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Abstract: As a fundamental part of ground penetrating radar (GPR) data processing, reverse time
migration (RTM) can correctly position reflection waves and focusing diffraction waves on the proper
spatial position. Least-squares reverse-time migration (LSRTM) is widely used in the seismic field for
its ability to suppress artifacts and generate high-resolution images in comparison to conventional
RTM. However, in the particular case of GPR detection methods, LSRTM is extremely susceptible
to aliasing artifacts caused by under-sampling. In pursuit of enhanced precision in underground
structure characterization, this paper presents the development of a new LSRTM based on modified
total variation (MTV) regularization to improve imaging resolution. Initially, the objective function of
LSRTM is derived by combining the Born approximation in 2-D transversal magnetic mode. Next, the
adjoint equations and their gradients are solved using the Lagrange multiplier method. The objective
function is then constrained by MTV regularization to ensure the precision and convergence of the
LSRTM, which delivers a refined edge with reconstruction details. In the numerical experiments,
in comparison to the conventional LSRTM method, the LSRTM-MTV algorithm demonstrated a
30.4% increase in computational speed and a 21.1% reduction in mean squared error (MSE). The
outperformance of the proposed method is verified in detail through the image resolution and
amplitude preservation in the test of synthetic data and laboratory data. Future research efforts will
center on applying the proposed method to models featuring dispersive or anisotropic media that
closely mimic real-world conditions and extending the application to various imaging techniques
involving objective function minimization.

Keywords: ground penetrating radar; least-squares reverse-time migration; modified total-variation
regularization

1. Introduction

Ground Penetrating Radar (GPR) is a fast, high-resolution, nondestructive detection
technology which has been widely used in various fields such as building structure investi-
gation [1,2], environmental research [3], engineering detection [4], etc. Due to the complex
and varied distribution of the underground medium, multiple waves, including diffraction
waves, are usually produced when electromagnetic waves encounter a contrast of electrical
properties. In most cases, the GPR measurement area is filled with various electromagnetic
interferences; the noise brought on by the surrounding environment will contaminate the
collected GPR observed signal, such that the GPR profile is unable to accurately reflect
the underground structure, thus requiring methods to improve the imaging solution [5].
Migration typically provides an efficient method for imaging complicated structures. It can
properly position the reflection waves and focus the diffraction waves backward to their
proper spatial position [6,7], and the distribution of underground structures can be obtained
effectively [8] using finite-difference migration [9], Kirchhoff integration migration [10],
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F-K migration [11], reverse time migration (RTM) [12–14], etc. The RTM method, based
on two-way wave equations, properly utilizes full-wavefield information and possesses
the unique advantages of high precision, accurate phase, and propagation in any specific
direction [15,16], which is suitable for imaging complex structures [17]. However, the
RTM method remains only the conjugate transpose of the forward operator, not its inverse,
and the result of the RTM method does not represent the reflection coefficient. For exam-
ple, RTM images often contain various undesirable artifacts when sensor bandwidth and
coverage are limited, which can affect the imaging resolution of underground structures
including possible anomalies. Furthermore, conventional RTM results usually contain
only information on the location of underground structures without providing sufficiently
precise amplitude information, which makes it impossible to obtain an accurate velocity
distribution of the subsurface medium [18].

Least-squares reverse-time migration (LSRTM) solves RTM imaging as a least-squares
inversion problem and achieves an imaging result that best matches GPR observation data
by implementing an iterative algorithm [19]. Based on the observational data space, the
method is generally employed on ray class and wave equation continuation operators to
perform high-resolution subsurface imaging. However, in cases of severely degraded data
quality, LSRTM imaging results contain artifacts that usually cause inversion instability and
slow convergence of the inversion [20]. Since LSRTM involves solving the linear inverse
problem, several different approaches have been developed to improve LSRTM imag-
ing. For instance, quadratic and non-quadratic regularization (Cauchy norm) have been
incorporated into LSRTM to improve resolution while suppressing spatial artifacts [21].
Qp-LSRTM has been employed to rectify distortion caused by strong subsurface attenu-
ation. The merit of this approach compared with conventional RTM and LSRTM is that
Qp-LSRTM compensates for the amplitude loss due to attenuation and produces images
with better balanced amplitudes and more resolution below highly attenuative layers [22].
Furthermore, Tikhonov regularization is employed alongside LSRTM for ensuring the sta-
bility of the inversion. However, Tikhonov regularization usually tends to over-smooth the
boundary between the target region and the background region [23]. Instead, approximate
Total Variation (TV) regularization based on image reconstruction helps to recover the
discontinuous image efficiently and has many other advantages. For example: limiting
the smoothness of the image, eliminating the stair effect, avoiding edge blurring, etc. [24].
However, the TV regularization constraint method is exceptionally sensitive to smoothing
variables due to the convergence of the inversion as well as the nonlinearity caused by the
data fitting term and the total variation regularization term [25].

To address noise suppression, amplitude preservation, and resolution improvement,
this paper presents the development of an LSRTM approach based on modified total
variation (MTV) regularization [26]. The objective function is then constrained by MTV
regularization to ensure the precision and convergence of the LSRTM, which delivers a
refined edge with reconstruction details. Finally, the proposed method is assessed with
theoretical synthetic data and laboratory data to confirm the efficacy and applicability of
our algorithm.

2. Materials and Methods
2.1. LSRTM

Compared to Kirchhoff migration and one-way wave equation migration, RTM of-
fers the benefits of high imaging accuracy and no limitation of interface inclination [27].
However, there are also deficiencies, such as high dependence on the velocity model, low
imaging resolution, and high data requirements. As an improvement, LSRTM updates
the coefficient of reflection iteratively through the idea of inversion, which has a higher
resolution image than RTM. This can be attributed to the inversion feature of LSRTM.
Compared to other migrations, LSRTM is essentially a waveform inversion of the output
reflection coefficient with the advantage of linear inversion.
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Here, we briefly introduce the workflow of LSRTM for electromagnetic wave equations.
Firstly, the reverse migration operator is derived based on the Born approximation. The
given background electrical medium and the background electrical field of the waves in
2-D TMz mode are satisfied [28]:

∂Hx
∂t = − 1

µ
∂Ez
∂y

∂Hy
∂t = 1

µ
∂Ez
∂x

∂Ez
∂t = 1

ε (
∂Hy
∂x −

∂Hx
∂y − σEz − Jz)

(1)

where, H is the magnetic field strength, E is the electric field strength, ε is the dielectric
permittivity (F/m), σ is the conductivity (S/m), µ is the magnetic permeability (H/m), t is
the time (s), and Jz is the source.

In this paper, we focus only on dielectric permittivity ε and ignore the influence of
conductivity σ and magnetic permeability µ on the reflection coefficient. When the initial
model p0(ε) is near the true model p(ε), we split the true model p(ε) into background
model parameter p0(ε) and perturbed model parameter ∆p(ε), which can be expressed as
p(ε) = p0(ε) + ∆p(ε). Similarly, the wavefields U(x,t,xs) can also be split into background
wavefields U0(x,t,xs) and perturbed wavefields ∆U(x,t,xs), which can be expressed as
U(x,t,xs) = U0(x,t,xs) + ∆U(x,t,xs). When Taylor expands Equation (1) at p = p0, using the
Born approximation and ignoring higher order terms, the expression can be obtained
as follows:

µ ∂∆Hx
∂t + ∂∆Ez

∂y = −∆µ ∂Hx
∂t

µ
∂∆Hy

∂t −
∂∆Ez

∂x = −∆µ
∂Hy
∂t

ε ∂∆Ez
∂t −

∂∆Hy
∂x + ∂∆Hx

∂y + σ∆Ez = −
(

∆ε ∂Ez
∂t + ∆σEz

) (2)

When solving perturbed wavefields, information on background wavefields is gener-
ally required, so it is necessary to perform two forward simulations, which is also known as
the reverse migration process. During the forward process of GPR simulation, the observed
data d and the relation of model parameter m, where m represents ∆p, can be expressed as:

Lm = d (3)

where, m is referred to as ∆ε when only the dielectric permittivity is considered; L is
the forward operator. We assume that dobs is the measured data, and d is the perturbed
wavefield. In LSRTM, the reflection coefficient is iteratively updated by inversion, and the
objective function is established as follow [29]:

min
m

S(m) =
1
2
‖Lm− dobs‖2

2 (4)

where the simulated reflected wavefields must be satisfied with the Taylor expansion
of Equation (1). The Lagrange multiplier method is utilized to solve the constrained
optimization [30], and we have:

min
m

J(m) = min
m

S(m) +
∫
(x,y)∈H

∫ T

0

(
ψxe1 + ψye2 + φe3

)
dtdxdy (5)

where [ψx,ψy,φ] are the Lagrange multiplier functions with the following form, where e1,
e2, and e3 are defined as:
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e1 = µ ∂∆Hx
∂t + ∂∆Ez

∂y + ∆µ ∂Hx
∂t

e2 = µ
∂∆Hy

∂t −
∂∆Ez

∂x + ∆µ
∂Hy
∂t

e3 = ε ∂∆Ez
∂t −

∂∆Hy
∂x + ∂∆Hx

∂y + σ∆Ez + ∆ε ∂Ez
∂t + ∆σEz

(6)

Integrating Equation (5) by subsection integral method and combining initial condi-
tions, termination conditions, and free boundary conditions, the adjoint equation can be
expressed as:

µ
∂ψx
∂t = − ∂φ

∂y

µ
∂ψy
∂t = ∂φ

∂x

ε
∂φ
∂t =

∂ψy
∂x + ∂ψx

∂y + σφ + m ∂φ
∂t + (dobs − d)

(7)

When only the dielectric permittivity ε is considered, the gradients with respect to
model perturbations can be expressed as Equation (8) and the termination conditions are
expressed as Equation (9):

∂J
∂m

=
∫ T

0
φ

∂Ez

∂t
dt (8)

[
ψx, ψy, φ

]
t=T = 0,

∂
[
ψx, ψy, φ

]
t=T

∂t
= 0 (9)

2.2. MTV Normalization

In the traditional TV method, the sensitivity to smoothing parameters is significantly
high due to nonlinearity caused by data fitting, regularization terms, and convergence.
As a result, the LSRTM problem becomes highly unstable, and its convergence cannot be
guaranteed. The objective function of the LSRTM-TV is as follows:

Se(m) = min
m

{
‖dobs − Lm‖2

2 + λ‖m‖TV

}
(10)

where ‖ · ‖TV is the TV regularization operator as follows:

‖m‖TV = TV(m) =
∫

Ω
|∇m|dΩ (11)

where Ω is the imaging region, |·| is the absolute value sign, and ∇ is the gradient op-
erator. Since the derivative of the TV operator is non-continuous, it is guaranteed to be
differentiable by the following approximation:

TVδ(m) =
∫

Ω

√
|∇m|2 + δ2dΩ (12)

Hence, we introduce a new LSRTM method with MTV regularization to improve
the imaging resolution and mitigate artifacts. The objective function of the LSRTM-MTV
method is given as follows:

Se(m, u) = min
m,u

{
‖dobs − Lm‖2

2 + λ1‖m− u‖2
2 + λ2‖u‖TV

}
(13)

where, λ1 and λ2 are both positive regularization parameters. Compared with a conven-
tional TV regularization term, Equation (13) contains a new variable u and an additional
regularization term. The objective function can be written as:

Se(m, u) = min
u

{
min

m

{
‖dobs − Lm‖2

2 + λ1‖m− u‖2
2

}
+ λ2‖u‖TV

}
(14)
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As can be seen from Equation (14), the regularization parameter λ1 controls the
trade-off between the data misfit term and the Tikhonov regularization term, and λ2 is
employed here to balance the amount of interface preservation in LSRTM. The alternating-
minimization algorithm is used to solve the dual minimization problem [31]. By using an
initializer u(0) = m(0) to solve Equation (14), the solutions of two minimization sub-problems
can be obtained:

m(k) = argmin
m
{Se

1(m)} = argmin
m

{
‖dobs − Lm‖2

2 + λ1‖m− u(k−1)‖
2
2

}
(15)

u(k) = argmin
m
{Se

2(m)} = argmin
u

{
‖m(k) − u‖

2
2 + λ2‖u‖TV

}
(16)

where k is the iteration step. Noting that the two sub-problems correspond to different
parts, the first is to solve for m(k) by using LSRTM with the Tikhonov regularization [32]
and prior image u(k−1); while the second is to solve for u(k) using the L2-TV minimization
to preserve the outline sharpness of interfaces within the LSRTM image m(k), as well, it
also denoises the image. In this paper, the Limited-memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) algorithm [33] is employed to solve for m(k) in the sub-problems (15),
while the Split–Bregman method [34] is utilized to solve for u(k) in the sub-problems (16).

The iterative formula for m is as follows:

m(k+1) = m(k) + α(k)p(k) (17)

where p(k) is the updating direction and α(k) is the iteration step size. Initially, the L-BFGS
method is employed to obtain parameter p(k) using the calculated function g based on
Equation (8). In this paper, we employ an imprecise line search method based on the strong
Wolfe criteria, which requires satisfying the following two conditions:

φ(α) ≤ φ(0) + c1αφ′(0) (18)

∣∣φ′(α)∣∣ ≤ c2
∣∣φ′(0)∣∣ (19)

where φ(α) = S(mk + αpk), 0 < c1 < c2 < 1, c1 = 10−4, c2 = 0.9.
For the L-BFGS algorithm, it is recommended to initially try step size α(0) = 1 in the line

search algorithm, as it can provide the L-BFGS algorithm with a superlinear convergence
rate. During the initial iterations, the scaling in the descent direction may be small due
to the potential inadequacy of the Hessian approximation. Thus, the step size α(k0) is
calculated using the following formula:

α(k0) =
Sk
γg

(20)

where γ is a regulatory factor which is related to the antenna frequency.
The line search algorithm may appear computationally complex and time-consuming.

However, the computational cost is contingent upon the availability of a suitable p(k) in
the descent direction, and φ(α) can be approximated by a quadratic or cubic function. The
model m is then updated in Equation (17).

The proposed LSRTM-MTV method has two major advantages. First, the original
optimization problem in LSRTM is decoupled into two simple subproblems; solving the
two sub-problems in Equations (15) and (16) is much simpler than solving the original
LSRTM problem. Second, solving for u(k) is a L2-TV denoising problem. Many robust
computational methods are available for solving this minimization problem; therefore, the
LSRTM-MTV method is robust and has a fast convergence rate.

The LSRTM-MTV workflow is outlined in Algorithm 1 and depicted in Figure 1. It can
be observed that the workflow of LSRTM-MTV is similar to full waveform inversion [35].
The main difference is that LSRTM-MTV takes reflected wave information as input and
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output reflection coefficients, while full waveform inversion takes the full-wavefield infor-
mation as input and output model parameters.

Algorithm 1: LSRTM-MTV Algorithm

Where Equation (2) is satisfied
Calculate Equation (1) for ∆U; Calculate Equation (7) for Ez and φ;

if Equation (9) is satisfied
return Ez and φ;

end
Calculate Equation (8) for g;

Use Wolfe conditions to get the iteration step size;
Use L-BFGS to update the reflection coefficient.
Load MTV and denoise the results with Equations (14)–(16);
end
Stop until the convergence condition is satisfied.
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3. Numerical Examples

A model is established to verify the applicability of the LSRTM-MTV method to
complex models [36], the size of which is 4.0 m × 8.0 m, as shown in Figure 2a. Two-layer
undulating interfaces are designed in the model, with two lithologic contrast units on the
right and two irregular cavities in the lower layer. The simulation is performed under
the common-offset mode of the monostatic system, and the transmitting and receiving
antennas are placed in the air layer. The smoothed true model is used as the initial model
for migration. To obtain the initial model, a Gaussian filter with a template size of 50 × 50
and a standard deviation of 3 was used for smoothing; note that these two parameters
determine the degree of smoothness compared to the true model. The disturbance model,
calculated by the true model and the smoothed model, is shown in Figure 2b.



Appl. Sci. 2023, 13, 10028 7 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 16 
 

migration. To obtain the initial model, a Gaussian filter with a template size of 50 × 50 and 
a standard deviation of 3 was used for smoothing; note that these two parameters deter-
mine the degree of smoothness compared to the true model. The disturbance model, cal-
culated by the true model and the smoothed model, is shown in Figure 2b. 

 
Figure 2. True model (a) and the corresponding disturbance model (b). 

The simulation was carried out using the finite difference time domain (FDTD) 
method [2,37] with a Riker wavelet source at the central frequency of 200 MHz and a time 
window of 108 ns. The time and space intervals were set at 0.09 ns and 0.04 m, respectively. 
The simulation results of the true model forward record and the initial model forward 
record are shown in Figure 3a,b, respectively. The residual record of the true model and 
initial model are shown in Figure 3c, confirming the feasibility and appropriateness of the 
smoothed model as an initial model. 

 
Figure 3. True model forward record (a), initial model forward record (b), and residual record (c). 

Figure 2. True model (a) and the corresponding disturbance model (b).

The simulation was carried out using the finite difference time domain (FDTD)
method [2,37] with a Riker wavelet source at the central frequency of 200 MHz and a
time window of 108 ns. The time and space intervals were set at 0.09 ns and 0.04 m,
respectively. The simulation results of the true model forward record and the initial model
forward record are shown in Figure 3a,b, respectively. The residual record of the true model
and initial model are shown in Figure 3c, confirming the feasibility and appropriateness of
the smoothed model as an initial model.
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The imaging results are shown in Figure 4. LSRTM imaging results with 20, 40 and
finial iterations are shown in Figure 4a–c, respectively. It can be seen that imaging results
after the 20th iteration are relatively vague, as the interface and abnormal position cannot
be precisely localized, while with increasing iterations the interface and abnormal position
can be pre-determined after the 40th iteration. As shown in the finial iteration, except for
significant noise and artifacts, the image result clearly shows the fluctuating interface, the
interface of lithological units, and the location of two irregular anomalies.
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Figure 4. LSRTM imaging results (a–c), LSRTM-TV imaging results (d–f) and LSRTM-MTV imaging
results (g–i) with different iterations.

To this end, MTV regularization is introduced as an optimization scheme, and the
conventional TV is also presented to compare performance after processing the iterative
results of Figure 4a–c. Imaging results of LSRTM-TV with 20, 40 and finial iterations are
shown in Figure 4d–f and LSRTM-MTV with 20, 40 and finial iterations are shown in
Figure 4g–i, respectively. Compared to LSRTM results, the imaging results of traditional
TV show some noise suppression capabilities while artifacts remain, blurring the interfaces.
In contrast, MTV imaging results demonstrate enhanced noise suppression performance.
For example, see the comparative imaging results of the 20th iteration shown in Figure 4f,i;
the imaging resolution is significantly improved as the reflection interface is clearer, and
the abnormal position is localized precisely, allowing verification of the effectiveness of the
LSRTM-MTV scheme.

The convergence curve using different methods is shown in Figure 5. As a result of
the highly unstable convergence encountered in the LSRTM-TV problem, the convergence
of the calculation process is not assured, leading to termination after a mere 42 iterations.
In contrast, the MTV method proposed in this paper addresses the limitations of the
TV method.

To assess the quality of the imaging results, the mean square error (MSE) was calculated
between each of the three results and the disturbance model. MSE is the most common
estimator of image quality measurement metrics. It is a full reference metric, and values
closer to zero are better [38]. MSE between two images is defined as:
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MSE(x, y) =
1
N

N

∑
i=1

(xi − yi)
2 (21)

where x represents the disturbance model, y represents the imaging results of the three
methods, and N represents the number of data matrix elements.
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Compared to the LSRTM method, LSRTM-MTV demonstrates a 30.4% enhancement in
computation speed and an 21.1% reduction in MSE, as shown in Table 1. Additionally, the
amplitude curve of track 85 was randomly selected and plotted in Figure 6. The amplitude
curve in Figure 6 shows the disturbance model as a solid black line, while the LSRTM,
LSRTM-TV, and LSRTM-MTV results are shown as solid green, dashed blue, and dashed
red lines, respectively. Although the LSRTM results generally approximate the reflection
interface positions in the disturbance model, they exhibit significant noise and artifacts in
the uniform medium. After applying TV processing, the artifacts are somewhat reduced,
and the oscillations are eliminated. After MTV processing, the red dashed line significantly
reduces the noise and artifacts without sacrificing the interface information. Overall, the
results are in good agreement with the disturbance model.

Table 1. Comparison of calculation parameters between three methods.

LSRTM LSRTM-TV LSRTM-MTV

MSE 0.0649 0.0593 0.0512
Iterations 90 42 90

Time (min) 33.9255 11.9032 23.5991
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To determine the effect of λ1 on the imaging results, we set λ1 as 0.0001, 0.001, and
0.01 to carry out comparative experiments, while λ1 values of 0.1, 10, and 100 resulted in
unstable and inaccurate convergence.

Figure 7 displays the imaging results for different λ1 values. It can be observed that
the selection of λ1 significantly influences the imaging effect of LSRTM-MTV. Clutter is
removed to the maximum extent and the interface information is retained when λ1 is set to
0.01, achieving the best effect. The outcomes presented in Table 2 further indicate that the
lowest MSE is achieved when λ1 = 0.01. Subsequent experiments were developed based on
this result, using λ1 = 0.01. It should be noted that λ2 in Equation (14) is determined by the
data itself and is not the focus of our discussion.
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Table 2. Comparison of MSE between different λ1.

λ1 = 0.0001 λ1 = 0.001 λ1 = 0.01

MSE 0.0641 0.0563 0.0512

To evaluate the robustness of the proposed method, we added 10 dBW Gaussian
white noise to the forward recording and tested its anti-noise performance. The forward
recording after removing the direct wave is shown in Figure 8. As shown in Figure 9 and
Table 3, the imaging result obtained using LSRTM-MTV is superior to that obtained using
traditional TV, even after adding Gaussian white noise. This result further verifies the
robustness and anti-noise performance of the proposed method.
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Figure 9. (a) LSRTM-TV imaging result of noised record; (b) LSRTM-MTV imaging result of
noised record.

Table 3. Comparison of MSE with noised record between LSRTM-TV and LSRTM-MTV.

LSRTM-TV LSRTM-MTV

MSE 0.0667 0.0572

4. Laboratory Data Experiment

To demonstrate the applicability of the proposed method, a laboratory experiment
was conducted using a sand tank model at Guilin University of Technology, as shown in
Figure 10. The sandpit contained five abnormal bodies including two empty pipes on the
left, cuboid empty abnormal bodies in the center, and two solid pipes on the right. The
sandpit was divided into three levels, with dielectric constants of 3.0 and 2.4 for the first
and second levels, respectively, while the bottom level represented the sandpit boundary.
The schematic diagram of the laboratory model is shown in Figure 11. The parameters of
abnormal are listed in Table 4. For data acquisition, we used a 900 MHz antenna of a GSSI
SIR-4000 radar in point measurement mode; the sampling points per trace and the time
window were set as 512 and 10 ns, respectively. The channel spacing was set to 0.004 m,
and the length of the survey line was 2.5 m, and a total of 625 traces were collected, as
shown by the B-scan in Figure 12.
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Table 4. The dielectric constants of the laboratory model.

Number Material Size (cm) Burial Depth (cm) Dielectric
Constant

1 Pipes (solid) 5 (radius) 22 4.0
2 Pipes (solid) 10 (radius) 50 4.0
3 Cuboid abnormal (empty) 20 × 10 15 1.0
4 Pipes (empty) 5 (radius) 20 1.0
5 Pipes (empty) 10 (radius) 50 1.0
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In the original B-scan profile, the reflected intensity was conjointly determined by two
factors: the burial depth and the difference in relative permittivity between the anomalies
and the background medium. Essentially, as the burial depth increases, the attenuation
of electromagnetic wave energy becomes more pronounced, leading to a decrease in the
energy of the reflected wave. Simultaneously, a higher contrast in relative permittivity
between the anomalies and the background leads to a greater disparity in wave impedance,
consequently amplifying the reflected energy.

As observed in Figure 12, various nuances become apparent when considering these
factors. Anomaly 1, despite its relatively shallow burial depth, had a minimal wave
impedance difference, resulting in weaker reflected wave energy. Anomaly 2, buried
deeper and with a smaller wave impedance difference, resulted in the weakest reflected
wave energy. In stark contrast, anomalies 3 and 4, with shallower burial depths and
greater wave impedance differences, exhibited the strongest energy in the reflected waves.
Anomaly 5, although buried deeper, outperformed anomaly 2 in reflected wave energy
owing to a more pronounced wave impedance difference.

To accurately locate and depict the subsurface anomalies, the proposed LSRTM-MTV
method, introduced in this paper, was utilized to process the collected data. Considering
the stratification of the sandpits, a two-layer uniform initial model was established to
optimize the imaging results and compare them with conventional LSRTM method, as
shown in Figure 13. While both methods were able to generally identify the presence of five
subsurface anomalies, the conventional LSRTM method exhibited significant background
clutter. This clutter complicated the precise localization and morphological characterization
of these anomalies, as shown in Figure 13a. In contrast, LSRTM-MTV remarkably mitigated
such background clutter, leading to a far more accurate representation of the anomalies.
Specifically, Figure 13b illustrates that the enhanced method allowed for a clearer de-
lineation of the upper and lower interfaces of anomalies 2 and 3. This improvement is
highlighted by white arrows pointing to the lower interfaces of these anomalies.
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The results thus conclusively demonstrate that the proposed LSRTM-MTV method
significantly outperforms the conventional LSRTM approach when applied to laboratory
data. These findings substantiate the efficacy and robustness of the LSRTM-MTV method,
highlighting its utility for accurate subsurface anomaly detection in practical applications.
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5. Discussion

This paper introduces the use of MTV methods to enhance the traditional LSRTM,
with the objective of improving the imaging quality of subsurface structures. In comparison
to the conventional TV method, MTV offers notable advancements in stability and accuracy
while maintaining a computationally efficient framework.

However, it is important to acknowledge the limitations inherent in the current study.
Specifically, the work was confined to permittivity contrast media models, assumed uniform
background media, and was highly sensitive to the selection of the parameter λ1, which
substantially influences imaging efficacy. Future work should address these limitations
by exploring models that incorporate dispersive or anisotropic media, thus aligning more
closely with real-world scenarios. In addition, rigorous experimentation on parameter
selection is essential to validate the robustness of the proposed method.

Moreover, the LSRTM-MTV algorithm demonstrates potential applicability beyond the
scope of this study, particularly in other imaging techniques requiring the minimization of
similar objective functions. Future studies could further investigate these avenues, possibly
engaging in comparative assessments with other state-of-the-art techniques to establish the
method’s relative merits.

6. Conclusions

In this study, the Born approximation method was used to derive the LSRTM process
first. Next, the gradient of the true model and the perturbation model was calculated
utilizing a method similar to the RTM, and the Lagrange multiplier method was used to
update the reflection coefficient model. Finally, the methodology was integrated into the
data processing of the GPR application. To further improve the imaging resolution, we
then introduced MTV regularization into the LSRTM process as an optimization scheme to
reduce artifacts.

The numerical experiment results demonstrated that the imaging result of LSRTM-
MTV outperforms the LSRTM in terms of noise suppression and artifact elimination.
Via LSRTM-MTV processing, the undulation interface and the location of the irregular
anomalies were sufficiently characterized with a high convergence rate. Compared with
LSRTM, the computation speed of LSRTM-MTV is higher by 30.4%, and the MSE is reduced
by 21.1%. This implies that the proposed LSRTM-MTV has considerable potential for GPR
applications for refined delineation of the undulation interface and irregular anomalies.
The laboratory data experimental results demonstrated the efficacy and robustness of the
proposed method in practical applications.
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