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Abstract: Inertial measurement unit (IMU) technology has gained popularity in human activity
recognition (HAR) due to its ability to identify human activity by measuring acceleration, angular
velocity, and magnetic flux in key body areas like the wrist and knee. It has propelled the extensive
application of HAR across various domains. In the healthcare sector, HAR finds utility in moni-
toring and assessing movements during rehabilitation processes, while in the sports science field,
it contributes to enhancing training outcomes and preventing exercise-related injuries. However,
traditional sensor fusion algorithms often require intricate mathematical and statistical processing,
resulting in higher algorithmic complexity. Additionally, in dynamic environments, sensor states may
undergo changes, posing challenges for real-time adjustments within conventional fusion algorithms
to cater to the requirements of prolonged observations. To address these limitations, we propose a
novel hybrid human pose recognition method based on IMU sensors. The proposed method initially
calculates Euler angles and subsequently refines them using magnetometer and gyroscope data to
obtain the accurate attitude angle. Furthermore, the application of FFT (Fast Fourier Transform)
feature extraction facilitates the transition of the signal from its time-based representation to its
frequency-based representation, enhancing the practical significance of the data. To optimize feature
fusion and information exchange, a group attention module is introduced, leveraging the capabilities
of a Multi-Layer Perceptron which is called the Feature Fusion Enrichment Multi-Layer Perceptron
(GAM-MLP) to effectively combine features and generate precise classification results. Experimental
results demonstrated the superior performance of the proposed method, achieving an impressive
accuracy rate of 96.13% across 19 different human pose recognition tasks. The proposed hybrid
human pose recognition method is capable of meeting the demands of real-world motion monitoring
and health assessment.

Keywords: human activity recognition; HAR system; IMU sensors; FFT; MLP neural network

1. Introduction

With the continuous advancement of technology and the increasing focus on phys-
ical well-being, sensor-based human activity recognition (HAR) has gained significant
attention and has been widely applied. Human activity refers to the motion status of the
human body in space, encompassing its position, angles, and trajectories. The recognition
of human activity holds great potential across diverse domains, including medical reha-
bilitation [1], sports science, human–computer interactions, and gaming. In these fields,
the attainment of precise and real-time human activity recognition plays a pivotal role in
attaining predefined objectives.
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The practical uses of traditional camera-based activity recognition systems are severely
constrained by their low recognition accuracy, susceptibility to ambient interference, and
high processing complexity. Contrarily, sensor-based human position identification tech-
niques, such as those using depth cameras, audio signals, and inertial measurement units
(IMUs), offer important benefits like high accuracy, low latency, and robustness to environ-
mental factors [2]. These benefits support the quick advancement and extensive application
of sensor-based activity recognition techniques. However, there also exist certain draw-
backs to the sensor-centric approach. Firstly, sensor acquisition and integration amplify
hardware costs and system intricacy, rendering it unsuitable for scenarios with constrained
budgets or space requirements. Secondly, specific motions or actions might necessitate intri-
cate algorithmic parsing, potentially leading to performance degradation. The processing
and fusion of sensor data necessitate meticulous calibration and adjustments for varying
sensor types, involving intricate technical challenges.

Human activity recognition entails monitoring and analyzing the body’s movement
status through the utilization of sensors, and automatically recognizing activity based
on spatial or trajectory characteristics. The versatility of this approach allows for its
application in various scenarios, bringing with it distinct advantages and specific conditions
for implementation. Furthermore, the fusion of multiple sensor technologies enables a
more thorough and comprehensive recognition and analysis of human activity, providing
valuable insights into activity-related information. For example, placing sensors on different
parts of the body (such as the wrist, waist, and ankle) can obtain more comprehensive
information about human activity, helping to identify more complex behaviors such as
bending, turning, etc. Human activity recognition can be achieved through different sensor-
based methods. Inertial measurement units (IMUs) calculate body movements based on
acceleration, angular velocity, and magnetic flux data from key body areas like wrists
and knees [3]. Depth cameras, using infrared encoding, accurately recognize whole-body
activities and joints [4]. Video sequence technology analyzes high-speed camera footage for
activity recognition in sports and medical rehabilitation. Acoustic signal analysis estimates
body activity by analyzing sound signals in the context of human–machine interactions and
virtual reality scenarios. These methods enhance human–computer interactions, optimize
sports training, aid medical rehabilitation, and advance virtual reality applications.

Although the IMU (inertial measurement unit) has been widely used in HAR, it still
faces limitations in practical applications. The raw data from a single accelerometer is too
simplistic to independently determine activity. Meanwhile, gyroscopes accumulate small
errors over time with prolonged usage, leading the integrated values from the sensor to
progressively deviate from true values. This phenomenon can result in the drift of inte-
grated values over time, ultimately impacting the accuracy of applications [5]. As a result,
many researchers have proposed multi-sensor fusion algorithms based on Kalman filters,
combining attitude data from accelerometers, gyroscopes, and magnetometers. However,
establishing stable observation equations for long-term monitoring is challenging due to the
algorithm’s inclusion of intricate mathematical principles, multi-dimensional state observa-
tion handling, and iterative updates. This complexity becomes particularly pronounced
when dealing with high-dimensional state spaces or frequent data updates, resulting in
escalated computational demands, and calculating measurement noise covariance and state
noise covariance adds to the algorithm’s complexity, leading to excessive overhead.

Therefore, this paper proposes a method of human pose angle extraction using an
accelerometer and Euler angle calculation to recognize 19 kinds of human physical activities.
Utilizing a sliding window technique, the method removes high-frequency noise to mitigate
the impact of integration drift. Simultaneously, it introduces a module known as GAM to
emphasize the temporal characteristics of sensor data, further counteracting integration
drift. By adaptively adjusting model weights, it learns feature representations of the
sensor data, reducing complex mathematical computations and enhancing recognition
accuracy [6].
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The contributions of the paper:

1. A human feature extraction model is introduced to convert multi-dimensional sensor
data into one-dimensional features;

2. An approach for feature group division and classifier network construction is pro-
posed to improve group correlation analysis and human action recognition accuracy;

3. The impact of the K-nearest neighbors algorithm (KNN) and sliding window size on
evaluation results is examined;

4. The study investigates the influence of GAM, transformer block, and classifier block
on the experimental accuracy.

The subsequent sections of this paper are organized as follows: The second section
delineates recent advancements in the realm of human behavior recognition. Moving for-
ward, the third section elucidates the transformation of Euler angles within human posture,
alongside the methodology of integrating GAM-MLP information. Progressing further, the
fourth section details the groundwork undertaken for the forthcoming experiments. In the
subsequent fifth section, we present a comprehensive compilation of experimental findings,
meticulously analyzed. Lastly, the sixth section encapsulates the entirety of the article
through a concise summary, while also delving into an insightful analysis of potential
avenues for future research opportunities.

2. Related Work

Recently, computer vision applied to image-based HAR has made significant progress.
Bayraktar et al. [7]. have provided valuable insights into visual semantic analysis using
deep neural networks and load analysis through sensors. This is noteworthy for harnessing
computer vision and sensor load for human behavior recognition. However, visual-based
HAR is susceptible to environmental factors such as lighting and angle variations. Therefore,
the application of low-cost sensor-based HAR methods has become more prominent in this
field. Yigit et al. [8]. proposed three comprehensive algorithms for low-cost variable stiffness
robotics mechanisms. These algorithms enhance recognition accuracy and reduce costs in
the adjustment of robot joint stiffness. In [9], an innovative approach was introduced to
address the estimation of external forces and torques on elastic joints. This method leverages
the inherent elastic characteristics of joints, eliminating the need for expensive sensors.
These approaches provide some cost-effective solutions for joint sensor design in HAR.

When utilizing sensors for HAR, achieving a sufficient level of accuracy is crucial [10].
In scenarios where only a single sensor is employed for recognition, Anazco et al. developed
a HAR system [11], in which individual IMUs are attached to the dominant wrist. They
employed a variational autoencoder to automatically denoise the IMU signals, enhancing
recognition accuracy. This approach achieved a recognition accuracy of 95.09% in everyday
smartphone-based motion recognition. However, relying solely on sensors worn on the
wrist has limitations when it comes to recognizing complex human gait behaviors. The
choice of sensor placement significantly impacts the accuracy of human gait recognition.
Abdelhafiz et al. devised a sensor selection approach using the feature selection criteria
of maximum relevance and minimum redundancy. This method identifies optimal sensor
placement for gait recognition [12]. Additionally, they implemented a two-layer classifier
to differentiate interfered activities and incorporated physical features into the feature
dictionary, thereby enhancing recognition accuracy.

Through collecting data using sensors placed at appropriate positions, neural network
methods have demonstrated strong recognition capabilities when processing such data,
Rivera et al. presented an approach for recognizing hand activities in daily life [13].
They proposed a deep autoencoder based on ARMA (Auto-Regressive Moving Average)
and a deep recursive network using GRU (Gated Recurrent Unit). The ARMA-based
deep autoencoder effectively denoises the unprocessed time-series signals, while the deep
RNN-GRU utilizes the output from the encoder to identify seven hand gestures. This
approach yielded a 12.8% increase in accuracy compared to traditional classifiers for
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gesture recognition. Nevertheless, effective preprocessing techniques for sensor data
remain essential to further enhance recognition accuracy.

Applying data preprocessing and model pretraining techniques often leads to re-
markable results in dealing with complex human activity recognition tasks. Hashim et al.
proposed a method to transform raw accelerometer and gyroscope sensor data into the
visual domain [14]. To address the issue of high computational complexity during this
process, they employed fine-tuning through pretraining a CNN and transfer learning. On
several online human activity recognition datasets, they achieved a classification accuracy
of 98.36%. Tahir [15] combined data preprocessing techniques with the primary domain
features of human activities, such as time, frequency, wavelet, and time-frequency features.
They employed a random forest classifier to monitor human body activities. Results on five
commonly used HAR datasets demonstrated that their method exhibited a certain superi-
ority compared to cutting-edge approaches. However, the challenge lies in how to process
and fuse data from multiple sensors to achieve accurate human behavior recognition. This
has emerged as a new challenge in the HAR field.

Fusing data from different sensors can enhance recognition accuracy. Chakraborty
addressed the issue of recognition errors due to sensor placement and developed a
heterogeneous sensor system [16]. This system utilized low-cost leg sensors and fingertip-
based pulse sensors to acquire multimodal data. They employed a one-dimensional
deep convolutional neural network for system performance evaluation. Through feature
fusion, this approach achieved a 97% accuracy in recognizing the walking movements of
the human body.

By monitoring and analyzing body movements through sensors and recognizing ac-
tivities based on spatial and trajectory characteristics, the methods mentioned above open
up versatile applications and offer valuable insights into activity-related information. For
instance, the positioning of IMU sensors, data preprocessing techniques, and adjustments
to network modules have all served as references in our approach presented in this paper.
However, multi-sensor data fusion continues to face challenges associated with high com-
plexity [17]. These challenges include overcoming the problem of the unified processing of
multi-sensor data, concise attitude angle transformation, and behavioral feature extraction
to avoid high complexity in the recognition process.

In order to address these issues, this paper introduces a human feature extraction
model based on sensor data, aiming to collect and extract human posture angles to the
maximum extent. The model uses dimensionality reduction technology to fuse the Euler
angles of multiple parts of the human body into the overall pose angle, and utilizes the FFT
algorithm for transforming time-domain characteristics into frequency-domain features,
enhancing the accuracy of human activities recognition. Additionally, a novel technique
called the Group Attention Module (GAM) is introduced, utilizing a multi-layer perceptron
to share and fuse information among different features within the same group, effectively
extracting the behavioral features of activities. This approach effectively improves the
accuracy and robustness of HAR.

3. Methods
3.1. Enhancing the Human Pose Recognition Model Structure

The HAR system architecture involves data preprocessing to remove sensor noise and
calculate Euler angles using roll, pitch, and yaw angles. Magnetometer and gyroscope
data correct the initial Euler angles and reduce dimensionality, forming the attitude angle
model. Feature extraction methods, including FFT, involve shifting to the frequency
domain, reflecting human activity periodicity and frequency for practical significance [18].
Information fusion through a multi-layer perceptron (MLP) and a group attention module
enhances feature fusion. Manual classification combined with conventional neural network
techniques achieve accurate HAR. The fully connected and SoftMax layers produce the
final classification results, enabling precise human activity recognition. Figure 1 illustrates
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the identification process of the hybrid human pose recognition method using an MLP
neural network and Euler angle extraction based on IMU sensors.
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3.2. Extraction of Human Pose Euler Angles
3.2.1. Initial Attitude Angle Calculation

We use Euler angles to describe the orientation of several body parts [19–21], including
the torso, left hand, right hand, left leg, and right leg, in order to calculate the initial torso
rolling angle, pitch angle, and yaw angle. The acceleration vectors of various body parts
must be converted into a single coordinate system in order to calculate the Euler angles
with accuracy, assuring consistency in angle calculation and dimensionality reduction.

To get the torso’s Euler angles, the following procedures are conducted, assuming the
common coordinate system is represented by xyz:

First of all, the roll angle of the torso, indicated as ∅torso
t , is calculated as follows:

∅torso
t = tan−1

atorso
y,t

atorso
z,t

(1)
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where, in the common coordinate system, atorso
y,t denotes the acceleration along the Y-axis of

the acceleration vector and atorso
z,t signifies the acceleration along the Z-axis. Furthermore,

the pitch angle of the torso θtorso
t is computed using the formula:

θtorso
t = tan−1 −atorso

x,t√(
atorso

y,t

)2
+
(

atorso
z,t

)2
(2)

In this equation, the term, atorso
x,t denotes the acceleration of the torso’s acceleration

vector in the common coordinate system along the X-axis. The yaw angle of the torso,
shown by the symbol ϕtorso

t , is then calculated. The initial yaw angle is set to zero during
the computation since accelerometers can only detect an object’s acceleration in relation to
a fixed coordinate system and not its absolute direction:

ϕtorso
t = 0 (3)

Once the Euler angles of the torso in the common coordinate system have been
computed, the Euler angles for the other body parts can be calculated using specific
methods tailored to each part. For instance, the acceleration vector of the right hand must
be rotated so that it is perpendicular to the xz plane of the torso in order to calculate the
Euler angles of the right hand. In order to accurately calculate the Euler angles in the torso
coordinate system, this rotation seeks to remove the right hand’s projection in the xz plane
of the torso. Figure 2 is right hand coordinate transformation, gyroscope, and accelerometer
schematic for the human body model, in which we describe the 3D human model.
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The process involves first calculating the rotation angle of the right hand vector,
denoted as α

rightarm
t , relative to the coordinate system of the torso:

α
rightarm
t = tan−1−atorso

z,t

atorso
y,t

(4)

where, atorso
z,t represents the acceleration along the Z-axis of the acceleration vector of the

right hand position in the common coordinate system, and atorso
y,t denotes the acceleration

along the Y-axis.
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Next, the acceleration vector of the right hand after rotation, represented as α
rightarm
t , is

obtained by rotating the original acceleration vector
→
α

rightarm
t about the x-axis of the torso

coordinate system, using the rotation matrix Rx(α
rightarm
t ) [22,23]:

→
α

rightarm
t = Rx(α

rightarm
t )

→
α

rightarm
t (5)

Rx(α
rightarm
t ) =

1 0 0
0 cos(αrightarm

t ) −sin(αrightarm
t )

0 sin(αrightarm
t ) cos(αrightarm

t )

 (6)

To begin with, the magnetometer data is utilized to compensate for the yaw angle in
the original attitude angle by determining the direction of the horizontal plane of Earth’s
magnetic field. Since the magnetic field component perpendicular to the horizontal plane
does not impact the calculation of the yaw angle, the orientation of the magnetic field
within the horizontal plane is employed for compensation. The formula for compensating
the yaw angle is given as follows:

ϕt = 0 + atan2
(
my, mx

)
(7)

Additionally, the original Euler angles are compensated using gyroscope data from
various body parts, following a similar calculation approach. The compensation method
for the torso’s original Euler angle using gyroscope data is described below.

Gyroscope data can be integrated to compensate for the torso’s Euler angles. Specifi-
cally, the gyroscope data compensation formula is as follows:

rollcomp = rollprev +
gyrox · dt

cos
(

pitchprev

)
· cos

(
yawprev

)
pitchcomp = pitchprew +

gyroy · dt

cos(rollprev) · cos
(

yawprev

)
yawcomp = yawprew +

gyroz · dt

cos(rollprev) · cos
(

pitchprev

)
(8)

where, dt represents the sampling time interval, rollprev, pitchprew, and yawprew are the
Euler angles of the torso at the previous sampling moment. These formulas employ the
integration of gyroscope data to update the current Euler angles of the torso, thereby
compensating for the gyroscope data.

Generally, the Euler angle principle is an early method for attitude determination due
to its straightforward physical interpretation. However, it involves complex operations
with many trigonometric calculations. To simplify the practical application process, we
introduce the quaternion method as an optimization of the Euler angle approach.

3.2.2. Euler Angle Correction for Quaternion and Rodriguez Parameters

Given the roll ∅, pitch θ, and yaw ϕ Euler angles for each body part, these can be
converted into rotation quaternions. The quaternion representing the orientation of a body
part in the common coordinate system would be in the form:

q = cos
(

∅
2

)
cos
(

θ

2

)
cos
( ϕ

2

)
+ sin

(
∅
2

)
sin
(

θ

2

)
sin
( ϕ

2

)
i + sin

(
∅
2

)
cos
(

θ

2

)
cos
( ϕ

2

)
j + cos

(
∅
2

)
sin
(

θ

2

)
cos
( ϕ

2

)
k (9)


∅ = atan2

(
2(q0q3 + q1q2), 1−

(
q2

2 + q3
2))

θ = asin(2(q0q2 + q1q3))
ϕ = atan2

(
2(q0q1 + q2q3), 1−

(
q1

2 + q2
2)) (10)

where, q0, q1, q2, and q3 are the components of the quaternion.
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Compared to the Euler angle method, the quaternion description method further
simplifies the calculation process and effectively avoids the singularity problem of the
Euler angle due to a trigonometric function operation, but quaternions possess redundant
parameters and quaternion normalization constraints. Quaternion tracing was compared
to the Euler angle method singularity problem of the angle function operation. Lastly,
to facilitate the extraction of human activity posture features, a dimensionality reduction
technique is applied to the optimized Euler angles obtained through the above steps. The
resulting reduced Euler angles are defined as the attitude angle, denoted as attitude. The
formula for computing the attitude angle is as follows:

attitude = arccos(cos∅cosθcosϕ + sin∅sinθsinϕ) (11)

where, ∅, θ, and ϕ are the roll, pitch, and yaw angles, respectively. This formulation
combines the three-dimensional Euler angles into a single one-dimensional attitude angle,
providing a concise representation of the overall posture.

3.2.3. Attitude Angle Calculation Algorithm Design

A new method of human attitude angle calculation based on multiple attitude param-
eters compensating each other is proposed, which makes up for the redundant parameters
and the singular values of trigonometric functions. The attitude angle calculation proce-
dure begins with the initialization process and unit conversion of acceleration data (lines
1–2). Subsequently, Euler angles are computed based on the sampled frequency-processing
sequence data, with compensation provided through gyroscope and accelerometer data
(lines 3–12). Following this, the Euler angle vector is transformed into a rotation matrix, and
from there into a quaternion and Rodrigues parameters (lines 13–15). Finally, the ultimate
pose angles are calculated and displayed (lines 16–19).

Algorithm 1: The human attitude angle calculation method based on multiple attitude parameters

Input: Sample time series T, Acceleration data Adata (ax, ay, az), Gyroscope data Gdata,
Magnetometer data Mdata;

Output: Attitude Angle attitude;
(1) Initialization Adata, Mdata, Quaternion Q and Rodrigues Parameters r;
(2) Conversion unit of accelerometer data to the acceleration of gravity
(3) for i = 0,0.04,0.08. . .T do:
(4) Calculate roll angle ∅t and pitch angle θt
(5) Compensate for Mdata to correct Attitude Angle with magnetometer
(6) Calculate yaw angle ϕt
(7) Convert angles to radians
(8) Update Euler Angle vector Eangle
(9) Calculate the Gyroscope Euler Angle variation:
(10) Gchange = Gdata * dt
(11) Compensate the Euler Angle Ccomp:
(12) Ccomp = Eangle + Gdata;
(13) Transform Euler Angle vector to rotation matrix
(14) Convert Euler Angle vector to quaternion
(15) Convert quaternion to Rodrigues Parameters
(16) Calculate Attitude Angle attitude
(17) Convert radians to angles
(18) end for
(19) Output the final Attitude Angle attitude

3.3. Human Pose Feature Extraction

FFT is applied to the data [24], yielding the frequency-domain conversion results
depicted in Figure 3.

X[k] = ∑N−1
n=0 x[n]× e

−j2πkn
N (12)
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where, X[k] represents the frequency-domain signal, x[n] denotes the denoised time-domain
signal of length N, N represents the number of sampled data points, and j represents the
imaginary unit

(√
−1
)
.
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The first 45 FFT coefficients are then selectively extracted as the 45 eigenvalues, which
represent the human activity.

Xeigenvalues = [X[0], X[1], · · · , X[44]] (13)

These eigenvalues are subsequently harnessed for deep learning-based human body
activity recognition.

3.4. GAM-MLP Information Fusion
3.4.1. Human Pose Feature Information Fusion

In order to better process the spatiotemporal features of IMU sensor data, the neu-
ral network model that is suggested in this paper incorporates information fusion [25],
attention evaluation [26], and classification recognition [27]. Figure 4 depicts the model
architecture of GAM-MLP and the process of action classification. The data of different sen-
sors in each part of the human body are put into the GAM-MLP model as one-dimensional
features to recognize human activities, and finally the recognition results are obtained. The
data format represented by (, 64) in the figure represents (batch_size, data dimension), due
to batch_ size is not fixed and is therefore represented as blank.

GAM-MLP’s primary objective is to extract posture features of the utmost signif-
icance for action recognition from a 20-dimensional dataset. This extraction process
is intended to facilitate effective information fusion and utilize these features as the
primary foundation for classification. To accomplish this objective, the paper introduces
a component called the GAM.

In conventional neural network classification methodologies, each pose feature is
uniformly trained, with their significance determined solely by the weights assigned
to individual neurons. However, this method suffers from inadequate communication
among distinct pose features, ultimately yielding less impactful results. This paper
introduces a novel approach that combines manual partitioning and automatic learning.
This hybrid approach empowers the neural network model to allocate varying degrees of
importance to different categories of pose features, ultimately resulting in an enhanced
classification accuracy.

In the GAM, the pose features are manually categorized into distinct groups. During
the manual grouping process, following feature extraction via FFT, it becomes evident
that there exist resemblances in the characteristics among features associated with various
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activities. For instance, the frequency features of “Sitting” and “Standing” are characterized
by frequencies of less than 4 Hz and exhibit a unimodal pattern. On the other hand, activities
such as “Exercising on a stepper” and “Playing Basketball” demonstrate characteristic
frequencies reaching approximately 10 Hz, marked by multiple peaks and substantial
fluctuations. Consequently, human motion activities can be effectively classified into
dynamic and static groups. The static group conforms to low-frequency attributes with
a single wave peak, while the dynamic group encompasses high-frequency elements,
multiple peaks, and significant fluctuations. As depicted in the accompanying Figure 5, we
provide a visual comparison of feature images extracted from several activity features.
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Furthermore, adhering to the principles of the periodicity inherent in dynamic motion,
the dynamic group can be further categorized into two subgroups: periodic dynamic
activity and random dynamic activity. Within the periodic dynamic activity category,
distinctions can be made based on the unique patterns and trends of peak characteristics.
To summarize, the criteria and guidelines for manual partitioning can be systematically
delineated, progressing from higher-order groupings to lower-order ones, in accordance
with the specific characteristics of the dataset. The schematic representation of the group
attention module is illustrated in Figure 6. The blocks with different colors in the figure
represent the weights calculated by different groups.

To address the inherent nonlinear relationships and patterns within both the dynamic
and static groups of features, this paper introduces the “Transform Block”, which combines
elements from MLP and the Transformer model. Both MLP and the Transform Block are
integral components of deep learning models, commonly employed in tandem to handle
intricate datasets and tasks.
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MLP serves the purpose of introducing nonlinearity into the model, while the Trans-
form Block, a crucial part of the Transformer architecture, is utilized for effectively modeling
sequential data. This integration is geared towards enhancing the model’s capacity for
representation learning and nonlinear modeling, thereby enabling it to adaptively generate
distinct weights between modules and effectively capture the intricate relationships and
patterns present in the data.

The Multi-Layer Perceptron (MLP) serves as a conduit for interchanging and amalga-
mating distinct features within the same group. It encompasses a series of layers including
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the fully connected, activation, and standardization layers [28–30]. The training process em-
ploys backpropagation, iteratively adjusting weights and biases. This fosters incremental
learning and the integration of pertinent information across features in the same group.

The fully connected layer embodies input and output neurons. Given the ith input,
xi, and the jth output, yj, their relationship is governed by the weight, wij, and bias, bj,
represented as

yj = ∑10
i=1 wijxi + bj (14)

Two fully connected layers are followed by the activation layer and the standardization
layer, respectively, to achieve the nonlinearity of network representation and improve
training speed, generalization ability, and robustness, while reducing overfitting, gradient
disappearance or gradient explosion problems. For the activation layer, the Rectified Linear
Unit (ReLU) is selected, which is more efficient and safer than other activation functions
while making the input of neurons a nonlinear transformation. Its function expression is
shown as follows:

ReLU(x) = max(0, x) (15)

where max represents taking the larger value of the two numbers, and 0 is the cutoff point
of ReLU, that is, when x < 0, the value of ReLU is 0.

For the normalization layer, we utilize batch normalization. The characteristics of
each sample, x(i) =

(
x(i)1 , x(i)2 , · · · , x(i)m

)
, where m indicates feature count, are transformed

according to

Mean : µB =
1
m∑m

i=1 xi (16)

Variance : σ2
B =

1
m∑m

i=1(xi − µB)
2 (17)

Normalization : x̂i =
xi − µB√
σ2

B + ε
(18)

Output : yi = γx̂i + β (19)

where µB and σ2
B denote batch mean and variance, respectively, x̂i is the normalized

feature, γ and β are learnable parameters for scaling and shifting, and ε prevents divi-
sion by zero. This process standardizes data, maintains distribution information, and
optimizes data representation.

The synergetic integration of these layers fortifies the MLP’s capacity to compre-
hend and amalgamate interrelationships among features within the same group. This
amalgamation enhances activity recognition accuracy through a robust and sophisticated
learning process.

Subsequently, we employ transformer blocks to enhance attention evaluation and
sequential modeling, leveraging the self-attention mechanism to improve the model’s perfor-
mance. Specifically, the transformer block facilitates establishing global dependencies across
various points within the input sequence, enabling the capture of longer-range semantic
dependencies and enhancing the model’s efficacy in human motion recognition tasks.

Transformer blocks typically comprise several sub-layers, including a self-attention
layer, a fully connected layer, and a normalization layer. The self-attention layer calculates
attention weights at different positions within the input sequence, facilitating the correlation
of distinct parts of the input sequence. The fully connected layer further processes and
transforms the outcome from the self-attention layer. After the self-attention and fully
connected layers, the input and output are combined through a residual connection, while
the neural network training process is expedited via batch normalization. This helps
to prevent issues like gradient vanishing or explosion, ultimately improving the model’s
generalization capabilities. Multiple transformer blocks can be stacked together to construct
a deeper neural network, further enhancing the model’s overall performance.
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Self-attention is a core component of the transformer model, playing a crucial role in
machine learning tasks in natural language processing and other domains. It can associate
and interact with information from different positions in the input sequence to capture the
long-term dependencies in the sequence.

The self-attention [31] calculation processes a sequence (x1, x2, . . . , xn), with each xi
being a vector. The self-attention layer yields an output sequence (y1, y2, . . . , yn), where
each yi, is also a vector. The self-attention mechanism can be explained as follows:

SelfAttention(X) = softmax

(
X·WQ(X·WK)

T

√
dk

)
X·WV (20)

where X ∈ Rn×d represents the input sequence, WQ, WK, and WV ∈ Rd×dk are weight
matrices that map input vectors to query, key, and value vectors. The output of self-
attention is a weighted average of input position vectors, with weights calculated through
similarity (dot product) between position vectors after scaling and Softmax normalization.

Residual connection addresses gradient vanishing in deep neural network training
by allowing input data to flow directly to subsequent layers during forward propagation.
This preserves input information, alleviating information loss and distortion. This concept
applies beyond convolutional neural networks and enhances various neural network
structures’ training.

Finally, the weighted feature group representations were added together to obtain
the final attention fusion representation. The proposed group attention module and trans-
former module empower the neural network to focus on different input parts, enhancing
adaptability across tasks and scenes. In activity recognition, it aids the network in empha-
sizing activity-related input information, improving accuracy and generalization.

3.4.2. Activity Classification and Recognition

The GAM-MLP model concludes with a fully connected layer followed by a Soft-
Max layer for classification purposes [32]. The diagram illustrating the classification and
recognition process in the MLP of layer plus SoftMax layer is shown in Figure 7 below.
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The function of the SoftMax layer is to transform neural network output scores into
a probability space, ensuring category probabilities range from 0 to 1, summing to 1. For
neural network output scores z = (z1, z2, . . . , zn), the Softmax layer’s output is given by

yi =
ezi

∑n
j=1 ezj

(21)
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Here, e is the base of the natural logarithm, and yi represents the probability for the
ith class.

4. HAR Datasets and Experiment Settings
4.1. Experimental Environment and Data Acquisition

For human body pose recognition using IMU sensors, we have meticulously assembled
a specialized hardware and software configuration. The system features an Intel Core i9-
12900K CPU at 3.50 GHz and an Nvidia GeForce RTX 3080Ti GPU with 12 GB VRAM,
ensuring high-speed computation for accurate pose analysis. With 64 GB DDR4 3000
RAM, memory-intensive operations are efficiently handled. TensorFlow 2.5 serves as the
deep learning framework, supported by Python 3.9 as the primary development language.
PyCharm 2020.1 IDE offers a user-friendly platform for coding and debugging. Windows
10 Professional OS provides stability and reliability for precise pose recognition. This
setup optimizes IMU sensor capabilities, benefiting sports biomechanics, healthcare, and
animation applications. The relevant configurations of the experiment are shown in Table 1.

Table 1. High-performance AI workstation for advanced deep learning applications.

Name Specific Configuration

CPU Intel Core i9-12900K@3.50 GHZ
Graphics card Nvidia Geforce RTX 3080Ti (12 GB) GPU

Memory 64 GB DDR4 3000
Deep learning framework TensorFlow 2.5

Development language Python 3.9
Developing an IDE Pycharm 2020.1
Operating system Window10 Professional

Sensor-based human activity recognition is a sophisticated technology that utilizes
sensor technology to monitor and analyze the spatial positioning and motion characteristics
of the human body. It automatically recognizes and interprets various human activities,
making it applicable in diverse scenarios. We employ an inertial measurement unit (IMU)
sensor technology to achieve a more comprehensive and in-depth recognition and analysis
of human activity information.

The datasets used in the experiment are the PAMAP2 dataset and the MultiportGAM
dataset, where the PAMAP2 dataset is a public dataset that can be publicly obtained.
The MultiportGAM dataset is our self-made dataset, which includes 19 different types of
activities and generates a total of 11,034 sample data.

We invited 10 volunteers to collect sensor data for the MultiportGAM dataset. To
ensure the accurate collection of human activity data, we utilized specific sensors for differ-
ent body parts. An accelerometer is employed to measure the acceleration of the human
torso, left hand, right hand, left leg, and right leg. Additionally, a magnetometer is used
to measure the magnetic field strength and direction of these body parts. Furthermore, a
gyroscope is utilized to measure the angular velocity of the aforementioned body segments.
The eight types of daily activities collected are shown in Figure 8. By compensating for the
data from the magnetometer and gyroscope, more precise localization of human joints is
achieved, enhancing the accuracy of human activity identification.

The sampling frequency of the sensor is 30 Hz, and the number of collected action
types is 19. Each volunteer completed these actions within 1–2 h, with an average
duration of 3–5 min for each action. In order to keep the behavioral data collected by
sensors closer to the real-world human behavior, some specific actions such as cycling,
shooting, paddling, etc., in Figure 8 are collected using sensors with the help of relevant
equipment. Daily actions such as standing, sitting, walking, going upstairs, lying down,
etc., are carried out in an orderly manner under indoor conditions to ensure the stability
of the collection environment and avoid magnetic field interference. In addition, each
row of data includes sensors for calibration to eliminate bias and improve measurement
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accuracy. The collected raw action data includes action labels and timestamps for
subsequent data analysis and alignment.
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Table 2 records the basic information of the two datasets, including activity category,
sample size, and sensor type. Compared to the PAMAP2 dataset, the MultiportGAM
dataset has fewer samples, but it encompasses a greater variety of sensor placement. Both
datasets capture common human activities from daily life.

Table 2. Comprehensive human activity recognition datasets with sensor information.

Dataset Action Categories Sample Size Sensor Type Acquisition Location

PAMAP2 Dataset 18 65,052

inertial measurement units,
acceleration sensors,

magnetometer,
gyroscope

Ankle
Chest
Wrist

MultiportGAM
Dataset 19 11,034 accelerometer,

magnetometer, spirometer

Torso
Left Arm

Right Arm
Left Leg

Right Leg

4.2. Sliding Window Segmentation Signal Processing

Continuous data signals gathered by sensors in practical applications are frequently
plagued by noise and abrupt interference, which can dramatically reduce measurement
accuracy. In the process of human activity recognition, the data of the sensor will present
certain gait characteristics when the human body performs repetitive unit actions. After
noise reduction via sliding window, the smoothness of the data time series is preserved and
the motion characteristics are highlighted, as shown in Figure 9. The implementation of a
sliding window denoising approach improves the accuracy and efficiency of the process.
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To identify the optimal sliding window size and sampling frequency values, noise
reduction is applied to the specific torso data adopted by the tester. The reason for adopting
the torso data here is that when the human body performs periodic activities, the torso
differs from the rest of the body in typical general gait characteristics. At the same time,
in this study, the sliding window size was varied, ranging from 1 to 9 s. The sampling
frequency was adjusted within the range of 15 to 30 Hz, with a step size of 5 Hz. The
average accuracy was used as the scoring Index to solve the optimal value of the sliding
window size and sampling frequency, and the evaluation scores of different machine
learning algorithms were obtained as shown in Figure 10.
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From the results, it can be found that the different algorithms have a peak at a window
size of 5 s and a frequency of 25 Hz which indicates that choosing one particular algorithm
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over another does not make a difference. Also, an accuracy of 0.92–0.99 is good enough for
our purposes. Therefore, these values will be used for further experiments and discussion.

5. Result and Analysis
5.1. Accuracy and Loss of the 10-Fold Cross Validation on Both Training and Test Sets

The Euler angle data collected by sensors and calculated using Algorithm 1 is used
as input for the information fusion experiment after separating the training and test sets.
Figure 11 shows that the upgraded GAM-MLP method’s Train acc and Test acc curves
exhibit a better match.
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Additionally, the accuracy of the test set and training set stabilize as the number of
iteration rounds approaches 120, demonstrating outstanding robustness and generalization
capabilities.

From the accuracy curves of the training and testing sets in Figure 11, it can be seen
that with the increase of iteration rounds, the curves representing the accuracy of the
training and testing sets steadily increase and maintain alignment. This indicates that
GAM-MLP performs as well as the training data when facing new data, demonstrating
good generalization ability.

5.2. Performance on Different Datasets

We proceed to compare our hybrid human activity recognition method with both base-
line techniques and several cutting-edge techniques on the MultiportGAM and PAMAP2
dataset. We evaluate each model’s performance using three key metrics: accuracy, recall,
and F1-score. Accuracy can intuitively measure the model’s ability to accurately predict hu-
man activity categories. The recall rate represents the proportion of the number of behavior
categories correctly predicted by the model to the actual number of human behaviors. A
high recall rate means that the model can more comprehensively detect human behavior
and reduce missed recognition. The F1-score provides a more comprehensive evaluation
of the model’s performance in human behavior recognition tasks. A model with a high
F1-score demonstrates strong performance in terms of both precision and recall, being able
to more accurately recognize human behavior and possessing good overall performance.
This comprehensive analysis aims to uncover the effectiveness of our hybrid human pose
recognition approach in the realm of human activity recognition.

The results of our comparisons on the MultiportGAM dataset are presented in Table 3,
offering a clear perspective on the respective performances. Similarly, the comparison
outcomes with the PAMAP2 dataset are summarized in Table 4. By examining the met-
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rics across these datasets, we gain valuable insights into how our hybrid human pose
recognition method performs in comparison to other established and advanced techniques.

Table 3. Comparison of different methods for the MultiportGAM dataset.

Method Accuracy (%) Recall (%) F1-Score (%)

GAM-MLP 96.13 96.12 96.13
SVM 82.70 82.70 82.69

DCL [33] 92.11 92.10 92.11
IN [34] 92.72 92.72 92.71

LSTM-CNN [35] 94.23 94.10 94.17

Table 4. Comparison of different methods for the PAMAP2 dataset.

Method Accuracy (%) Recall (%) F1-Score (%)

GAM-MLP 93.96 93.89 93.91
SVM 82.84 82.43 82.58

CNN-M [36] 93.74 93.28 93.85
LSTM-CNN 92.63 92.61 92.89
FE-CNN [37] 91.66 91.43 91.40

DCL 92.49 92.42 92.30
CE-HAR [38] 92.14 92.43 92.18

IN 91.77 91.76 91.47
TL-HAR [39] 92.33 91.83 92.08

ConvAE-LSTM [40] 94.33 - 94.46

Based on the comparative results, it is evident that leveraging the human pose angle
model constructed from raw sensor data and the GAM-MLP model’s attention mechanism,
we achieved remarkable performance on the MultiportGAM Dataset. Our hybrid approach
attained an accuracy of 96.13%, a recall rate of 96.12%, and an F1-score of 96.13%. In
contrast to the baseline methods, our approach demonstrated notable improvements of
13.43%, 13.42%, and 13.44% in the respective accuracy, recall, and F1-score metrics.

The hybrid approach surpasses the currently established cutting-edge methods,
showcasing improvements in recognition accuracy ranging from 1.65% to 5.54%. These
findings underscore the efficacy of our hybrid approach in advancing the field of human
activity recognition, substantiating its superiority over both conventional baselines and
advanced methodologies.

The comparative results of the PAMAP2 dataset show that the hybrid approach
demonstrates certain advantages, with its recognition performance surpassing that of other
state-of-the-art methods except for ConvAE-LSTM. Even when compared to ConvAE-
LSTM, the hybrid approach lags behind in recognition accuracy by only 0.39%. However,
the hybrid approach boasts lower model parameters and complexity, Our method reduces
the overall parameter count by 19–21%, making it more advantageous for deployment on
mobile devices. In summary, our human body pose model excels at extracting posture
angles of various body parts to the fullest extent. By efficiently utilizing sensor data infor-
mation, GAM-MLP effectively distinguishes and relates the differences and connections
between actions when focusing on intra-group features. This process leads to precise
recognition outcomes.

5.3. Recognition of Common Human Movements

Across the various human activity categories, the most prevalent ones include walking,
standing, climbing upstairs, descending stairs, and lying down. In most scenarios, recog-
nition often revolves around these primary actions. Therefore, we proceeded to extract
these six key movement categories from both the MultiportGAM dataset and the PAMAP2
dataset. This focused evaluation allows us to assess our hybrid human pose recognition
method’s classification performance specifically on these commonly encountered activities.
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The experimental outcomes, illustrated in Figures 12 and 13, highlight how the hybrid
human pose recognition method performs when tasked with classifying these frequently
observed actions within the MultiportGAM dataset and the PAMAP2 dataset.
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It is evident that due to variations in the number and placement of sensors, the
performance of GAM-MLP varies across different datasets. Comparing the two datasets,
unlike the PAMAP2 dataset, the MultiportGAM dataset collects accelerometer, magne-
tometer, and gyroscope data from the chest and limbs, using two additional IMUs. In
terms of daily behavior, the MultiportGAM has a longer duration, resulting in higher
recognition accuracy.

On the MultiportGAM dataset, our GAM-MLP model achieves an average accuracy of
97.45% across the six common daily activities. This represents a 1.04–10.8% enhancement
over other models. Notably, the highest accuracy is achieved in recognizing the “sitting
down” action, reaching an accuracy of 98.94%. Even in the challenging “descending stairs”
action, the model reaches an impressive precision of 93.67%. Similarly, on the PAMAP2
dataset, the “sitting down” action boasts the highest recognition rate of 99.02%, while the
“descending stairs” action presents the lowest recognition rate at 93.74%. The average accu-
racy improves by 1.59–11.06% across the board. Through the combination of the multi-layer
perceptron and group attention module, we achieve the information exchange and fusion
between different features of the same group. In the training process, the neural network
automatically learns and optimizes the weight and bias through the back-propagation
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algorithm, so that the neurons can better capture the correlation information between
different features, in order to improve the accuracy and reliability of the classification.

5.4. GAM Ablation Comparison

The experiment to evaluate the optimization effect of GAM was conducted on the
MultiportGAM dataset and the PAMAP2 dataset, with GAM modules removed to compare
the recognition performance of human movements. The comparison results on the Multi-
portGAM dataset are shown in Figure 14a, while the comparison results on the PAMAP2
dataset can be observed in Figure 14b.
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The experimental results showed that on the MultiportGAM dataset, compared to
the original structure without adding GAM, GAM achieved an accuracy improvement
of 9.38%, a recall improvement of 9.37%, and an F1-score improvement of 9.37%. On the
PAMAP2 dataset, these three indicators increased by 7.15%, 7.17%, and 7.16%, respectively.

To assess the generalization capability of the GAM module, we conducted a compar-
ative analysis with other attention modules. These alternative attention modules were
integrated into the residual blocks within the framework for experimentation, and the
attention modules we compared included SE and CBAM. The MultiportGAM dataset and
PAMAP2 dataset were employed as the dataset for our experiments. The experimental
results are presented in Tables 5 and 6.

Table 5. Comparison of different methods for the MultiportGAM dataset.

Attention Module Accuracy (%) Recall (%) F1-Score (%)

GAM-MLP 96.13 96.12 96.13
SE-MLP 92.74 92.13 92.48

CBAM-MLP 91.11 92.02 92.08

Table 6. Comparison of different methods for the PAMAP2 dataset.

Attention Module Accuracy (%) Recall (%) F1-Score (%)

GAM-MLP 93.96 93.89 93.91
SE-MLP 89.34 88.75 89.16

CBAM-MLP 88.75 89.13 88.96
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It can be observed that compared to GAM, the application of CE and CBAM, two
general attention mechanisms, in the hybrid method, results in an accuracy improvement
of about 3% compared to the proposed framework without the application of attention
mechanisms. However, there is still a gap of 3.4–5% compared to GAM-MLP, indicating
that GAM has a higher adaptability to the proposed framework. This stems from the
manual grouping module of GAM, which reduces errors between specified groups while
adapting to the active features of the dataset.

Thanks to GAM’s ability to extract temporal features of sensor data and dynamically
adjust the weights of accelerometer, gyroscope, and magnetometer data, GAM-MLP can
better capture the associations between multiple sensors in different time periods, thereby
improving the accuracy of action recognition.

5.5. Identification of 19 Types of Diverse Actions

In the recognition of 19 activities such as walking, jumping, and shooting baskets,
GAM-MLP demonstrates exceptional capabilities due to the extraction of spatiotemporal
features from raw sensor data that has been processed for activity construction. The model
achieves an impressive average recognition accuracy of 96.13%. Notably, in the 3rd (Sitting),
4th (Lying), 15th (Cycling), and 19th (Rowing) activity categories, characterized by distinct
features, the model achieves nearly complete recognition. While accuracy may slightly
decrease in other activity categories, it still maintains a high precision of 93.54%. The
confusion matrix for 19 types of action recognition is shown in Figure 15.
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In the recognition process of 19 types of activities, we used the attention mechanism
to dynamically adjust the focus of the neural network, so as to better capture the key
information and improve the accuracy of action recognition. This mechanism enables
the neural network to adaptively focus on the important feature information, thereby
avoiding the information redundancy and unnecessary computational overhead caused by
the independent learning of the weight for each neuron in the conventional neural network.
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6. Conclusions and Future Work

This paper offered a hybrid HAR approach using an MLP neural network and Euler
angle extraction based on IMU sensors. In the method, by employing accelerometers,
we precisely capture the acceleration of the torso, left arm, right arm, left leg, and right
leg. This meticulous data collection approach is supplemented by gyroscopes, which
monitor the angular velocity of various bodily components, and magnetometers, which
gauge the direction and strength of magnetic fields. Refining joint placement through
compensation of magnetometer and gyroscope data enhances the accuracy of human
activity identification. Experimental findings, derived from tests conducted on widely
used datasets, underscore the superiority of our proposed GAM-MLP model over existing
deep learning-based models. On the PAMAP2 dataset and the MultiportGAM dataset,
accuracy rates of 93.96% and 96.13% were achieved, respectively. Particularly noteworthy
is the 97.45% accuracy achieved in recognizing six common daily activities within the
MultiportGAM dataset. Compared to traditional methods and some advanced techniques,
an improvement of 1.04% to 10.8% in accuracy was attained. Nevertheless, there is still
room for improvement in GAM-MLP in identifying confusing actions

Looking forward, our future endeavors are geared towards exploring the realm of
online deep learning models and expanding the horizons of both human activity recognition
(HAR) and GAM-MLP to adeptly handle vast volumes of multivariate data. Specifically, in
the future, additional inference modules can be considered in the GAM-MLP network to
accelerate recognition speed and accuracy. When dealing with multivariate data, increasing
the depth of the network appropriately may improve the recognition effect. Furthermore,
the attention mechanism is intricately connected to the challenges posed by big data. Big
data often exhibits diversity and variability, and attention mechanisms can adapt to various
data distributions and characteristics, thereby enabling models to better accommodate
shifts in the data. We are committed to enhancing the robustness of attention mechanisms
in HAR recognition. They can assist models in focusing on crucial information, suppressing
noise and outliers, and dynamically adjusting weights based on changing data, thereby
maintaining model stability within the context of big data.
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