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Ground penetrating radar (GPR), geophysics exploring technology, could non-
destructively acquire high-precision information about the shallow subsurface. GPR has
played a crucial role in the detection of urban engineering [1], geological disasters [2],
archaeological studies [3], and military affairs [4], with various advantages such as fast
speeds, convenience, robust immunity to interference, and light weight [5]. In the modern
epoch, equipment for GPR data acquisition is well established, but the explication of GPR
data still relies on artificial judgment and experience, lacking automation. With the further
exploration of urban underground spaces, it is difficult for traditional GPR interpretation
methodologies to meet the current demand for efficiency and precision. Meanwhile, the
diversification of explored objects presents novel challenges to the application scenes of
GPR. This Special Issue aims to introduce and report on recent advancements in GPR,
encompassing aspects such as numerical simulation, inversion imaging, data processing
methodologies, and various domains of GPR application.

GPR numerical simulation algorithms are advancing along two primary dimensions:
the refinement of modeling precision, and the enhancement of simulation accuracy and
efficiency. Various forward modeling algorithms, medium models, mesh generation tech-
niques, and boundary conditions are the hot spots discussed by scholars. In response
to the evolving requirements of finely detailed engineering prospecting and the escalat-
ing complexity of simulated geometric entities, a concomitant pursuit of the equilibrium
between algorithmic computational efficacy and precision has led to the introduction of
novel algorithms into GPR forward simulations. These contain methodologies such as
the Discontinuous Galerkin finite element method [6], the spectral element method [7],
and the symplectic Euler method [8]. Simultaneously, the intrinsic quality of GPR data
impacts the accuracy and precision of data interpretation. Given the intricate nature of
the explored environment, in which electromagnetic waves are prone to phenomena such
as scattering and diffraction during propagation, distinguishing meaningful information
from interfering signals within real-time recorded images becomes a formidable challenge.
Therefore, the utilization of data processing techniques to suppress noise, extract salient
information, and deduce relevant parameters is necessary. Traditional data processing
workflows encompass operations such as digital filtering, deconvolution, gain recovery,
and time-delay correction.

In recent years, the requirements of visualization and real-time capabilities in ex-
ploration have propelled inversion imaging into extensive discourse among numerous
scholars. Migration is among the topics under consideration, including Kirchhoff integral
migration, finite-difference migration, frequency-wavenumber migration, and reverse-time
migration [9,10]. However, conventional migration algorithms predominantly focus on
geometric structural imaging, and are difficult to use to describe high-precision reflectivity
parameters. In contrast, least-squares reverse-time migration formulates imaging as a
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least-squares inversion problem [11], demonstrating a robustness to irregular data, elevated
imaging precision, and superior amplitude fidelity. Furthermore, full-waveform inversion
(FWI) represents a promising tool for attaining high-resolution underground images, di-
rectly depicting precise information concerning target material, location, size, and other
parameters. FWI concurrently utilizes kinematic and dynamic information, thus serving as
a robust instrument for reconstructing intricate geological structures and anomalous bodies.
Recently, scholars have embarked upon research endeavors encompassing regularization,
multiscale strategies, stochastic sources, and cross-constraints [12–14], aiming to enhance
the accuracy and increase the inversion speed of FWI. These endeavors have effectively
promoted the practical application of FWI.

Given the formidable capabilities exhibited by deep learning across a variety of do-
mains, a series of advancements in GPR technology, based on deep learning methodolo-
gies [15], has recently been achieved. Researchers have harnessed machine learning tech-
niques to automatically extract and identify anomalies associated with structural defects
through the extraction of hyperbolic features or high-dimensional image characteristics
from GPR data, accounting for differences in image and signal attributes [16,17]. Some
scholars have sought to integrate deep learning into auxiliary roles for GPR forward simu-
lation and inversion solution processes [18] to improve efficiency and precision. Offline
training and online prediction using deep learning could construct a system that maps
from the model to the forward profile, considerably accelerating the forward simulation
speed. Novel methodologies based on convolutional neural networks enable the rapid
solution of highly nonlinear physical governing equations in less time, providing inversion
practitioners with new research approaches.

The diversification of objects detected by GPR has ranged from traditional realms,
encompassing urban engineering, railways, water resources, mining, tunnels, and archaeol-
ogy, to include diverse fields such as lunar soil investigation [19], Mars exploration [20],
tree defect detection [21], soil moisture content assessment [22], and pollutant leakage
detection [23]. This expansion underscores the robust vitality of GPR and its increasingly
expansive prospects across a wider spectrum of applications.
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