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Abstract: Poisson-Exponentially Weighted Moving Average (PEWMA) charts are one of the most
frequently used control charts for monitoring count data. But as real-world data often shows
overdispersion—prevalent in manufacturing, health care, economics, and marketing—the standard
Poisson distribution falls short. One of the ways to tackle overdispersion is to use Poisson mixture
distributions. Our study examines Average Run Length (ARL) performance in the presence of Poisson
mixture distribution in the PEWMA control charts. Through meticulously designed experiments,
we explore different control parameter combinations and employ simulation to evaluate the process.
Our graphs illustrate the performance of the PEWMA control chart, offering desired in-control ARL
across parameter combinations. Finally, the performance of the PEWMA control chart is presented
for the real process data of fastener production.

Keywords: control charts; PEWMA; poisson mixture distribution; simulation

1. Introduction

Control charts are one of the most important Statistical Process Control (SPC) tech-
niques used to diagnose and prevent problems in production and service processes such
as production, maintenance, healthcare [1–5]. Control charts allow users to quickly iden-
tify assignable causes and implement necessary solutions. Various process control charts
have been improved to effectively monitor process measurement data. Shewhart control
charts are very common charts that are used in SPC. The scope of SPC is a two-phase
application: Phase I (offline analysis), which is called the retrospective phase, and Phase II
(online monitoring), which is called the prospective or monitoring phase. In the Phase I
application, process data is analyzed, and the process is stabilized by detecting variability
and taking actions, if any, for assignable causes. In this situation, where the process is under
control, Phase I analysis is completed, and Phase II, where the process is monitored online,
begins. While Shewhart control charts are effective during Phase I, they are less sensitive
to small and medium-sized process shifts in Phase II. The cumulative sum (CUSUM) and
Exponentially Weighted Moving Average (EWMA) control charts are superior alternatives
to the Shewhart control chart for Phase II when process monitoring [6]. Although the
performances of CUSUM and EWMA are closely aligned, EWMA stands out as the more
user-friendly and straightforward option in terms of setup and usage. EWMA control chart
was introduced by Roberts et al. [7] and is very effective in detecting small process shifts.
There have been several theoretical studies of the Average Run Length (ARL) properties of
the EWMA control charts. These studies provide ARL tables and graphs encompassing a
variety of control chart parameter values. Borror et al. [8] examined the ARL performance
of the EWMA control charts for the case of nonnormal distributions. The EWMA control
limits were revised for Poisson counts [9]. Poisson EWMA (PEWMA) control charts have a
wide range of applications as they can be used to monitor processes in both production and
service sectors. A good parameter estimation also positively affects the performance of the
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control charts; otherwise, there may be problems such as the inability to detect variability
promptly and an increase in the false alarm rate. Since historical data in PEWMA also
control statistics, the points on the chart are not independent of each other. Therefore, the
distribution of Run Length (RL) values is also non-geometric. For this reason, the ARL
performance calculations of PEWMA control charts are more difficult than other control
charts. In several studies, the RL distributions and ARL performances are calculated by
simulation, integral equations, and Markov Chain Approach [10–17]. A new PEWMA chart
is introduced by Sukparungsee [18] improved based on square transformation of Poisson
data. In considering PEWMA as ARL-biased, Morais and Konth [19] used the Markov
chain to determine ARL accurately and compared some competing results of previous
studies. Although the Poisson distribution is frequently used to describe count data, it
assumes that variance is equal to the mean (equi dispersion), which could lead to incorrect
inferences in the case of overdispersion [20]. One of the most common methods to cope
with different levels of overdispersion is to use Poisson mixture distributions [21]. Several
various control charts have been proposed for different types of Poisson distributions
in ref. [22] and Poisson mixture distributions in ref. [21].

This study involves a comparative analysis of the ARL performance of the PEWMA
control chart. This analysis encompasses diverse parameter combinations within the context
of Poisson mixture distributions. Simulation methodology is applied to generate data and
facilitate the charting process.

The rest of the paper is organized as follows. In Section 2, we present the charting
methodology. Section 3 delves into the examination of experimental design for different
control chart parameters. The numerical results alongside the performance graphs are
illustrated in Section 4. In Section 5, we provide a comprehensive discussion by comparing
the findings of our study with the existing literature. Finally, the conclusion is given in
Section 6.

2. Materials and Methods

The performance of control charts depends on their ability to rapidly and reliably
detect an out-of-control situation as soon as it occurs. In this study, simulation is employed
to illustrate the performance of PEWMA charts in the presence of a Poisson mixture
distribution. First, we generated datasets that conform to the Poisson mixture distribution.
Subsequently, these datasets were used as inputs to evaluate the ARL performance of the
PEWMA control chart.

2.1. Ewma Control Charts

The EWMA control charts, first proposed by Roberts et al. [7], are especially preferred
for single observations and Phase II applications, but they can also be used for rational
subsets. The EWMA statistics (zi) are defined in Equation (1).

zi = λxi + (1− λ)zi−1 (1)

where xi is the value of ith observation for i(i = 1, . . . , n) and 0 < λ ≤1 is smoothing
constant. To calculate value z1, we need to provide the starting value z0 which is equal to
the process target value µ given in Equation (2).

z0 = µ. (2)

Sometimes, the average of preliminary data is used as the starting value of the EWMA,
so that z0 = x̄, where x̄ is the sample mean. To illustrate that the zi represents a weighted av-
erage of all previous sample means, replacing zi−1 by [λxi−1 +(1− λ)zi−2] then Equation (3)
is obtained.

zi = λxi + λ(1− λ)[λxi−1 + (1− λ)zi−2] = λxi + λ(1− λ)xi−1 + (1− λ)2zi−2 (3)
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After performing a recursive substitution, zi is obtained as shown in the following
Equation (4).

zi = λ
i=1

∑
j=0

(1− λ)jxi−j + (1− λ)iz0 (4)

The weights sum to unity since λ(1− λ)j decreases geometrically as j increases. Hence,
the sum converges to one given in Equation (5).

λ
i=1

∑
j=0

(1− λ)j = λ
(1− (1− λ)i

1− (1− λ)

)
= 1− (1− λ)i. (5)

If the sample data consist of independent random variables xi with a variance of σ2,
then the variance of zi is given in Equation (6).

σ2
zi
= σ2

( λ

2− λ

)
[1− (1− λ)2i]. (6)

Hence, the control chart of EWMA is created by using the zi values against the sample
number i. The upper control limit (UCL) and the lower control limit (LCL) of the EWMA
control chart are defined in Equations (7) and (8).

UCL = µ+ Lσ

√
λ

(2− λ)
[1− (1− λ)2i] (7)

LCL = µ− Lσ

√
λ

(2− λ)
[1− (1− λ)2i] (8)

where L is the width of the control limits, and the center line (CL) is µ.

2.2. Poisson EWMA Control Chart

Borror et al. [9] extended the EWMA control limits to PEWMA where observa-
tions are Poisson count, then the basic EWMA recursion remains unchanged given in
Equations (1) and (2). Nevertheless, there are some issues that need to be addressed regard-
ing the presence of the Poisson distribution. The random variable X, which represents
the number of events occurring in a fixed interval, follows a Poisson distribution with a
parameter α > 0, and its probability mass function is given in Equation (9).

f (x) =
αxe−α

x!
x = 0, 1, 2, . . . (9)

where α is the mean number of events. it is known that the standard deviation of Poisson
distribution is σ =

√
α, hence the control limits of the PEWMA chart are written in

Equations (10) and (11).

UCL = α + Au

√
λα

(2− λ)
[1− (1− λ)2i] (10)

LCL = α− AL

√
λα

(2− λ)
[1− (1− λ)2i] (11)

where Lσ is represented by A and in symmetric cases AU = AL = A. The center line of
the PEWMA chart is α. The chart gives an out-of-control signal when the point is not
between the interval of UCL and LCL. The variance of the PEWMA statistic zi is given
in Equation (12).

var(zi) ≈ λα/(2− λ). (12)
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To demonstrate the PEWMA control chart, Figure 1 displays a plot of 100 randomly
generated observations (n = 100) from a Poisson distribution with a mean of 5. The original
data xi is represented by the cyclic symbol, while the EWMA data zi is shown with a solid
line. The initial value, z0, is set to 5, and λ is chosen to be 0.2 for the calculations.

Figure 1. PEWMA of a single simulated realization.

2.3. Mixture Distributions

If a random variable X has a finite mixture distribution, the probability (density)
function can be written as in Equation (13).

f (x) =
k

∑
i=1

πi f (xi, θi), x ∈ Rx. (13)

Here, f1, . . . , fk are probability (density) functions on the support set Rx where x ∈ Rx
and θi is the paramater vector of the function fi for i = 1, . . . , k. If we denote the propor-
tion of the distribution fi as πi for i = 1, . . . , k within the finite mixture distribution, the
parameter vector Φ of the finite mixture distribution can be expressed as follows [23].

Φ =

 k
θ
π


If f1, . . . , fk comes from the same distribution family, the probability (density) function

of the finite mixture distribution can be written as in Equation (14) where the sum of
proportions is equal to 1 as in Equation (15).

f (x; Φ) =
k

∑
i=1

πi f (xi, θi), x ∈ Rx (14)

k

∑
i=1

πi = 1, 0 < πi < 1. (15)
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2.4. Poisson Mixture Distributions

The Poisson mixture distribution comprised of k components is represented similarly

in Equation (14) where Φ =

 k
θ
π

 is the parameter vector [24]. The probability func-

tion of Poisson mixture distribution f (x; Φ) is given in Equation (16) and the sum of the
proportions is equal to 1.

f (x; Φ) =
k

∑
i=1

πi
αx

i eαi

x!
(16)

πi: proportion of the ith Poisson distribution (i = 1, . . . , k)
αi: mean number of the ith Poisson distribution (i = 1, . . . , k)

The mean of the Poisson mixture distribution (αm) comprised of k components can be
written as in Equation (17).

αm =
k

∑
i=1

πiαi, 0 < πi < 1 (17)

The variance of the Poisson mixture distribution (σ2
m) can be calculated by using

Equations (18)–(20).
var(X) = E[X2]− (E[X])2 (18)

var(X) = E[X2|πi, αi]− (E[X|πi, αi])
2 (19)

σ2
m =

k

∑
i=1

πi(σ
2
i + α2

i )− α2
m. (20)

By capitalizing on the equality between the variance and mean of a Poisson distribu-
tion, we make a substitution of αi instead of σ2

i , leading to the derivation of the formula
presented in Equation (21).

σ2
m =

k

∑
i=1

πi(αi + α2
i )− α2

m. (21)

It is necessary to estimate the number of components k, and the parameters of the dis-
tribution, π1, π2, . . . πk and α1, α2, . . . , αk to fit with a mixture distribution. k is determined
using model selection criteria that are Akaike Information Criterion (AIC), Bayesian Infor-
mation Criterion (BIC), and log-likelihood (LL). The likelihood function and log-likelihood
function are given in Equation (22) and in Equation (23), respectively.

L(Ψ) =
n

∏
i=1

f (xi, Ψ) =
n

∏
i=1

[
k

∑
j=1

πj f (xi, θj)] (22)

lnL(Ψ) =
n

∑
i=1

ln f (xi, Ψ) =
n

∑
i=1

ln[
k

∑
j=1

πj f (xi, θj)] (23)

Consider L(Ψ) as the maximum value of the likelihood function for a mixed distribu-
tion model with the estimated number of components k. Subsequently, the AIC and BIC are
computed using the formulas 2k− 2lnL(Ψ) and −ln(n)k− 2lnL(Ψ), respectively. When
deciding the number of components using model selection criteria, the value of k is selected
based on the criterion of having the lowest AIC and BIC values, while simultaneously
taking into account the highest LL value.



Appl. Sci. 2023, 13, 11160 6 of 17

2.5. Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm, initially introduced by Dempster et al. [25],
was devised for the purpose of estimating parameters within mixture distribution models.
The implementation of the EM algorithm relied on the complete-data likelihood function as
depicted in Equation (24), where the log-likelihood lnL(Ψ) is enhanced by the inclusion of
randomly assigned 0–1 binary variables zi,k, which identifies the ith observation as coming
from the kth component.

lnL(Ψ, Z) =
N

∑
i=1

K

∑
j=1

zi,k ln(πk f (xi, θk)) (24)

Starting from an initial Ψ(0), the EM algorithm iterates between an Expectation (E)-step
and Maximization (M)-step.

• E-step
The posterior probability of data point i belonging to component k at iteration r is
denoted as z(r)i,k is obtained by using Bayes’ theorem and given in Equation (25).

z(r)i,k =
π
(r)
i,k f (xi, θ

(r)
k )

∑K
j=1 π

(r)
i,j f (xi, θ

(r)
j )

(25)

where π
(r)
i,k is the mixing proportion of component k at iteration r, and f (xi, θk(r))

is the probability density function of component k evaluated at data point xi using
parameters θ

(r)
k .

• M-step
Update the parameter estimates to maximize the expected lnL(Ψ, Z) based on the
computed posterior probabilities in the E-step. These steps are repeated until the
expected log-likelihood converges to the maximum.

3. Performance Evaluation and Experimental Design

A dataset consisting of a mixture distribution is called a pure mixture distribution
when it comes from the same distribution family, and it is referred to as a convolute
mixture distribution when it comes from different distribution families. In evaluating the
performance of the PEWMA control chart, we assumed that the data came from a Poisson
mixture distribution within the same distribution family. We assumed that observations
from this distribution are independent of each other and that the mixture proportions and
distribution parameters remain constant over time.

There are several measures available to assess the performance of a chart, with one
commonly used metric being the ARL to evaluate how well the control chart responds to a
signal that is out of control. The formulation of the ARL is given in Equation (26)

ARL =
∑N

i=1 RLn

N
. (26)

Various approaches exist for estimating the run-length characteristics, including Monte
Carlo simulation, Markov chain analysis, and integral equations [26]. In this study, simula-
tion is employed to estimate the run-length characteristics of the PEWMA control chart due
to its flexibility and efficiency. The steps for generating simulation results can be explained
as follows:

• Step 1: Set the simulation parameters, including the replication length (or the number
of sample data) and the number of replications.

• Step 2: Select the parameters for the PEWMA control chart, including λ, σ, and A.
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• Step 3: Define the Poisson mixture parameters (α values) to represent desired shifts in
the mean, based on π values ranging from 0 to 1.

• Step 4: Run simulation.
• Step 5: Calculate the PEWMA statistics zi and determine the control limits UCL

and LCL.
• Step 6: Check if zi falls within the control limits. If zi ≤LCL or zi ≥ UCL, record the

sample index number as RL (Run Length).
• Step 7: Repeat Steps 4 and 6 for each replication.
• Step 8: Calculate the ARL by computing the average of all recorded RL values.
• Step 9: Return to Step 2 and run the simulation for different PEWMA control chart

parameters.

In order to detect shifts in the process, the design parameters of the EWMA chart
are set for multiple of σ in terms of control limits (L) and various λ values. There have
been several theoretical studies of the ARL properties of the control chart such as [10,11,17].
These studies provide ARL of tables and graphs for a range of values of λ and L. In a
PEWMA control chart, the ARL exhibits variability based on the sample mean and the
control chart’s parameters, namely λ and A. Furthermore, alongside these parameters, the
ARL performance of the system is influenced by the proportions πi of the Poisson mixture
distributions. Different combinations of these parameters are designed before conducting
experiments to ascertain the desired ARL performance. Table 1 displays the results of
44 experiments conducted across four main samples. These samples are generated based on a
Poisson mixture distribution with the given αi values, along with corresponding proportions
πi for each sample. In this study, each sample within the dataset consists of 1000 data
points, generated using the software Arena version 14.00, and follows the characteristics of
a Poisson mixture distribution. A simulation model was created to identify out-of-control
points. This model utilizes the PEWMA control limits, as specified in Equations (10) and (11).
The simulation is run for the combinations of A = 2.50, 2.55, 2.60, 2.65, 2.70, 2.75, 2.80, 2.85,
2.90, 2.95, 3.00, 3.05, 3.10, 3.15, 3.20, 3.25, 3.30, 3.35, 3.40, 3.45, 3.50 and λ = 0.1, 0.2, 0.3, 0.4,
0.5, 0.75. So, the total number of simulation experiments is 5544. The replication number for
each simulation model is 100. For instance, consider the information provided in Table 1.
In the case of Sample 2, a dataset of 1000 data points is generated from a Poisson mixture
distribution characterized by means α1 = 5 and α2 = 5.5, along with proportions of 0.90 and
0.10, respectively. In the initial simulation iteration, ARL performance is evaluated by setting
the parameters λ = 0.1 and A = 2.5. This process is then repeated for every combination of λ
and A to conduct the experiments.

Table 1. Experimental design for samples with different mean and mixture proportions.

α1 = 5 α2 = 5.5 α1 = 5 α2 = 6 α1 = 5 α2 = 6.5 α1 = 5 α2 = 7
Sample π1 π2 Sample π1 π2 Sample π1 π2 Sample π1 π2

1 1.00 0.00 12 1.00 0.00 23 1.00 0.00 34 1.00 0.00
2 0.90 0.10 13 0.90 0.10 24 0.90 0.10 35 0.90 0.10
3 0.80 0.20 14 0.80 0.20 25 0.80 0.20 36 0.80 0.20
4 0.70 0.30 15 0.70 0.30 26 0.70 0.30 37 0.70 0.30
5 0.60 0.40 16 0.60 0.40 27 0.60 0.40 38 0.60 0.40
6 0.50 0.50 17 0.50 0.50 28 0.50 0.50 39 0.50 0.50
7 0.40 0.60 18 0.40 0.60 29 0.40 0.60 40 0.40 0.60
8 0.30 0.70 19 0.30 0.70 30 0.30 0.70 41 0.30 0.70
9 0.20 0.80 20 0.20 0.80 31 0.20 0.80 42 0.20 0.80

10 0.10 0.90 21 0.10 0.90 32 0.10 0.90 43 0.10 0.90
11 0.00 1.00 22 0.00 1.00 33 1.00 0.00 44 0.00 0.00
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Analysis of Experimental Results

To observe the ARL performance of PEWMA control schemes, 1000 data are generated

from a Poisson mixture distribution with parameter vector Φ =

 k = 2
θ = 5, 5.5

π = (0.90, 0.10)

. The

ARL values are plotted against the parameter combinations of A = 2.50 to 3.50 and λ = 0.1
to 0.75 in Figure 2. The ARL is detected earlier with respect to large to small values of λ.
For α1 = 5, α2 = 5.5 and a small shift in mean as 0.02σ, ARL performances are illustrated for
λ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.75. The ARL is detected earlier with respect to larger to smaller
values of λ. However, for A > 3.50, the ARL performance of the PEWMA chart seems to
become similar for different values of λ.

Figure 2. ARLs for various values of A and a series of λ with α1 = 5, α2 = 5.5, shift in mean = 0.02σ.

In Figure 3, for α1 = 5, α2 = 7 and a large shift in mean as 0.76σ, ARL performances are
illustrated for λ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.75. It is observed that out-of-control situations are
quickly detected when the shift in the mean is large and λ is small.

Figure 3. ARLs for various values of A and a series of λ with α1 = 5, α2 = 7, shift in mean = 0.76σ.

The performance of the ARL for a relatively large value such as 0.76σ of the mean
shift, for different values of λ and for the A values determined between 2.70–3.20 is given
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in Figure 4. For given values of A, ARL is detected earlier for small values of 0.1 < λ < 0.3,
however for λ > 0.3 ARL performance declines generally for corresponding values of A.

Figure 4. ARLs for various values of λ for a series of A with α1 = 5, α2 = 7, shift in mean = 0.76σ.

A 3D graphic is presented in Figure 5 to provide another view of how the ARL
performance is influenced by the parameters λ, A and mean shifts. In Figure 5, the
performance of ARL is given depending on λ and shift in mean for A = 3.00. It is seen
that for larger shifts in mean greater than 0.10, λ does not affect the performance of ARL.
However, the values of λ > 0.5 can be selected to detect out-of-control in the case of small
shifts in the mean.

Figure 5. ARLs for various values of λ and shifts in mean (multiple of σ) with A = 3.00 and α1 = 5,
α2 = 7.
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The ARL performance of PEWMA chart is illustrated in Figure 6 where the parameters
are set to λ = 0.1, α1 = 5, α2 = 5.5 with various shifts in mean and 2.50 < A < 3.50. The
performance of ARL varies almost linearly for different levels of shifts in mean. However,
for values of A > 3.00, the performance exhibits non-stationary behavior.

Figure 6. ARLs for various values of A and mixture proportions (π)-shift in mean with λ = 0.1, α1 = 5,
α2 = 5.5.

Figure 7 demonstrates the changes in performance resulting from the shifts in mean
where the parameters are set to λ = 0.1, α1 = 5, α2 = 7. In the case of larger shifts in mean,
the same performance is observed for all values of A choosing λ = 0.1 when we compared
the pure Poisson distribution that has no shifts in mean.

Figure 7. ARLs for various values of A and mixture proportions (π)-shift in mean with λ = 0.1, α1 = 5,
α2 = 7.

4. Application in Fastener Quality Control

In order to demonstrate the applicability of the Poisson mixture distribution in the
fields of statistical quality control and reliability, the quality control processes from the
automotive supplier sector were taken into account. The company produces a diverse
range of fastener types. Among these various fasteners, we specifically focused on the data
related to large flange rivets and square nuts because our tests indicated that they fit the
Poisson mixture distribution. A square nut is a nut with four sides. They are commonly
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used alongside a bolt to join two or more objects together. A large flange rivet is ideal for
high-pressure applications that require a seal to prevent the ingress of liquids, solids, or
moisture. The pictures of square nut and large flange rivet are given in Figure 8.

Figure 8. Products: (a) Square nut; (b) Large flange rivet.

As part of its quality control policy, the company conducts a count of defective prod-
ucts within 500 randomly sampled units from the production process. The defects recorded
during quality control of the products include cracks, wrinkles, shear burst, imperfections,
damage, and coating flaws. In Figure 9, some examples of the defects are shown for
each product.

Figure 9. Defects: (a) Shear on the square nut (b) Crack on the large flange rivet.

First, we applied Kolmogorov–Smirnov and chi-square tests to determine whether
these data fit a discrete distribution such as Poisson, binomial and geometric distribution.
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This result led us to consider that these data might come from a mixture distribution.
We used the package Flexmix in R version 4.3.0 to determine whether these data fit the
Poisson mixture distribution. This package calculates the AIC, BIC and LL values using the
Equations (22) and (23) to determine the number of components of the Poisson mixture dis-
tribution. To determine the number of components, run parameters are set at 10 replications
and 1000 iterations per replication. In the replication where AIC and BIC are the smallest
and LL is the largest, the k value is determined as the optimal number of components.
Accordingly, the k values for the square nut and large flange rivet are selected as 4 and 3,
respectively. The results are given in Tables 2 and 3 for the square nut and large flange
rivet, respectively.

Table 2. Computed values for selecting the number of components for square nut data.

Replication Iter k AIC BIC LL

1 2 1 8059.960 8063.398 −4028.980
2 20 2 4236.763 4247.077 −2115.382
3 43 3 3123.799 3140.990 −1556.900
4 64 3 3123.799 3140.990 −1556.900
5 135 4 2905.724 2929.791 −1445.862
6 111 5 2905.724 2940.667 −1445.862
7 152 4 2905.724 2929.791 −1445.862
8 166 4 2905.724 2929.791 −1445.862
9 149 4 2905.724 2929.791 −1445.862

10 175 4 2905.724 2929.791 −1445.862

Table 3. Computed values for selecting the number of components for large flange rivet data.

Replication Iter k AIC BIC LL

1 2 1 10,346.030 10,349.747 −5172.015
2 12 2 4435.795 4446.946 −2214.897
3 7 3 1790.279 1808.865 −890.139
4 10,000 4 1793.368 1819.405 −889.693
5 10,000 4 1793.368 1819.405 −889.693
6 10,000 4 1793.368 1819.405 −889.693
7 10,000 4 1793.368 1819.405 −889.693
8 10,000 5 1793.368 1830.836 −889.693
9 10,000 5 1793.368 1830.839 −889.693
10 10,000 5 1797.383 1830.836 −889.691

Once the number of Poisson mixture components was determined for each set of
product sample data, we used the Flexmix package in the R programming environment
to compute the proportions and parameters for each Poisson mixture distribution. The
proportions and parameters corresponding to each product sample data are given in Table 4.

Table 4. Poisson mixture distribution parameters for each product data.

Product
Proportions Parameters

π1 π2 π3 π4 α1 α2 α3 α4

Square Nut 0.14 0.39 0.09 0.38 11.165 60.348 163.485 29.883
Large Flange Rivet 0.06 0.53 0.41 - 115.11 0.697 21.782 -

To verify whether the fitted Poisson mixture distributions represent the actual data
distribution visually, the histograms of real data and generated data are illustrated in
Figures 10 and 11. Next, we employed the Mann–Whitney U test to determine whether
the generated data accurately represents the real data. The test hypotheses are formulated
as follows:



Appl. Sci. 2023, 13, 11160 13 of 17

Hypothesis 0 (H0): The real data and generated data come from the same distribution.

Hypothesis 1 (H1): The real data and generated data do not come from the same distribution.

The p-values are 0.51 and 0.15 for square nut and large flange rivet, respectively.
Therefore, p-values greater than 0.10 indicate that the data generated from Poisson mixture
distributions significantly represent the real data.

Figure 10. Comparison of the real and generated data distribution for square nut.

Figure 11. Comparison of the real and generated data distribution for large flange rivet.
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It is seen that the PEWMA control charts, in which we have drawn square nut and
large flange rivet data shown in Figures 12 and 13, respectively, are out of control very
quickly while the parameters L = 2.7 and λ = 0.2. The charts seem very sensitive to Poisson
mixture data that have more than two proportions with highly shifted process means. The
reason for this is the violation of the assumption that the data in the PEWMA control chart
come from a Poisson distribution, in addition to the presence of overdispersion in the data.

Figure 12. PEWMA control chart for square nut. Red and blue symbols represent out of control and
in control points, respectively. Red dashed lines are control limits and bold line is center line.

Figure 13. PEWMA control chart for large flange rivet. Red and blue symbols represent out of control
and in control points, respectively. Red dashed lines are control limits and bold line is center line.
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Reliability

Since reliability focuses on the overall performance and defective probabilities of products
or systems, a strong quality control process contributes to achieving the desired reliability of
a product. For square nuts and large flange rivets with batch sizes of 500, we can define the
defective product numbers as in Equation (16) by using the determined number of components
(k), proportions (π) and parameters (α) of each Poisson mixture distribution. By utilizing
these probability density functions, we can calculate the probabilities of having the number of
defective products greater or less than a certain value for both products within a batch.

5. Discussion

In the literature, there are notable instances of studies delving into the enhance-
ment and progression of the PEWMA control chart, which was originally introduced by
Borror et al. [9]. One of the studies offering suggestions for obtaining a more effective con-
trol chart was found in ref. [18]. PEWMA has argued that it is more effective by applying a
square root transformation to control chart data.

Overdispersion in process data has been handled by categorizing a certain data rate as
“noisy data” in SPC. This approach was adopted as a precautionary measure to mitigate the
effects of overdispersion. In view of this concept, Jesus et al. [21] suggested in their study
that handling overdispersion with the Poisson mixture distribution would eliminate the
problem and increase the ARL performance. However, the charts they deal with are not
EWMA charts as similar to Boaventura et al. [27], but for the c and u charts developed for
attribute data. As far as we have seen in the literature, our work is a novel approach for
PEWMA control charts, taking into account the Poisson mixture distribution to deal with
overdispersed data.

The outcomes of our simulation experiments, conducted using the generated Poisson
mixture data and a range of design parameter combinations, illuminated several significant
findings. Notably, we observed that the selection of suitable values for the parameters
played a pivotal role in shaping the performance of the PEWMA control charts.

We embarked on an exploration of the performance of PEWMA control charts when
confronted with process data fitted to a Poisson mixture distribution. The key objective
was to gain insights into how the PEWMA control charts respond under varying conditions
of process mean shifts induced by the incorporation of nuisance data. Our investigation
aimed to shed light on the optimal selection of design parameters to ensure efficient and
effective detection of ARLs across different shifts in mean. To achieve this, we employed
a method that involved the generation of nuisance data by mixing data from a Poisson
distribution characterized by diverse parameters into a dataset, subsequently resembling
another Poisson distribution. This approach endowed the new dataset with a Poisson
mixture distribution while introducing noticeable shifts in the process mean. This allowed
us to simultaneously investigate the influence of distribution characteristics and mean
shifts on the PEWMA control chart performance.

In the simulation experiments conducted with this Poisson mixture data and different
combinations of design parameters, we observed that selecting a large value for λ resulted
in better performance for almost all values of A when nuisance data caused small shifts in
the process mean. Conversely, when nuisance data caused large shifts, selecting a small
value for λ shows better performance for almost all values of A. Informative graphical
representations and tables have been meticulously crafted to facilitate users in the optimal
parameter selection. These images serve as valuable tools to quickly identify ARLs, enabling
fast and effective decision making based on average shift magnitudes.

As a result of this study, Table 5 representing the parameter combinations A and λ
for some shift levels (multiple of σ) in the mean, taking into account the Poisson mixture
distribution, to determine the ARLs in different PEWMA control schemes. This template
will be useful for selecting parameters before monitoring the process. For example, λ should
be chosen small to detect smaller shifts. However, for larger shifts, it is observed that the
ARL values do not differ much from each other when A < 2.90 and λ < 0.4.



Appl. Sci. 2023, 13, 11160 16 of 17

Table 5. ARLs for different PEWMA control schemes with Poisson mixture data.

Shift in Mean A = 3.50 A = 3.20 A = 2.90 A = 2.85 A = 2.70 A = 2.50
Multiple of σ λ = 0.75 λ = 0.5 λ = 0.4 λ = 0.3 λ = 0.2 λ = 0.1

0.00 419.33 360.49 245.72 237.14 223.07 125.27
0.25 247.24 147.58 88.77 77.22 71.30 61.33
0.52 72.04 49.99 32.80 31.29 26.65 20.39
0.76 37.16 15.47 12.7 8.91 8.61 8.02

6. Conclusions

The structure of control charts is based on the assumption that process observations
come from a specific distribution, such as the normal distribution. One of the criteria for
evaluating their performance is the ARL when the fundamental distributional assumption
is violated. In the literature, many studies have assessed the performance of control charts
by using different distributions instead of the fundamental one. In the case of the PEWMA
control chart, it is assumed that observations follow a Poisson distribution.

In this study, we assessed the performance of the PEWMA control chart in the presence
of Poisson mixture data instead of Poisson data. The Poisson mixture data were generated
using simulation, with parameters such as sample mean and the proportion of data for each
component. Subsequently, the simulation was executed to obtain the ARL while calculating
the PEWMA statistics and control limits. The results were analyzed for various parameters
of PEWMA control charts, and we provided necessary interpretations to enhance their
performance. Additionally, we presented a real-world application for process control
in fastener production. We analyzed the data using the EM algorithm to determine the
number of components and distribution parameters of the Poisson mixture distribution.
Finally, we constructed PEWMA charts with the desired parameters.

The fact that there is more variability in process data, especially in real cases, makes the use
of mixture distributions important. In future studies, the exploring efficacy of existing control
charts for different mixture distributions will shed light on how to deal with over-dispersed
data. This examination will also provide a foundation for the creation of more robust control
charts specifically designed to address data characterized by various mixture distributions.
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1. Petrović, S.; Milosavljević, P.; Lozanović Šajić, J. Rapid evaluation of maintenance process using statistical process control and

simulation. Int. J. Simul. Model. 2018, 17, 119–132. [CrossRef] [PubMed]
2. Wan, Q.; Chen, L.; Zhu, M. A reliability-oriented integration model of production control, adaptive quality control policy and

maintenance planning for continuous flow processes. Comput. Ind. Eng. 2023, 176, 108985. [CrossRef]
3. Hajej, Z.; Nyoungue, A.C.; Abubakar, A.S.; Mohamed Ali, K. An integrated model of production, maintenance, and quality

control with statistical process control chart of a supply chain. Appl. Sci. 2021, 11, 4192. [CrossRef]
4. Koetsier, A.; van der Veer, S.N.; Jager, K.J.; Peek, N.; de Keizer, N.F. Control charts in healthcare quality improvement. Methods

Inf. Med. 2012, 51, 189–198.
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