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Abstract: In order to ensure the stable operation of blast furnace production, it is necessary to keep
abreast of the trends in the gas permeability index of the blast furnace. As one of the key parameters to
be monitored in the process of blast furnace smelting, the gas permeability index directly reflects the
performance of the blast furnace in the actual production of the furnace. Continuous monitoring of
the permeability index is required in the actual production of the blast furnace in order to effectively
guarantee the stable and smooth operation of the blast furnace. The aim of this study is to accurately
predict the trend in the blast furnace gas permeability index by constructing an intelligent prediction
model and utilizing a data-driven approach to monitor the gas permeability index and ensure the
stable operation of the blast furnace. First, based on the actual production data of a #2 blast furnace of
an iron and steel enterprise, an isolated forest algorithm is applied to detect and eliminate the outliers
in the original data, and then a data driver set is constructed after normalization of the deviation.
Second, by analyzing the coupling mechanism between the blast furnace permeability and gas flow,
as well as Spearman correlation analysis and MIC maximum information coefficient (MIC) analysis,
key parameters are screened out as feature variables from the data-driven set. Finally, a wavelet
neural network algorithm is used to construct an intelligent prediction model of the blast furnace gas
permeability index. Compared with a BP neural network (BP), a particle swarm-optimized BP neural
network (PSO-BP), and XGBoost, the wavelet neural network shows obvious advantages when the
error is controlled in the range of ±0.1, and the prediction accuracy can reach 95.71%. The model is
applied to the actual production of a #2 blast furnace of an iron and steel enterprise, and the results
show that the predicted value of the blast furnace permeability index is highly consistent with the
actual value of real-time blast furnace production, which verifies its excellent characteristics.

Keywords: blast furnace permeability index; coupling mechanism; data-driven; wavelet neural
network

1. Introduction

Blast furnace ironmaking is a multifaceted melting process characterized by the si-
multaneous presence of solid, liquid, and gaseous phases, and it is widely considered to
be one of the most complex reactors in the field of chemistry and metallurgy [1]. As one
of the important parameters of the monitoring index in blast furnace smelting, engineers
can intuitively judge the quality of the furnace’s running condition through the change

Appl. Sci. 2023, 13, 9556. https://doi.org/10.3390/app13179556 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13179556
https://doi.org/10.3390/app13179556
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13179556
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13179556?type=check_update&version=1


Appl. Sci. 2023, 13, 9556 2 of 17

law of the permeability index, and they can quickly predict whether there are abnormal
blast furnace conditions such as overhanging material, collapsing material, pipeline stroke
spraying material, or a sudden drop in the furnace’s temperature. They can then make
timely adjustments to restore the blast furnace to a running condition [2,3]. Considering
the important influence of the gas permeability on blast furnace production, it is necessary
to grasp the change rule of the blast furnace gas permeability index in time and to predict it
accurately and effectively. In blast furnace production, the blast furnace permeability index
is usually determined by calculating the ratio of the difference between the cold air flow
into the furnace, the hot air inlet pressure, and the roof pressure. Therefore, in the actual
production process, the blast furnace permeability index is usually obtained a posteriori.
If an a priori prediction can be made based on the production data, it will play a crucial
role in the stable operation of the blast furnace and make corresponding adjustments in
response to abnormal furnace conditions easy to apply in time [4,5].

As a complex and critical process, blast furnace smelting is not easy to shut down
and cannot be directly accessed for detailed inspection, making it impossible to fully
understand its internal mechanism. Facing this challenge, scholars make full use of big
data analysis and intelligent algorithms to explore the internal structure and operation
mechanism of the blast furnace by collecting actual blast furnace production data. Big data
analytics and intelligent algorithms currently have applications in various fields. Alam
Zeb et al. [6] applied meta-heuristic algorithms inspired by the collective behaviors of
species such as birds, fish, bees, and ants to various areas of software engineering. This
study is a guide for researchers to improve the state of the art of current techniques that are
commonly used in software engineering with these meta-heuristics. By digging deeper into
the actual production data of the blast furnace, it is possible to reveal hidden patterns and
correlations, optimize production patterns, and improve efficiency. Vijay Kumar et al. [7]
used a deep neural network to predict the silicon content of the molten iron in a blast
furnace and developed a real-time model to achieve online prediction and control of the
silicon content. The model’s Si prediction accuracy is above 95%, with an error in the range
of ±0.1. N. A. Spirin et al. [8] developed an information system for real-time prediction of
iron silica content in a blast furnace based on the knowledge of the processes occurring in
the furnace and the general laws of transient processes. The model was customized to the
blast furnace conditions, taking into account iron ore feedstock and coke composition and
properties as well as variations in blast and smelting parameters, and it provides real-time
versus 10 h predictions of silicon content. Pourya Azadi et al. [9] used a hybrid kinetic
model for the prediction of iron and slag quality indicators in large-scale blast furnaces
to predict iron silica content and slag alkalinity during the blast furnace process and to
compensate for the shortcomings of mechanical models. Samik Nag et al. [10] investigated
the estimation and prediction of blast furnace radial charge distribution on the distribution
of ore and coke as well as the distribution of permeability, taking different materials based
on different scales of the blast furnace model for experiments. They proposed a method
to estimate and predict the distribution of the blast furnace charge, but this method could
not give feedback on the change in the permeability index in the blast furnace during its
actual operation. Xiaoli Su et al. [11] established a blast furnace permeability prediction
model based on an improved multilayer limit-learning machine and wavelet transform and
combined partial least squares with the multilayer limit-learning machine algorithm. They
eliminated the multicollinearity of the last hidden layer of the multilayer limit-learning
machine and improved the prediction accuracy of the model. However, at this stage, the
research on blast furnace permeability based on big data analysis and intelligent algorithms
is extremely limited and is still in the initial exploration stage.

The aim of this study is to construct a data-driven prediction model to accurately
predict the trend in the blast furnace permeability index, so as to ensure the stable oper-
ation of the furnace. Taking the actual hourly production data of a steel enterprise’s #2
blast furnace in June and July as the basis, the isolated forest algorithm was applied to
process the raw data. Through an analysis of the coupling mechanism of blast furnace gas
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permeability and gas flow, Spearman correlation analysis, and MIC maximum information
coefficient analysis of the key parameters for the selection of characteristic variables, a
wavelet neural network (WNN) predictive model of the blast furnace gas permeability
index was established. The wavelet neural network is based on the introduction of a BP
neural network model based on the theory of wavelet transform. It can accurately predict
the trend of blast furnace gas permeability, make timely adjustments to the blast furnace
production, and ensure the stable and smooth operation of the blast furnace.

The innovative points of this paper are as follows:

(1) Based on the actual hourly production data of a blast furnace of an iron and steel
enterprise, the isolated forest algorithm is applied to detect, remove, and retain the
outliers in the original data and to construct a data-driven set after the deviation
normalization process.

(2) Characteristic variables were established from the data-driven set by analyzing the
coupling mechanism between blast furnace gas permeability and gas flow, as well
as performing Spearman correlation analysis and MIC maximum information coeffi-
cient analysis.

(3) The wavelet neural network algorithm is used to construct an intelligent prediction
model of a blast furnace gas permeability index. The wavelet neural network presents
obvious advantages when the error is controlled in the range of ±0.1, and the predic-
tion accuracy can reach 95.71%. It accurately predicts the change trend in the blast
furnace gas permeability index, so as to ensure the stable operation of the furnace.

The article is structured as follows: Section 2 describes the isolated forest algorithm as
well as departure normalization for data collection and processing. Section 3 describes the
coupling mechanism between blast furnace permeability and gas flow. Here, Spearman cor-
relation analysis and MIC maximum information coefficient (MIC) analysis are performed
to screen the characteristic variables. Section 4 describes the establishment of the wavelet
neural network (WNN) model. Section 5 presents the model comparison evaluation metrics
and experimental results. Section 6 summarizes the work of this paper and provides an
outlook for the future.

2. Data Collection and Processing
2.1. Data Collection

The data in this paper are derived from the data recorded during the actual hourly
production of a steel company’s #2 blast furnace in June and July, from which 25 key
parameters affecting blast furnace production were selected, and the selection of the off-
construction parameters was based mainly on the actual production experience of engineers
and a large number of references from the literature [1,7–11]. The data collection was
difficult due to the blast furnace production environment. However, it is important to
acknowledge that the selection of these critical parameters involves a certain level of
subjectivity and may benefit from further refinement and enhancement. Among the
selected 25 key parameters, the permeability index serves as the target variable in the
prediction model, and the remaining key parameters are considered as the explanatory
variables. Table 1 presents the list of 25 selected key parameters.
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Table 1. Choosing 25 main variables that affect production process of blast furnace.

Serial
Number key Parameters Serial

Number Key Parameters Serial
Number Key Parameters

1 Breathability index 10 Gas CO2 volume fraction 19 Furnace belly gas volume
2 Furnace top pressure 11 Gas CO volume fraction 20 Iron temperature
3 Differential pressure 12 Gas H2 volume fraction 21 Furnace belly gas index

4 Gas utilization 13 Gas N2 volume fraction 22 Northwest furnace body
hydrostatic

5 Oxygen enrichment 14 Oxygen enrichment rate 23 Northeast furnace body
hydrostatic

6 Wind temperature 15 Cold air flow 24 Southeast furnace body
hydrostatic

7 Furnace top temperature 16 Theoretical combustion
temperature 25 Southwest furnace body

hydrostatic
8 Hot air pressure 17 Blast kinetic energy
9 Coal injection volume 18 Total load

2.2. Data Processing
2.2.1. Outlier Handling

Analysis of the data collected at the blast furnace site reveals that there may be many
unreasonable outliers in the collected data due to the influence of uncontrollable factors
such as the equipment and environment, which must be combined with appropriate data
cleaning and rejection methods. Therefore, to handle outliers in the blast furnace data, the
following approach was employed:

(1) Outlier detection. There are many ways to detect data outliers. Common methods
include 3σ criterion (Lajda criterion) distribution and box plots. The 3σ criterion
distribution [12] is a method based on the calculation of the standard deviation, which
results in limited processing of the data collected at the blast furnace site, because
the data must satisfy a normal distribution. A box plot [13] is essentially a statisti-
cal graph used to show the dispersion of data, but it may not provide an accurate
assessment of the skewness and tail weight of the data distribution. In addition, for
datasets that contain relatively large batches of data, box plots reflect more ambiguous
information. Therefore, in this study, an isolated forest algorithm was utilized for
detecting anomalies in the blast furnace site data. Isolated forest [14] is a nonpara-
metric machine-learning method that does not require a specific mathematical model
to model or label anomalous data, allowing for unsupervised anomaly detection. Its
schematic structure is shown in Figure 1.
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The isolated forest algorithm is used to randomly divide the data interval of the blast
furnace site to construct a binary tree. Each leaf node represents a data node. The path
length from the leaf node to the root node reflects the degree of dispersion of the data node.
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The isolated forest is constructed, and the key is calculated. For the fraction of outliers in
the parameters, the specific calculation method is shown in Equations (1)–(3):

s(x, n) = 2−
E(h(x))

c(n) (1)

c(n) =


2H(n− 1)− 2(n−1)

n , n > 2
1, n = 2
0, n < 2

(2)

H(i) = ln(i) + 0.5772156649 (3)

where: E(h(x)) denotes the mean value of the path length of the data in the forest; s(x, n)
is the anomaly score of node x; c(n) is defined as the mean path length of the search failure
in the binomial search tree; H(i) is the number of matching levels, and 0.5772156649 is the
Euler constant. The function s(x, n) assigns a higher value to data points that are more likely
to be anomalies, and the anomaly data are determined based on a predefined threshold.

(2) Anomaly analysis. The key parameters of the blast furnace are comprehensively
analyzed, and abnormal values are studied and judged in combination with the
operation mechanism of the blast furnace.

(3) Abnormal value rejection and retention. Abnormal values caused by failures of blast
furnace test equipment are rejected; abnormal values resulting from irregular blast
furnace operations are retained and considered as part of the analysis.

2.2.2. Normalization Process

In the blast furnace melting process, each key parameter variable has special charac-
teristics, and there are certain differences in the magnitudes and values between each key
parameter, which will inevitably affect the output results of the blast furnace permeability
prediction. For example, the collected blast furnace data have an oxygen enrichment pa-
rameter in the range of [1, 10] and a blast kinetic energy parameter in the range of [8000,
14,000]. As such, the input parameter variables need to be normalized to ensure that some
of the data are transformed to the same scale, so that comparisons can be made between
the data. In this paper, the data are normalized using the disparity normalization method.

For the data set X(i) = (x1, x2, . . . , xn), this method employs linear transformation
using the maximum and minimum values of the dataset, ensuring that the resulting values
are normalized within the range of [0, 1], which is calculated as shown in Equation (4):

yi =
xi −min(x)

max(x)−min(x)
, i = 1, 2, . . . , n (4)

where: max(x), min(x) are the maximum and minimum values in the data set, respectively.

2.3. Data Set Creation

After processing the collected data using the above method, the outliers in the 25 pa-
rameter variables that were initially selected were manually cleaned and removed. The
collected data were consolidated based on time series correlation to create an initial data
set for constructing the blast furnace permeability model. The blast furnace permeability
index dataset was then randomly divided into two groups: 80% of the data set is used as a
training set to train the blast furnace permeability index prediction model. The remaining
20% of the data set is used as a test set to comprehensively evaluate the effect of the blast
furnace permeability index prediction model.

3. Data Collection and Processing

The objective of feature parameter selection is to reduce the number of parameters,
enhancing the model’s generalizability and mitigating the risk of overfitting. The correlation
analysis between the target parameter blast furnace air permeability and characteristic
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parameters is carried out, and the characteristic parameters strongly related to blast furnace
air permeability are used as input variables of the data-driven model. In this study, the
collected blast furnace production data are analyzed by the nonlinear correlation analysis
method. First, the analysis of the interplay between blast furnace permeability and gas
flow is used, and second, Spearman correlation analysis and MIC (maximum information
coefficient) analysis are selected to correlate the characteristic parameters. Finally, the
merged set of analysis results is selected as the input variable.

3.1. Coupling Mechanism Analysis

Blast furnace air permeability is related to the quality of the downstream situation
of the blast furnace, as well as the blast furnace smelting strength, energy consumption,
and iron quality, is the most critical parameter in the blast furnace, which is determined by
the blast furnace smelting process. The blast furnace is a tall, large, and enclosed reactor.
It is called a “black box”, because its internal closed smelting environment cannot be
observed [15]. Its structure is shown in Figure 2.
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Figure 2. Blast furnace structure.

As the charge descends and the gas stream ascends in synchrony, a sequence of
reactions unfolds within the blast furnace:

> 570 ◦C 3FeO + CO→ 2FeO + CO + 8870 kcal
3Fe2O3 + CO→ 2Fe3O4 + CO2 + 8870 kcal
Fe3O4 + CO→ 3FeO + CO2 − 4990 kcal
FeO + CO→ Fe + CO2 + 3250 kcal

< 570 ◦C Fe3O4 + 4CO→ 3Fe + 4CO2 + 4188 kcal

Blast furnace smelting process requirements [16]: These include the furnace charge
in the fabric downstream process to maintain a uniform column permeability; blast fur-
nace gas flow in the process of rising, both along the circumferential direction to show
a uniform distribution and in the radial direction to have a suitable strong and weak
uniform distribution.

3.1.1. Investigation into the Mechanism of Blast Furnace Permeability

Blast furnace permeability denotes the ability of gas to flow within the furnace. It
is influenced by various factors, including pore space size, connectivity, and resistance
to gas flow within the particle accumulation present in the blast furnace. The formation
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mechanism of blast furnace permeability is related to the following factors, as shown in
Figure 3 [17–19]:

(1) Physical properties of the charge particles: The physical characteristics of the blast
furnace charge, including particle size, shape, and surface roughness, impact the
interparticle compactness within the blast furnace, consequently influencing its per-
meability.

(2) Blast furnace operating parameters: The operational variables of the blast furnace
encompass factors such as temperature, gas flow rate, and air outlet conditions. These
parameters exert a direct influence on the gas flow dynamics and the configuration of
particle accumulation within the blast furnace, consequently impacting its permeability.

(3) Charge properties: The mineral composition, bonding characteristics, and other prop-
erties of the blast furnace charge play a crucial role in the flowability and discharge
behavior of the charge material. Consequently, these properties have a direct impact
on the permeability of the blast furnace.

(4) Cylinder structure: The configuration of the blast furnace cylinder also influences the
gas flow patterns and the arrangement of particle accumulation within the furnace.
These factors, in turn, have an impact on the permeability of the blast furnace.

(5) Furnace dust: There are a large number of furnace dust particles in the blast fur-
nace, and these particles affect the gas flow state and the arrangement of particle
accumulation within the blast furnace, subsequently impacting its permeability.
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The formation mechanism of blast furnace air permeability is an interrelated and
complex issue, which is related to various factors such as physical properties of charge
particles, blast furnace operating parameters, charge properties, furnace cylinder structure,
and dust in the furnace. Gaining a comprehensive understanding and effectively managing
these factors can significantly enhance the air permeability of the blast furnace, thereby
ensuring smooth and uninterrupted production.

3.1.2. Analysis of Blast Furnace Gas Flow Mechanism

The formation mechanism of the blast furnace gas flow encompasses various aspects of
gas movement within the furnace. Figure 4 illustrates the key influencing factors associated
with the gas flow dynamics [20–23]:

(1) Air outlet status: The air outlet status represents a fundamental parameter in blast
furnace operation, as it directly determines the speed and direction of gas entry into
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the furnace. Consequently, it significantly influences the overall gas flow dynamics
within the blast furnace.

(2) Cylinder structure: The configuration of the blast furnace cylinder plays a crucial role
in gas flow dynamics. This includes factors such as the shape of the furnace body, the
design of the cylinder pipes, and the distribution of slag and iron within the furnace.

(3) Blast furnace charge: The physical and chemical properties of the blast furnace charge,
as well as the distribution and arrangement of the charge, will affect the gas flow. For
example, parameters such as bonding, humidity, and granularity of the charge will
affect the morphology of the particle pile and the gas flow capacity.

(4) Blast furnace parameters: The temperature distribution and pressure conditions
within the blast furnace directly impact the gas flow patterns. For instance, the upper
section of the furnace experiences higher gas temperatures and lower gas densities,
resulting in an upward gas flow, whereas the lower section exhibits a downward gas
flow. The flow direction and speed of blast furnace gas are directly affected by the
pressure in the furnace.
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The formation mechanism of blast furnace gas flow is a complex interplay of multiple
factors, including the condition of the air outlet, the structure of the furnace cylinder,
the composition of the blast furnace charge, and various parameters such as furnace
temperature and pressure. The control of these factors can effectively improve the flow
performance of the blast furnace gas stream, thus ensuring the normal production of the
blast furnace.

3.1.3. Analysis of the Coupling Mechanism between Blast Furnace Permeability and
Gas Flow

The formation mechanism of blast furnace permeability primarily involves the physical
and chemical properties of the charge, as well as the distribution and disposition of the
charge. The formation mechanism of the blast furnace gas flow involves all aspects of the
gas flow in the blast furnace, including the tuyere state, hearth structure, blast furnace
charge, furnace temperature, furnace pressure, and other factors. Consequently, there
are several interconnected factors between blast furnace permeability and the formation
mechanism of blast furnace gas flow [17–23]. First, the permeability of the blast furnace,
whether good or poor, significantly impacts the gas flow within it, influencing the speed
and direction of the gas movement. Optimal permeability facilitates smooth gas flow,
enabling efficient heat and material transfer in the blast furnace and enhancing production
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efficiency. Conversely, inadequate permeability restricts gas flow speed, impeding heat and
material transfer and subsequently reducing the production efficiency of the blast furnace.
Second, the direction and speed of blast furnace gas flow also contribute to the formation of
blast furnace permeability. Faster gas flow rates facilitate the movement of charge particles,
causing the gaps between them to expand and thereby improving blast furnace permeability.
Additionally, the direction of gas flow affects permeability. In the upper section of the blast
furnace, where gas temperature is higher and gas density is lower, an upward airflow is
formed. This upward airflow increases the voids in the upper charge pile, contributing to
improved permeability of the blast furnace. Consequently, the formation mechanisms of
blast furnace permeability and blast furnace gas flow are inherently interconnected, with
each factor influencing the other. Mastering and controlling these mechanisms can improve
the production efficiency and product quality of the blast furnace.

3.2. Spearman Correlation Analysis

Spearman correlation analysis [24] discriminates the strength of the correlation by the
Spearman rank correlation coefficient; hence, it is also called the Spearman rank correlation
coefficient. The principle is to analyze the nonlinear data of 25 critical parameters affecting
blast furnace production by solving the ranking position of the original data, ranking
the critical parameters (x1, x2, x3, . . . , x25) by the magnitude of the values and establishing
the order table, respectively. The position of the order table is called rank order, and the
Spearman rank correlation coefficient is calculated as shown in Equation (5):

P = 1− 6∑n
i=1(Ri −Qi)

2

n(n2 − 1)
, i = 1, 2, . . . , n (5)

where: P is the Spearman rank correlation coefficient; n is the number of variables; Ri and
Qi are the rank order of the two parameter data sets.

A heat map of the Spearman correlation analysis results is shown in Figure 5. The
range of the Spearman correlation coefficient is [−1, 1], and the larger the absolute value,
the higher the correlation between the two. In general, the absolute value of [0.8, 1]
indicates that the correlation between the two is extremely strong; the absolute value of
[0.4, 0.8] indicates that the correlation between the two is strong; the absolute value of [0.2,
0.4] indicates that the correlation between the two is weak; the absolute value of [0, 0.2]
indicates that the correlation between the two is extremely weak or irrelevant. In this study,
key parameters with correlation coefficients greater than 0.3 were selected as data-driven
preliminary input variables (x2, x3, x4, x6, x7, x8, x15, x17).
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3.3. MIC Maximum Information Coefficient Analysis

MIC maximum information coefficient analysis [25] is one of the methods to in-
dicate the strength of nonlinear relationships between parameters and is built on the
machine-learning concept of feature selection. The larger the MIC, the stronger the as-
sociation between parameters. The collected data set of 25 critical parameters affecting
blast furnace production is analyzed for the MIC, and the blast furnace permeability in-
dex is analyzed for the MIC with other critical parameters. Twelve critical parameters
(x2, x3, x4, x5, x6, x7, x8, x9, x14, x15, x17, x21) with MIC coefficients greater than 0.1 were se-
lected, as shown in Figure 6. The specific concept involves selecting a data set consisting of
two crucial parameters that are distributed within a two-dimensional space. To analyze
this data, an m ∗ n grid is employed to partition the data space and calculate the mutual
information of the random variables x and y. The MIC analysis is calculated as shown in
Equation (6):

MIC(x, y) = max
m∗n<B

p(x, y)log2
∫ p(x,y)

p(x)p(y)dxdy

log2min(a, b)
(6)

where: m, n denote the number of grid divisions on x, y; p(x, y) denotes the frequency of
data points falling in the (x, y) grid; p(x) refers to the frequency of data points falling on
the xth row; p(y) refers to the frequency of data points falling on the yth row; and B is the
0.6 power of the data volume.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 17 
 

 
Figure 6. MIC maximum information coefficient. 

4. Wavelet Neural Network (WNN) Model Building 
A wavelet neural network is constructed based on a BP neural network model and 

wavelet transform theory. It uses a wavelet function instead of an activation function of 
the hidden layer. It is a new type of backpropagation neural network [26]. The wavelet 
neural network integrates the time series localization of wavelet transform and the self-
learning ability of a neural network, fundamentally solving the problem of localized min-
ima and accelerating the convergence of the network. Its structure is generally divided 
into three layers: an input layer, a hidden layer, and an output layer. Each layer is passed 
through the activation function, and there are connection weights. The network structure 
is shown in Figure 7. 

 
Figure 7. Wavelet neural network structure. 

The wavelet basis function of the hidden layer of the wavelet neural network is se-
lected as the Morlet mother wavelet basis function, and the mathematical expression is 
shown in Equation (7): 

Figure 6. MIC maximum information coefficient.

Establishment of characteristic parameters. Based on the characteristic parameter
selection methods of blast furnace permeability and gas flow coupling mechanism analysis,
Spearman correlation analysis, and MIC analysis, and summarizing the results of the
three analyses and process experience, 14 key parameters were finally selected as the input
parameters of the data-driven prediction model. The input parameters are shown in Table 2.
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Table 2. Table of prediction model input parameters.

Serial
Number Parameter Name Serial

Number Parameter Name Serial
Number Parameter Name

X2 Furnace top pressure X7 Furnace top temperature X14 Oxygen enrichment rate
X3 Differential pressure X8 Hot air pressure X15 Cold air flow
X4 Gas utilization X9 Coal injection volume X17 Blast kinetic energy
X5 Oxygen enrichment X10 Gas CO2 volume fraction X21 Furnace belly gas index
X6 Wind temperature X11 Gas CO volume fraction

4. Wavelet Neural Network (WNN) Model Building

A wavelet neural network is constructed based on a BP neural network model and
wavelet transform theory. It uses a wavelet function instead of an activation function of the
hidden layer. It is a new type of backpropagation neural network [26]. The wavelet neural
network integrates the time series localization of wavelet transform and the self-learning
ability of a neural network, fundamentally solving the problem of localized minima and
accelerating the convergence of the network. Its structure is generally divided into three
layers: an input layer, a hidden layer, and an output layer. Each layer is passed through the
activation function, and there are connection weights. The network structure is shown in
Figure 7.
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The wavelet basis function of the hidden layer of the wavelet neural network is
selected as the Morlet mother wavelet basis function, and the mathematical expression is
shown in Equation (7):

y = cos (1.75x)e−x2/2 (7)

An image of the function is shown in Figure 8.
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The formula for calculating the output of the implicit layer is shown in Equation (8):

h(j) = h(
∑k

i=1 ωijxi − bj

aj
), j = 1, 2, . . . l (8)

where: xi is the input value of the wavelet neural network; y is the predicted output value
of the wavelet neural network; h(j) is the output value of the jth node in the hidden layer;
h is the wavelet basis function; ωij is the weight of the input layer to the hidden layer; aj is
the scaling factor of the wavelet basis function; and bj is the translation factor of the wavelet
basis function.

The formula for the output layer is shown in Equation (9):

y(k) = ∑l
i=1 ωjkh(i), k = 1, 2, . . . , m (9)

where: ωjk is the weight from the hidden layer to the output layer; l and m are the number
of nodes in the hidden layer and the output layer, respectively.

A flow chart of the wavelet neural network prediction steps is shown in Figure 9.
The prediction model for blast furnace permeability, along with the coupling mech-

anism analysis, enables real-time forecasting of blast furnace permeability. This ensures
the continuous operation of the blast furnace and helps prevent any abnormal conditions
from occurring. To keep the blast furnace running smoothly, it is necessary to optimize
the charge quality and to maintain a normal furnace shape, an active furnace cylinder,
adaptable gas distribution, a stable furnace temperature, reasonable slag composition,
and good air permeability, etc., among which blast furnace air permeability is especially
important. A data-driven blast furnace air permeability prediction model is constructed
with 14 parameter variables, including the top pressure, blast kinetic energy, coal injection,
differential pressure, cold air flow, belly gas index, gas utilization, hot air pressure, air tem-
perature, top temperature, oxygen enrichment, oxygen enrichment rate, gas CO2 volume
fraction, and gas CO volume fraction. The model’s implied layer nodes are set to 14, and
the network weight and the learning rate of the wavelet neural network are set to 0.01 and
0.001, respectively.
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5. Research and Application of Prediction Results

The blast furnace permeability index data set selected by feature parameters was
sorted by time series, and the wavelet neural network (WNN) was applied for prediction
to construct the blast furnace permeability index prediction model. The prediction results
are shown in Figure 10. The BP neural network (BP) prediction model, the particle swarm
optimization BP neural network (PSO-BP) prediction model, and the Xgboost prediction
model were also selected for simulation prediction, and the prediction results obtained
were compared with those of the wavelet neural network using evaluation indices.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 17 
 

 
Figure 9. Flow chart of wavelet neural network prediction steps. 

5. Research and Application of Prediction Results 
The blast furnace permeability index data set selected by feature parameters was 

sorted by time series, and the wavelet neural network (WNN) was applied for prediction 
to construct the blast furnace permeability index prediction model. The prediction results 
are shown in Figure 10. The BP neural network (BP) prediction model, the particle swarm 
optimization BP neural network (PSO-BP) prediction model, and the Xgboost prediction 
model were also selected for simulation prediction, and the prediction results obtained 
were compared with those of the wavelet neural network using evaluation indices. 

 
Figure 10. Wavelet neural network model blast furnace permeability index prediction graph. 

Upon a thorough analysis of Figure 10, it becomes evident that the prediction results 
obtained from the wavelet neural network model closely align with the actual values col-
lected. The model demonstrates an impressive accuracy of 95.71% within an error range 
of ±0.1, making it highly suitable for practical applications in production. Consequently, 
in this paper, the wavelet neural network model is used to predict the air permeability 

Figure 10. Wavelet neural network model blast furnace permeability index prediction graph.

Upon a thorough analysis of Figure 10, it becomes evident that the prediction results
obtained from the wavelet neural network model closely align with the actual values
collected. The model demonstrates an impressive accuracy of 95.71% within an error range
of ±0.1, making it highly suitable for practical applications in production. Consequently, in
this paper, the wavelet neural network model is used to predict the air permeability index
of the blast furnace, which can predict the air permeability index of the blast furnace in
advance and ensure the smooth operation of the blast furnace.
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Four commonly used evaluation indexes, including the RMES (root mean square
error), MAE (mean absolute error), MAPE (mean absolute percentage error), and accuracy
(model accuracy, error of ±0.1), were selected to compare the performance of the above
four prediction models and present an intuitive evaluation of the prediction results. The
calculation formulae are shown in Equations (10)–(13) [27]:

RMSE =

√√√√ 1
n

n

∑
i=1

(
ˆ
yi − yi

)2
(10)

MAE =
1
n∑n

i=1

∣∣∣∣ ˆ
yi − yi

∣∣∣∣ (11)

MAPE =
1
n∑n

i=1

∣∣∣∣∣∣
ˆ
yi − yi

yi

∣∣∣∣∣∣ (12)

ACCURACY =

.
n
n

(13)

where: n denotes the total number of samples;
ˆ
yi denotes the predicted value; yi denotes

the true value; and
.
n denotes the number of predicted values within the error allowance.

The RMES, MAE, MAPE, and accuracy of the above four prediction models were
calculated based on the blast furnace permeability index simulation prediction results as
shown in Table 3.

Table 3. Model performance comparison table.

Name RMES MAE MAPE Accuracy

BP 0.1527 0.1261 0.5147% 79.89%
PSO-BP 0.1326 0.1107 0.4428% 80.45%
Xgboost 0.1027 0.0871 0.3581% 84.97%
WNN 0.0785 0.0554 0.2347% 95.71%

The comprehensive comparison table above concludes that the wavelet neural network
blast furnace permeability index prediction model has the best overall performance and the
highest prediction accuracy, and the model accuracy reaches 95.71% at an accuracy error of
±0.1. Therefore, the overall performance of the wavelet neural network in predicting the
blast furnace permeability index is better than that of the other three models.

This wavelet neural network blast furnace permeability index prediction model was
put into the actual production of a #2 blast furnace in a steel enterprise. The data set of key
parameters in a certain time period was collected, the data of the required characteristic
parameters were selected for blast furnace permeability index prediction, and the predicted
values were compared to the actual production values, as illustrated in Figure 11.

By comparing the predicted values of the blast furnace permeability index with the
real-time production values, the efficacy of the prediction algorithm is further validated.
The utilization of the prediction model’s data in the blast furnace production process
enables prompt assessments of the furnace’s operational conditions, ensuring its smooth
operation. This validation from the perspective of actual blast furnace production confirms
the effectiveness of the blast furnace permeability index prediction model.
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6. Conclusions

(1) Based on the data from the actual hourly production process of a steel enterprise’s
#2 blast furnace in June and July, outliers were detected using the isolated forest
algorithm with the raw data, and the detected outliers are analyzed, eliminated,
and/or retained. The hourly level data-driven samples were obtained through data
deviation normalization, which can accurately predict the blast furnace permeability
index after an hour to ensure the stable, smooth running of the blast furnace. Through
the analysis of the coupling mechanism of blast furnace permeability and gas flow,
Spearman correlation analysis, and MIC analysis of the selection of 25 key parameters
affecting the production of the blast furnace, 14 characteristic variables were ultimately
selected. These were: the roof pressure, the volume fraction of gas CO, the amount of
coal spraying, the pressure difference, the volume fraction of gas CO2, the furnace
belly gas index, the utilization of the gas, the hot air pressure, the temperature of the
top of the furnace, the amount of oxygen enrichment, the oxygen enrichment rate, the
kinetic energy of the blowing air, the air temperature, and the flow rate of the cold air.

(2) The wavelet neural network (WNN) has a large advantage over a BP neural network
(BP), a particle swarm-optimized BP neural network (PSO-BP), and Xgboost in the
data-driven prediction of the blast furnace permeability index. The RMES (root mean
square error), MAE (mean absolute error), and MAPE (mean absolute percentage
error) with the model accuracy (error at ±0.1) indicators are better than the other
three models, and the model prediction accuracy reached 95.71% at an error of ±0.1,
which offers a great impact on blast furnace production compliance.

(3) Making full use of the data collected during the actual production of the blast furnace,
we carried out the data-driven construction of a predictive model of the blast furnace
permeability index and put the constructed model into the actual production of a No. 2
blast furnace of an iron and steel enterprise. The results showed that the predicted
value of the blast furnace permeability index is very much in line with the actual value
of real-time blast furnace production and maintains excellent characteristics. The aim
of this study was to develop an efficient and reliable gas permeability index prediction
model for blast furnaces to ensure the stable operation of the blast furnace smelting
process. Therefore, it has considerable application prospects and a popularization
value in actual blast furnace production.
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