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Abstract: In recent years, significant progress has been made in seizure prediction using machine
learning methods. However, fully supervised learning methods often rely on a large amount of
labeled data, which can be costly and time-consuming. Unsupervised learning overcomes these
drawbacks but can suffer from issues such as unstable training and reduced prediction accuracy.
In this paper, we propose a semi-supervised seizure prediction model called WGAN-GP-Bi-LSTM.
Specifically, we utilize the Wasserstein Generative Adversarial Network with Gradient Penalty
(WGAN-GP) as the feature learning model, using the Earth Mover’s distance and gradient penalty
to guide the unsupervised training process and train a high-order feature extractor. Meanwhile, we
built a prediction model based on the Bidirectional Long Short-Term Memory Network (Bi-LSTM),
which enhances seizure prediction performance by incorporating the high-order time-frequency
features of the brain signals. An independent, publicly available dataset, CHB-MIT, was applied to
train and validate the model’s performance. The results showed that the model achieved an average
AUC of 90.08%, an average sensitivity of 82.84%, and an average specificity of 85.97%. A comparison
with previous research demonstrates that our proposed method outperforms traditional adversarial
network models and optimizes unsupervised feature extraction for seizure prediction.

Keywords: EEG signals; seizure prediction; generative adversarial networks; long short-term
memory network

1. Introduction

Epilepsy is a common neurological disorder characterized by the abnormal discharge
of neural cells in the brain [1], leading to functional disturbances. It is characterized by
recurrent, sudden, and temporary abnormalities in motor, sensory, emotional, behavioral,
or mental symptoms. Epilepsy affects nearly 50 million people worldwide [2], with approx-
imately 30% of patients unable to control their condition with medication. Early prediction
of seizures is an important factor in effective treatment and management of epilepsy [3],
as it can help prevent patients from engaging in potentially dangerous activities during
seizure-free periods. Improving the accuracy of seizure prediction can greatly enhance the
quality of life for patients and enable more effective preventive treatments.

An electroencephalogram (EEG) is currently an effective diagnostic tool for epilepsy,
as it can record abnormal brain activity associated with seizures [2]. However, the manual
labeling and retrospective analysis of EEG signals by doctors is time-consuming and prone
to errors due to the random and non-stationary nature of EEG signals [4–6]. Additionally,
there are individual differences in EEG data among patients, and the occurrence of seizures
in epilepsy patients is highly uncertain, with each patient having different seizure patterns
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and timing. Furthermore, EEG signals are often contaminated by other normal brain
activities [7]. Therefore, seizure prediction based on EEG is still a challenging task [8].

In the past 20 years, computer-assisted epileptology research has gradually been applied
to epilepsy classification and seizure prediction. Early seizure prediction methods mainly
relied on thresholding techniques, where an increase or decrease in specific features was
used to predict an impending seizure [9]. However, there is no unified standard feature for
detection, making it difficult to achieve accurate predictions. More researchers have proposed
using machine learning for seizure prediction. These algorithms mainly focus on combining
feature extraction and classifier performance, showing relatively good results in detecting
pre-seizure states [10–14]. However, these algorithms often require individualized analysis
due to significant differences in seizure patterns among patients, making the process complex
and impractical for wider applications [15–17]. Deep learning methods, on the other hand,
can automatically extract features and train classifiers end-to-end, greatly improving feature
extraction and achieving better classification results [18–21]. However, these algorithms
require a large amount of labeled EEG data for training, which relies on the diagnostic
experience of clinical doctors and is a time-consuming and subjective process.

Although significant progress has been made in the analysis of epilepsy using the
above-mentioned methods, analyzing brain electrical signals still faces complexity and
challenges. Firstly, due to the large differences between patients, it remains a very difficult
task to differentiate between pre-ictal and interictal states in different patients, even for ex-
perienced medical experts. Secondly, the robustness of the models used is poor, sometimes
resulting in lower performance for another patient when a model with an AUC score of 1 is
used for a different patient, resulting in a lower score of 0.3 [19]. This fluctuation makes
the model unreliable for other patients. Finally, due to the limitations of seizure disorders,
obtaining labeled data before seizures is not readily available, which limits the availability
of training data for machine learning and further restricts the predictive accuracy and
generalizability of traditional machine learning models.

Unsupervised feature learning has emerged as a promising direction for the application
of deep learning in seizure prediction. It overcomes the difficulties of requiring a large
amount of labeled data. More and more people are using unsupervised feature learning with
unlabeled data, such as clustering, Gaussian mixture models, hidden Markov models, and
autoencoders [22,23]. Unsupervised learning does not rely on any labels and instead exploits
the inherent structural properties of the data to perform relevant tasks. It can be applied
during the recording of EEG signals, eliminating the need for data annotation and individual
feature extraction methods for each patient. This technique has mainly been used in seizure
detection and has achieved high sensitivity and specificity [22,24,25]. Currently, there are two
main techniques utilized: autoencoders (AE) and deep convolutional generative adversarial
networks (DCGAN) [26–30]. However, there is relatively limited research on successfully
applying unsupervised learning to seizure prediction. In a study [26], the authors used
unsupervised stacked autoencoders (SAE) combined with prior knowledge to extract features
and train a SVM classifier, achieving a sensitivity of 95% and a false positive rate (FPR) of
0.06/h. Unfortunately, this result was only tested on intracranial EEG signals from two patients,
and the performance impact of the features extracted from SAE could not be determined due
to the use of prior knowledge in feature design. In another study [31], researchers tested their
method on the CHB-MIT dataset, using a deep convolutional autoencoder to extract features
and input them into a bidirectional long-short-term memory model, ultimately achieving a
sensitivity of 94.6% and an FPR of 0.04/h. However, this method had a seizure prediction
horizon (SPH) of 0, which means there was no reserved time for clinical intervention, resulting
in a lack of practical utility.

In response to the given questions, this paper proposes a predictive model called
WGAN-GP-Bi-LSTM. The model combines the Short-Time Fourier Transform (STFT), a
Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP), and a
semi-supervised epileptic seizure prediction algorithm based on the Bi-LSTM classification
network model.
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Firstly, the time series data of the EEG signals is transformed into a two-dimensional
matrix with time and frequency axes using the STFT. Secondly, the WGAN-GP is used
as an unsupervised feature learning model. This model uses Earth-Mover (EM) distance
as a measure instead of Jensen-Shannon (JS) divergence to overcome training instability
and model collapse issues, ensuring the richness of generated samples [32,33]. Lastly, a
Bi-LSTM classification model is employed as the backend classifier, using a small amount
of labeled STFT spectrograms to guide the prediction task. This classification model
efficiently captures temporal information in EEG signals, thereby improving prediction
performance [34].

The proposed methodology is validated on the publicly available CHB-MIT dataset
of pediatric epilepsy data. The performance of the proposed method is evaluated using
metrics such as AUC, sensitivity, and specificity.

The contributions of this paper are as follows:

1. Introducing the WGAN-GP model for unsupervised feature learning of epileptic EEG
signals. Although WGAN-GP is commonly used in machine learning models, its
application in EEG signal feature extraction, especially for epileptic seizure prediction,
is limited.

2. Using semi-supervised learning methods to compensate for the deficiencies of fully
supervised and unsupervised learning methods.

3. Validation of the proposed method using the CHB-MIT dataset, demonstrating its
effectiveness through measurements of AUC, sensitivity, and specificity.

2. Materials and Methods

Seizure prediction typically involves recording the patient’s EEG signals in four states:
interictal, preictal, ictal, and postictal [10,35] (Figure 1). The interictal period represents the
normal brain state, far from seizure activity. Prior to a seizure, the patient’s EEG signals
exhibit abnormal fluctuations, known as the preictal phase. The preictal phase transitions
from a normal state to a seizure state. The ictal period corresponds to the actual occurrence
of a seizure. The postictal phase refers to the transitional period when the brain returns to
its normal state after a seizure. Seizure detection based on EEG signals aims to distinguish
between the interictal and ictal periods, while seizure prediction focuses on analyzing the
preictal state of the EEG signals, specifically performing classification tasks between the
preictal and interictal periods.

Figure 1. Illustration of the status of epileptic seizures.

The algorithmic process of this study is shown in Figure 2, which mainly includes:
(1) Training of the unsupervised feature learning model (WGAN-GP): The unlabeled EEG
signals are transformed into two-dimensional time-frequency feature maps using a short-
time Fourier transform. Combined with the patient data in the database, the WGAN-GP
model is trained to generate a high-performance feature extractor. (2) Training of the
classifier model: The trained WGAN-GP discriminator is used as the feature extractor,
combined with Bi-LSTM to construct a classification network. A small amount of labeled
EEG signals with STFT time-frequency maps is used to train the classifier model and
complete the classification task.
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Figure 2. The proposed framework of the WGAN-GP-Bi-LSTM algorithm.

There are three commonly used techniques for analyzing brain signals: time domain
analysis, frequency domain analysis, and time-frequency domain analysis [10]. Time
domain analysis examines the voltage amplitude of the signal over time, while frequency
domain analysis examines the spectral distribution and energy changes of the signal in
the frequency domain. Both time and frequency domain analysis methods are typically
effective for analyzing stationary signals and can only reflect single signal characteristics,
which are not suitable for extracting nonlinear features of brain signals. Time-frequency
analysis combines time and frequency domain calculations to describe the frequency
information of a signal over a period of time, making it a common method for processing
EEG signals.

The STFT is a commonly used tool in signal processing. It involves dividing a longer
time signal into shorter segments of equal length and then calculating the Fourier transform,
or Fourier spectrum, of each segment to obtain the frequency changes over time. The
mathematical formula for a single-channel EEG signal x(t) can be represented as follows:

STFT( f , t) =
∫ +∞

−∞
[x(t)g(t− τ)]e−j2t f τdτ, (1)

In (1), t represents the time point, f is the frequency component in the signal, and
j represents the imaginary unit. x(t) represents the time series of the EEG signal, g(t)
represents the window function, and τ represents the index of different time windows.

2.1. Training Generative Adversarial Networks

Generative adversarial networks (GANs) are a novel type of unsupervised learning
model that has shown better performance compared to traditional neural network models,
making them one of the hottest artificial intelligence technologies in recent years. GANs
were first proposed by Ian J. Goodfellow et al., in October 2014 [36] and have since been
widely applied in the field of image processing.

GANs consist of two components: the generator and the discriminator. The generator takes
random noise as input to generate images, while the discriminator is responsible for judging
whether the input image is real or fake by outputting the probability of the image being real. A
smaller probability indicates a higher likelihood of the generated image being fake.

The goal of the generator is to generate more realistic images to deceive the discrim-
inator and increase the probability of being classified as real. On the other hand, the
discriminator aims to distinguish between real and fake images and lower the probability
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of being classified as real. Through this dynamic game process, a Nash equilibrium is
reached, and training is performed using deep neural networks [37]. The objective function
of GANs is defined as:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))], (2)

In (2), data represents real data, pdata represents the distribution of the real data,
z represents random noise (input data), pz represents the distribution of the original noise,
G() represents the generator mapping function, and D() represents the discriminator
mapping function. The generator and discriminator models compete against each other to
reach a global optimum. Specifically, given G, the goal is to maximize the evaluation of the
distance between pG and pdata using V(D, G). pG represents the data distribution obtained
after generating data using the generator.

As shown in Figure 3, the yellow solid line represents the discriminative distribution,
while the black dashed line and the blue solid line represent the generated real and fake
samples, respectively. The horizontal line z is the sampled region. The upward arrow
represents the mapping relationship of x = G(z), and G contracts in the high-density area of
pG while expanding in the low-density area. When G and D reach a point where neither can
improve, the discriminator is unable to distinguish between the two distribution classes.

Figure 3. Diagram showing the output relationship of the discriminator.

WGAN-GP Feature Extraction Model

The generator and discriminator of the traditional GAN model, guided by the loss
function, continuously play the game of max-min and update by learning against each
other until the output is 0.5, at which point the network reaches a stable state and ends the
training. The generator’s loss function is denoted as Gloss, while the discriminator’s loss
function is denoted as Dloss. The definitions are as follows:

Dloss =
1
m

m

∑
i=1

[log D(x(i))+ log(1− D(G(z(i))))], (3)

Gloss =
1
m

m

∑
i=1

log(1− D(G(z(i)))), (4)

In Equations (3) and (4), m is the batch size of 64, x is the original STFT of the EEG
signal, and z is sampled from the distribution U(−1, 1). When the network is stable, the
data generated by the generator is close to the real time-frequency distribution, and the
discriminator has feature extraction ability; that is, the network layers of the discriminator
form a feature extractor [28]. Therefore, network training is crucial for improving feature
extraction abilities.

However, traditional GANs suffer from problems of gradient vanishing and unstable
training [30,38]. As shown in Figure 4, the generator minimizes the Jensen-Shannon
divergence (JS divergence) between the generated distribution pG and the real distribution
pdata using a loss function. The definitions are as follows:
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JS(PG‖Pdata ) =
1
2∑ PG(x) log(

PG(x)
PG(x) + Pdata(x)

) +
1
2∑ Pdata(x) log(

Pdata(x)
PG(x) + Pdata(x)

) + log 2, (5)

Figure 4. Analysis of the Jensen-Shannon divergence between the generated distribution and the
real distribution.

When there is little or no overlap between the two distributions, the JS divergence is
constant, causing the discriminator to quickly converge, leading to the gradient vanishing.
Additionally, during the training process, if the generator and discriminator cannot con-
verge simultaneously, it can result in mode collapse, making the training process unstable.

Therefore, this paper adopts WGAN-GP to improve the above-mentioned issues.
WGAN-GP is an improved model based on WGAN, with the core being the replacement
of the evaluation method for measuring the distance between the generated distribution
and the real distribution. In WGAN, the Wasserstein distance is used, which replaces the
JS divergence that is not suitable for measuring the distance between non-overlapping
parts of the distributions [39]. Compared to JS divergence, the Wasserstein distance can
reflect the distance between distributions when there is no overlap in the data distribution.
Additionally, the Wasserstein distance has a continuous and smooth change, allowing for
optimization of model parameters using gradient descent. By adding gradient penalty (GP)
to WGAN, the training speed and the quality of generated samples are improved, further
overcoming the problem of slow convergence in network training.

The WGAN-GP model structure used in this study is illustrated in Figure 5. The
generator takes a 100-dimensional sample from a uniform distribution U(−1, 1) as input.
The input is then fully connected to a hidden layer with 9216 nodes, which is reshaped
into a 64 × 6 × 24 tensor. After the hidden layer, three deep deconvolutional layers are
connected, which increase the dimensions of the input by extending its length and width
while reducing the depth until the last layer reaches the desired dimension. The number of
filters in these deconvolutional layers is 32, 16, and n, where n = 16 represents the number
of channels in the EEG data. The filter stride is 2 × 2, and the filter size is 5 × 5. The output
of this generator has the same dimensions as the short-time Fourier transform of a 28-s
EEG signal.

The discriminator is composed of three convolutional layers, each with a filter size of
5 × 5 and a stride of 2 × 2. The respective numbers of filters in these layers are 16, 32, and
64. Throughout the training process, signals that bear resemblance to the original signal are
generated by the generator. Optimization of the results is achieved by the discriminator
through parameter adjustments in the convolutional layers. Features from the epileptic
EEG signals are learned and extracted, culminating in the detection and differentiation
between real and fake data.
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Figure 5. Network structure of the unsupervised feature learning model (WGAN-GP).

2.2. Bi-LSTM Classifier Model

After establishing the unsupervised feature learning model, the classifier autonomously
learns discriminative features to classify the pre-ictal and inter-ictal data. Recurrent neural
networks (RNNs) differ from other types of neural networks as they can maintain the state
between different sequential inputs and can independently process a set of time series data.
A complete RNN consists of the same feedforward neural network (RNN cells), and each
step corresponds to a time.

LSTM is a special type of RNN used to overcome the problems of gradient vanishing
and information distortion during neural network training. It can easily learn long-term
dependencies. LSTM introduces the concept of memory cells with control gates. LSTM not
only maintains gradient values during training but also preserves the temporal dependen-
cies between inputs. Figure 6 illustrates the structure of a single LSTM cell.

In this context, xt represents the input at time t, while ft, c̃t, and ot represent the forget
gate, input gate, and output gate, respectively. ht−1 and ct−1 are the shadow and cell states
from the previous step. ht and ct represent the next state transferred to the next cell.

An LSTM block consists of one or more LSTM cells, and each cell processes a time
sequence continuously in one direction. At a particular time point, the LSTM block only
calculates new state information based on the previous state and current input and outputs
it to the next LSTM block until the last input is processed and the output is computed,
completing the task. This type of LSTM network is called unidirectional LSTMs.

The Bi-LSTM network is an optimized version based on the LSTM. In the Bi-LSTM, a
single layer consists of two LSTM blocks that process two sequences of inputs in opposite
directions, as shown in Figure 7. The results of the two LSTM blocks in a single layer are
combined to compute the final output for the task at hand. The Bi-LSTM takes into account
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the temporal dependency of the input data, which makes it promising for achieving higher
classification results.

Figure 6. Structure of a single LSTM cell.

Figure 7. Diagram illustrating the principle of Bi-LSTM.

Figure 8 illustrates the construction of the classifier module: the classification network
flattens the features extracted by the feature extractor and connects them to a fully connected
layer. To reduce the computational complexity of the classification network, the feature
vector is mapped to a 36-dimensional space. Furthermore, a Bi-LSTM layer is added to
extract temporal features, followed by two additional fully connected layers for further
feature extraction. The former uses a sigmoid activation function with an output size of
256, while the latter uses a soft-max activation function with an output size of 2.

Figure 8. Network structure of the classification module ((A): feature extractor after unsupervised
training; (B): classifier).
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2.3. System Evaluation

In order to assess the performance of the system, researchers have defined two impor-
tant time parameters: Seizure Prediction Horizon (SPH) and Seizure Onset Period (SOP).
SOP refers to the time period during which a seizure is predicted to occur, while SPH refers
to the period from when the prediction alarm is issued to the start of SOP (Figure 9).

Figure 9. Illustration of the definitions of SPH and SOP.

Based on this test, the algorithm issues warnings in the form of false alarms or true
alarms. This prediction range is set before the onset of seizures, ranging from a few minutes
to a few hours. When a disease outbreak occurs outside the SPH range but within the SOP
range, it is considered a correct prediction [40]. Any other state is considered an incorrect
prediction. The SPH setting should take into account the time needed for clinical intervention
and protective measures while also considering the patient’s anxiety levels. In this study, the
SPH was set at 5 min and the SOP was set at 30 min, based on relevant research.

3. Experiment and Results

The improved semi-supervised seizure prediction model proposed in this study was
implemented and tested using the TensorFlow framework. Training was performed using
an NVIDIA GeForce RTX 4090 graphics processing unit (GPU) with 64 GB of memory. The
proposed prediction model was trained in two steps: first, unsupervised feature model
training, where the feature learner trained through unsupervised learning was combined with
a classification network to form a classification (prediction) model for supervised training.

3.1. Dataset

The dataset used in this study is the CHB-MIT dataset [41], which is a collaborative
project between Boston Children’s Hospital and MIT. It consists of 23 pediatric patients
with 163 seizures and 844 h of continuous scalp electroencephalogram (sEEG) data. The
data was sampled at a frequency of 256 Hz and recorded from 22 electrodes.

In order to meet the research objectives of this study, specific selection criteria were
applied to the patients:

1. Patients who experienced less than ten seizures per day were chosen for the prediction
task. Patients with a high frequency of seizures require real-time monitoring and
surgical intervention, making them less suitable for seizure prediction.

2. At least 30 min of available data before the seizure event were required. In some
cases, the time interval between seizures was too short, making it difficult to gather
enough pre-seizure training data. Therefore, for seizures with intervals less than 30
min, they were considered a single seizure, and the time of the first seizure was used.
Additionally, reserving an appropriate interval between seizures allows for sufficient
time for clinical intervention.

Based on these criteria, 13 patient datasets were selected from the CHB-MIT dataset
for model validation (Table 1).
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Table 1. Thirteen patients were used in this paper.

Patients Gender Age (Years) No. of Seizures

Patient 1 Female 11 7
Patient 2 Male 11 3
Patient 3 Female 14 7
Patient 5 Female 7 5
Patient 9 Female 10 3

Patient 10 Male 3 7
Patient 13 Female 3 8
Patient 14 Female 9 7
Patient 18 Female 18 6
Patient 19 Female 19 3
Patient 20 Female 6 6
Patient 21 Female 13 4
Patient 23 Female 6 3

3.2. Evaluation Indicators

To ensure a thorough evaluation, we utilized the leave-one-out cross-validation ap-
proach for each individual patient. The evaluation criteria employed in this research
encompassed metrics such as AUC, sensitivity, and specificity. AUC represents the area
under the curve and serves as an indicator of the model’s classification capability. Sensi-
tivity and specificity, on the other hand, assess the accuracy of preictal prediction during
the interictal period. The value for this particular metric was determined by examining all
seizure prediction scores within the leave-one-out cross-validation for each patient.

Sensitivity =
TP

TP + FN
, (6)

Speci f icity =
TN

TN + FP
, (7)

AUC =
∑ (pi, nj)pi>nj

P× N
, (8)

In Equations (6) and (7), true positive (TP) refers to correctly classified pre-ictal periods,
false negative (FN) refers to misclassified interictal periods, true negative (TN) refers to
correctly classified interictal periods, and false positive (FP) refers to misclassified pre-ictal
periods. In (8), P represents the number of positive samples, N represents the number of
negative samples, pi represents the prediction score for positive samples, and nj represents
the prediction score for negative samples.

3.3. Preprocessing

Based on the analysis of patient data availability, some patients have less than 22 EEG
channels. Pat13 and Pat17 have only 17 available channels; Pat4 and Pat9 have 20 and 21
available channels, respectively. In order to ensure the data can be merged, improve data
effectiveness, and reduce computational complexity, this study adopts automatic channel
selection to retain 16 effective channel data for each patient. The STFT is used to transform
each 28-second EEG signal into a two-dimensional matrix consisting of a frequency axis
and a time axis. Combining with the epileptic EEG signal annotated by clinical doctors
second by second, this study first uses a cosine time window with a length of 1 s and 50%
overlap, with a sampling rate of 256 Hz. The signal is filtered to remove 60 Hz power
frequency interference based on the local power frequency of data acquisition. The data is
trimmed to make the final dimension of each 28-second data (channel number × X × Y) =
(16 × 56 × 112), where X and Y are the time and frequency dimensions, respectively.
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3.4. Analysis and Experimental Results on Network Stability

The principle of training GANs is to make the generator and discriminator compete
with each other until they reach a balance. When initially training WGAN-GP, the discrimi-
nator converged quickly, making it difficult for the generator to learn enough to generate
high-quality STFT samples. This resulted in a simple classification of real and fake samples.
To overcome this problem, we updated the generator twice and set up an early stopping
monitor to track the loss values of the generator and discriminator. If the value of Dloss
is greater than Gloss for K consecutive training batches, we stop training WGAN-GP. In
this study, we set K = 20, batch size = 64, and the number of training iterations = 10. We
also used an Adam optimizer with a learning rate of 1 × 10−4, λ = 10, β1 = 0.5, β2 = 0.99,
and ε = 1 × 10−8 to optimize the model’s gradients. The training process did not provide
any labels for pre-ictal or inter-ictal periods to the network, so the network underwent
unsupervised training for epileptic seizure detection.

By visualizing the loss values, we can verify the effects of updating the generator
twice. In Figure 10, we plot the initial and updated loss values of the generator and
discriminator, using patient 1 from the CHB-MIT dataset as an example. From the graph,
we can observe that the updated Gloss value is lower, and the fluctuations are significantly
reduced. This means that the generated STFT samples are closer to the original samples,
and a better discriminator helps improve its discriminatory performance. The generator
and discriminator reached a balance after approximately 1500 steps, at which point the
monitor stopped training.

Figure 10. Changes in the original loss function and the updated loss function.

The stability of GAN training is closely related to the variations of Dloss and Gloss
and their corresponding gradient changes [33]. Therefore, on the premise of performing
STFT preprocessing on the EEG signals, the stability of network iteration training for
DCGAN and WGAN-GP generators and discriminators is compared. Figure 11 shows
the convergence of Dloss and Gloss after training with two different models on patient 20.
Comparing the two, it can be observed that the loss function curve of WGAN-GP has a
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much smaller oscillation amplitude than DCGAN, and its gradient change trend is also
smoother than DCGAN.

Figure 11. Performance analysis of the convergence of WGAN-GP and DCGAN.

Tables 1 and 2 provide a comparison of the sensitivity and AUC values for the selected
semi-supervised learning method WGAN-GP, the fully supervised learning method CNN,
and the semi-supervised learning method DCGAN. From the data in columns 2–4 of
Tables 1 and 2, it can be observed that the WGAN-GP semi-supervised learning method has
a 3.19% lower sensitivity compared to the fully supervised learning method. However, it is
worth mentioning that WGAN-GP shows a 1.88% improvement in AUC compared to the
fully supervised method (CNN). Under the same data preprocessing and model parameter
settings, the WGAN-GP semi-supervised method has an average improvement of 9.8% in
sensitivity and 13.14% in AUC compared to DCGAN.

Table 2. Comparison of seizure prediction performance sensitivity (%) on the CHB-MIT dataset
under different unsupervised learning models.

Patients CNN DCGAN WGAN-GP WGAN-GP-BI-LSTM

Patient 1 85.7 92.53 97.23 98.80
Patient 2 33.3 32.25 40.86 83.46
Patient 3 100 21.33 85.64 50.10
Patient 5 80.0 45.67 50.38 82.81
Patient 9 50.0 77.91 80.02 83.93

Patient 10 33.3 68.61 66.27 74.29
Patient 13 80.0 59.60 78.31 82.06
Patient 14 80.0 59.88 51.72 39.67
Patient 18 100 82.22 83.19 95.22
Patient 19 100 57.50 91.28 93.61
Patient 20 100 95.00 94.37 95.42
Patient 21 100 98.22 99.78 100
Patient 23 100 96.00 94.99 97.53

Range [33.3, 100] [21.33, 98.22] [40.86, 99.78] [39.67, 100]
Average 81.2 68.21 78.01 82.84

To ensure the stability of the classifier training and accelerate convergence, batch
normalization is applied at each layer of the network, and the network parameters for
high-order feature learning are fixed. To prevent overfitting, the dropout rate for the
subsequent two layers of the neural network is set to 0.3. Moreover, 75% of the pre-seizure
and inter-seizure samples in the training dataset are used as the training set, while 25% are
used as the validation set. To evaluate the performance of the Bi-LSTM as a classifier, we
compare it with the WGAN-GP model, which uses fully connected layers for classification.

By comparing the data in columns 4–5 of Tables 1 and 2, it can be observed that after
the same preprocessing and unsupervised feature learning training, the backend classifier
using Bi-LSTM achieves a 4.31% higher AUC and a 4.83% higher sensitivity compared
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to the one using fully connected layers. This result demonstrates that using a Bi-LSTM
classifier can improve predictive performance for epileptic seizures.

4. Discussion

This study presents a feature extraction method for epilepsy prediction using an
unsupervised training model. While it reduces sensitivity by 3.19% compared to supervised
learning, this unsupervised feature extraction method can help minimize the costly and
time-consuming task of labeling EEG signals. The unlabeled EEG signals are used to train
the WGAN-GP, and the trained discriminator is used as a feature extractor input for the
Bi-LSTM classifier for epilepsy prediction.

Compared to supervised learning, semi-supervised learning methods still have a
performance gap in epilepsy prediction. Some studies suggest that this gap can be improved
by increasing the training size [28]. Oversampling the inputs during the training of the
adversarial network helps fill in the data gaps of patients and improves overall epilepsy
prediction performance. Therefore, we can infer that the more EEG data available, the
higher the prediction accuracy. The advantage of using unsupervised feature extraction
is that data recording and feature extraction can be carried out simultaneously without
requiring additional effort from clinical doctors.

This research demonstrates that utilizing the Wasserstein distance and gradient penalty
can further improve the stability of the unsupervised feature learning model and enhance
the quality of time-frequency image generation. Figures 11 and 12 illustrate the advantages
of WGAN-GP through the comparison of loss function changes and training convergence
performance. As shown in the evaluation results in the third column of Tables 2 and 3,
DCGAN, as an unsupervised feature learning model, often exhibits unusually low evaluation
metrics, such as a sensitivity of only 21.33% for patient 3 and an AUC value of only 28.52%
for patient 2. Such data indicates that DCGAN has a certain bias during the learning process,
which is one of the manifestations of unstable model training and cannot be applied in
practical clinical settings. The use of WGAN-GP can effectively improve the above issues
while enhancing various performance indicators, resulting in more balanced results.

Figure 12. Comparison of the range of the three evaluation metrics.

Table 4 presents a performance comparison of the proposed method in this study with
other related literature on seizure prediction. It lists the results of both fully supervised
and semi-supervised seizure prediction methods using the same dataset and cases.
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Table 3. Comparison of seizure prediction performance AUC (%) on the CHB-MIT dataset under
different unsupervised learning models.

Patients CNN DCGAN WGAN-GP WGAN-GP-BI-LSTM

Patient 1 92.48 99.52 99.78 99.81
Patient 2 37.50 28.52 65.34 74.59
Patient 3 96.66 92.43 80.27 84.92
Patient 5 87.80 48.83 75.33 92.06
Patient 9 74.41 57.99 80.57 92.75

Patient 10 55.59 52.38 80.11 85.10
Patient 13 97.21 98.04 94.37 96.98
Patient 14 67.16 52.28 49.69 50.72
Patient 18 93.29 63.27 92.61 95.62
Patient 19 99.48 85.93 99.34 99.72
Patient 20 98.67 90.70 99.89 99.91
Patient 21 90.47 78.71 99.67 99.89
Patient 23 99.90 98.59 97.99 99.03

Range [37.50, 99.90] [28.52, 99.52] [49.69, 99.89] [50.72, 99.91]
Average 83.89 72.63 85.77 90.08

Table 4. Comparison between this study and existing methods.

Methods Extracted Features Classifier Prediction
Time (min)

AUC
(%)

Sen
(%)

Spec
(%)

Truong et al. [19] STFT
Supervised CNN SPH = 5 83.39 81.20 84.00

Hosseini et al. [26]
Handcraft extraction +

Using SAE
unsupervised

SVM 95.00 94.00

Truong et al. [28] Using DCGAN
unsupervised

Two fully
connected

layers

SPH = 5
SOP = 30 72.63 68.21 33.03

This study Using WGAN-GP
unsupervised Bi-LSTM SPH = 5

SOP = 30 90.08 82.84 85.97

Hosseini et al. [26] achieved a sensitivity of 95% and an FPR below 0.06/h using an
unsupervised feature extraction method based on autoencoders. They utilized stacked
autoencoders for unsupervised feature extraction and incorporated prior knowledge into
the design of the features. However, it is difficult to determine the contribution of this
unsupervised method to predictive performance. Additionally, this method was only tested
on two patients with intracranial EEG signals.

Truong et al. [28] used DCGAN for unsupervised training to generate high-level fea-
ture extractors, which were then connected to a two-layer, fully connected network for
seizure prediction. This method employed unsupervised learning techniques for feature
extraction and was the first to apply them to seizure prediction. However, there are issues
with gradient vanishing and instability during the training of the DCGAN model. Further-
more, the fully connected network layer has limited learning capabilities for time-frequency
features, which is why there is room for improvement in predictive performance [34].

The proposed method in this paper addresses the shortcomings of DCGAN and
improves upon the existing semi-supervised prediction model in terms of AUC, sensitivity,
and specificity metrics. Additionally, for each evaluation metric, a corresponding analysis
of the range of poor values was conducted, as shown in Figure 12. Comparing the proposed
model in this study with the fully supervised training CNN [19] and the semi-supervised
training DCGAN [28], the proposed model demonstrated lower ranges of poor values in
most metrics. This indicates that the model has a smaller range of differences in detecting
all patients.
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Compared to the fully supervised prediction model, this method in the paper did not
achieve optimal classification, but its results were comparable to the supervised prediction
model CNN, and it achieved lower differences in detecting different patients. This research
also has certain limitations and shortcomings. On the CHB-MIT dataset, the WGAN-GP-Bi-
LSTM model demonstrated superior performance compared to existing semi-supervised
epileptic seizure prediction methods. However, this method still needs to be further tested
with more case data and validated using clinical data. Therefore, the generalizability of the
proposed method needs to be further verified.

5. Conclusions and Further Works

In this study, an improved semi-supervised model for predicting epileptic seizures,
WGAN-GP-Bi-LSTM, is proposed. This method uses Wasserstein Generative Adversarial
Networks as the feature learning model, combining the Earth Mover’s distance and gradient
penalty constraints for unsupervised training to train a high-order feature extractor. In the
classifier part, a prediction model based on Bi-LSTM networks is constructed to improve
epileptic seizure prediction performance based on high-frequency features of EEG signals.
The method proposed in this study is semi-supervised, as it combines unsupervised training
of adversarial network features with semi-supervised training of the classifier.

This model improves both the stability of the semi-supervised training model and the
classifier and achieves good results in performance validation on the CHB-MIT dataset,
with prediction AUC, sensitivity, and specificity metrics reaching 90.08%, 82.84%, and
85.97%, respectively. Comparison with previous related work demonstrates that this
method is reliable, efficient, and suitable for real-time applications in epileptic seizure
prediction. In the future, we will still require additional case data to conduct performance
testing and consider how to balance data size and computation time. Additionally, using
the VARFIMA model [42] to simulate the long-term memory characteristics of epileptic
EEG signals in order to improve feature accuracy is the focus of our next research.
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