strategy without applying the proposed mathematical model.

The sum of the objective values improved from 222.78 before to 445.43 after applying
the mathematical model, an improvement of about 99.94%. Looking at the values of the
main terms, Term (a) for the demand cover reward improved by 1.33%. Term (d), which
rewards cells where an ambulance can be dispatched within the golden time, improved by
138.46%, from 156 before to 372 after applying the mathematical model.

Figure 2 compares the current practice and the results from the mathematical model
regarding the number of ambulances deployed in each region. For Seongbuk-gu, the num-
ber of ambulances remained the same at 6 during spring, while it was reduced to 5 for the
rest of the seasons. In Dongdaemun-gu, 6 ambulances were deployed in winter and 7 in the
other seasons. In Seongdong-gu, 4 ambulances were deployed in spring as before, but the
number increased to 5 in summer and fall and to 6 in winter.
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Figure 2. Number of ambulance deployments for each time period.

This result is likely due to Dongdaemun-gu being located at the center of the three
regions, with the main demand stemming from the center, as illustrated in Figure 1b.
For Seongdong-gu, even though the demand was not lower than in the other two regions,
the current number of ambulances was insufficient. Therefore, more ambulances were
deployed to cover more demand cells within the golden time.

Figure 3 is a chart comparing the number of cells that cannot be covered within the
golden time, by region and season, before and after applying the mathematical model.

We defined the zero zone as the cells with yi1t = 0 that are not covered by at least one
ambulance. Prior to the mathematical model, there were 171 zero zones. In the mathemati-
cal model solution, there were 90 on average for the four planning horizons. The number
of zero zones decreased by 47.37%, especially for Seongbuk-gu, which decreased by about
61.22% from 98 to an average of 38.

Figure 3. Number of zero zones where it is difficult for an ambulance to cover within the golden time.

Figure 4 shows the change in ambulance deployment over the seasons on a map.
When analyzing Seongbuk-gu, we see that even though one fewer ambulance is

deployed compared to before, as shown in Figure 2, the number of zero zones was reduced
by more than half, as illustrated in Figure 3. This reduction can likely be attributed to
ambulances being deployed across a broader area than in the previous setup. For fall
and winter, while the center locations remained consistent from a regional perspective,
the distribution of ambulances across the three regions varied seasonally, as depicted in
Figure 2.
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Figure 4. (a) shows spring; (b) shows summer; (c) shows fall; (d) shows winter. Red cells represent
ambulances deployed to existing fire stations. Black cells represent ambulances deployed to new
potential centers. Black-bordered cells with no color are base centers, meaning that no ambulances
are deployed.

4.4. Case Study

In Figure 3, the number of zero zones in Seongdong-gu varies by season. We observed
that the number of zero zones in each region changed with the change in the number of
available ambulances (Pt), and the seasonal variation in Seongdong-gu decreased. Table 3
shows the average number of zero zones in all regions and the number of zero zones in
each region as Pt changes. The number of ambulances Pt before applying the mathematical
model was 17.

Table 3. Variation in the number of zero zones with the number of ambulances.

Pt Before Total Average Seongbuk-gu Dongdaemun-gu Seongdong-gu

15 171 115 51 17.75 46.25
16 171 112.25 51 15 46.25
17 171 90 38 12.5 39.5
18 171 90.75 36 10 44.75
19 171 83 35 10 38

Through the mathematical model, we observed that, when the number of ambulances
was 15, the number of zero zones reduced by 32.75%. However, this reduction corresponded
to an increase to 51.46% when the number of ambulances reached 19. In the case of
Seongdong-gu, there were initially 52 zero zones. The mathematical model suggested a
reduction in the number of zero zones by 11.05% with 15 and 16 ambulances, 24.04% with
17 ambulances, and a diminished reduction of 13.94% with 18 ambulances. The pattern
reversed and increased to 26.95% with 19 ambulances.

From an overall regional perspective, we see that the number of ambulances was less
than the 17 currently in operation, but they were efficiently utilized. We also see that the
average reduction in zero zones in Seongdong-gu when there were 19 ambulances was
twice as high as when there were 15 ambulances.

Table 4 shows the change in the number of seasonal zero zones in Seongdong-gu as Pt
changes. From 15 ambulances to 18 ambulances, there were deviations in the number of
zero zones by season. When the number of ambulances reached 19, the number of zero
zones became the same.

From an ambulance operations perspective, minimizing the number of zero zones
is important. However, when the number of zero zones changes over time, it becomes a
cumbersome task to keep track of when and where the zero zones are for operational policy
purposes. From a robust policy perspective, we found that 19 ambulances were needed
to cover the area analyzed. However, since the introduction of additional ambulances is
expensive, the ambulance operation manager should make decisions based on the presented
mathematical model and economic considerations.
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Table 4. Seasonal changes in the number of zero zones due to changes in the number of ambulances
in Seongdong-gu.

Pt Before
Mathematical Model

March–May June–August September–November December–February Average

15 52 29 52 52 52 46.25
16 52 29 52 52 52 46.25
17 52 52 40 40 26 39.5
18 52 29 50 50 50 44.75
19 52 38 38 38 38 38

5. Conclusions

In this study, we defined the multi-period ambulance relocation problem based on a
mathematical programming model and derived its solution. We organized the analysis
area into subzones in the form of hexagonal cells. Then, we mapped the demand in each
cell based on historical ambulance call data. The organized data were the input to our
proposed mathematical model.

Through analyzing a solution of the proposed model, we observed that the demand
was covered by about 1.33% more, and the number of zero zones, where it is difficult for
an ambulance to reach in the golden time, was reduced by 47.37%. We also observed that
the ambulances were redeployed appropriately to meet the changes in demand at each
time point.

Furthermore, we showed that the mathematical model presented in the case study
can efficiently improve the number of zero zones even with fewer available ambulances.
We also calculated the number of ambulances required for a robust ambulance operation
strategy where the number of zero zones does not change over the planning horizon. This
confirmed that ambulance operations managers need to comprehensively consider demand
coverage, the number of zero zones, and the economics of introducing ambulances.

The study we conducted can be extended to various future studies. For example,
we conducted our study in three boroughs as a problem size limitation. However, Seoul
comprises 25 boroughs, and future research could encompass larger-scale problem-solving
methodologies, such as the entire city of Seoul. Additionally, there is a high correlation
between ambulance dispatch time and traffic volume, and we used traffic volume as an
average value. Future research could adopt a stochastic approach to traffic volume for more-
accurate modeling. Regarding emergency demand, we based our analysis on historical
accident data. Future research could incorporate probabilistic modeling of ambulance
demand, taking into account demographic information such as disease outbreak history,
the number of people, and their ages by borough. With a designed model, it can be extended
to optimize ambulance deployment to efficiently cover maximum demand.
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Appendix A. Parameter Settings

We selected the parameters in Section 4.2 based on the experiments shown in
Figures A1 and A2. We conducted a sensitivity experiment on the number of zero zones by
changing the parameters in Equation (1). Based on the results of the sensitivity experiment,
we determined the parameter combination that minimized the number of zero zones.

Figure A1 shows the change in the number of zero zones as α
β changes. We observed

a decrease in the number of zero zones when α
β was greater than or equal to 20. We also

noticed a minimum number of zero zones when α
β was 30.

Figure A1. The number of zero zones as the ratio of α to β changes.

Figure A2 shows the change in the number of zero zones as α
δ changes. We observed

that the number of zero zones decreased when α
β was greater than or equal to 5.

Figure A2. The number of zero zones as the ratio of α to δ changes.
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