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Abstract: Predicting the remaining useful life (RUL) of batteries can help users optimize battery
management strategies for better usage planning. However, the RUL prediction accuracy of lithium-
ion batteries will face challenges due to fewer data samples available for the new type of battery. This
paper proposed a transferable prediction approach for the RUL of lithium-ion batteries based on
small samples to reduce time in preparing battery aging data and improve prediction accuracy. This
approach, based on improvements from the adaptive boosting algorithm, is called regression tree
transfer adaptive boosting (RT-TrAdaBoost). It combines the advantages of ensemble learning and
transfer learning and achieves high computational efficiency. The RT-TrAdaBoost approach takes
the charging voltage and temperature curve as input and utilizes the classification and regression
tree (CART) as the base learner, which has better feature capture ability. In the experiment, the
working condition migration experiment and battery type migration experiment are conducted on
non-overlapping datasets. The verified results revealed that the RT-TrAdaBoost approach could
transfer not only the battery aging knowledge between various working conditions but also realize
the RUL migration prediction from lithium iron phosphate battery to lithium cobalt oxide battery.
The analysis of error and computation time demonstrates the proposed method’s high efficiency
and speed.

Keywords: lithium-ion battery; remaining useful life; transfer adaptive boosting; CART; battery
management system; edge computing

1. Introduction

Renewable energy is gradually becoming an important option to replace fossil en-
ergy [1]. As one of the most popular renewable energy storage solutions, lithium-ion
batteries have the advantages of high energy density, long cycle life, and low pollution [2].
However, the lifespan of lithium-ion batteries will be reduced through recycling, and
improper usage will expedite battery aging [3]. When the aging reaches a certain level, the
lithium-ion battery will not work properly [4]. Therefore, lithium-ion batteries are often
equipped with a battery management system (BMS) to accurately predict the remaining
useful life (RUL) of the battery [5].

The RUL is one of the important indicators to measure the aging degree of lithium-
ion batteries, and it is closely correlated with the state of health (SOH) of lithium-ion
batteries [6]. When the SOH of lithium-ion batteries falls below a certain threshold, their
operational performance will inevitably deteriorate [7]. This threshold is called the end-
of-life (EOL), usually when SOH drops to 80% of the rated value [8,9]. The moment at
which the SOH exceeds this threshold can be referred to as the end-of-monitoring (EOM).
Therefore, the RUL is commonly defined as the total number of charge–discharge cycles a
battery can undergo from the EOM to the EOL [10], expressed as follows

RUL = nEOL − nEOM (1)
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nEOL is the number of cycles when the new battery cycles to the threshold, and nEOM
represents the current cycle number.

Recently, many methods have been proposed to solve the RUL prediction problem.
These methods are primarily categorized as model-based methods and data-driven meth-
ods [11]. The model-based method primarily establishes the correlation between measur-
able physical parameters and the RUL by leveraging the electrochemical mechanism or
circuit characteristics of lithium-ion batteries [12,13]. The literature [14] investigates an
empirical exponential growth model for the resistance degradation of lithium-ion batteries,
using particle filtering (PF) to evaluate aging data at different time intervals indicative of
system health. The literature [15] explores the performance of different circuit topologies
for diffusion processes. Although the aforementioned research has contributed to the
study of remaining life prediction for lithium-ion batteries, developing an accurate battery
model requires a significant amount of expertise [16]. Additionally, the RUL of lithium-ion
batteries is not only limited by their aging mechanism but also closely linked to complex
operating conditions and battery types [17]. When the battery’s working environment
is disturbed, the stability of the model will face challenges [18]. Therefore, model-based
methods are often insufficiently flexible.

Based on the data-driven method to extract the aging law of lithium-ion batteries
from battery aging data, it can be more flexibly adapted to online prediction [19]. It mainly
includes the signal processing method, neural network method, and machine learning
method [20]. The signal processing method usually summarizes the law from the time
domain and frequency domain characteristics of the signal. In the literature [21], the
empirical mode decomposition (EMD) method is adopted to decompose the capacity
curve into linear and nonlinear trends, which is convenient for research separately. Unlike
signal processing methods, neural network methods are often utilized in the form of
enhancement or combination to predict the RUL of lithium-ion batteries. Literature [22]
combined the convolutional neural network (CNN), the bidirectional long short-term
memory (Bi-LSTM), and the Bayesian network to develop a Bayesian neural network
(BNN). This method utilizes only a small amount of data to accurately predict the RUL
of batteries. Literature [23] constructed the deep learning model based on bi-directional
long short-term memory(Bi-LSTM) with the addition of an attention mechanism(AM) to
focus on the important parts of the batteries’ features. Additionally, the machine learning
method is widely adopted for RUL prediction. The literature [24] analyzed the different
characteristics of the early and long-term aging paths of lithium-ion batteries and utilized
random logistic regression to classify batteries with different aging paths to perform
accurate RUL predictions. The ensemble learning method is a kind of machine learning
method that can embody collective intelligence and has the advantages of high calculation
accuracy and low time cost [25]. It exhibits strong feature recognition capabilities, obviating
the need for manual feature extraction and rendering it highly suitable for deployment in
BMS applications aimed at predicting battery RUL. Ensemble learning techniques have
been employed in studies aimed at addressing the problem of predicting RUL. Zhu et al.
used the adaptive boosting (AdaBoost) algorithm to mine data features and fused it with
LSTM to build a model to realize the RUL prediction of lithium-ion batteries [26]. The
aforementioned study employs AdaBoost as a feature extraction approach, but it is not
restricted to this, and the AdaBoost approach can also be used to construct prediction
models directly [27]. In summary, the data-driven method offers advantages over the
model-based method by avoiding establishing complex battery aging mechanism models
and providing capabilities to solve nonlinear problems such as RUL prediction.

Typically, the data-driven approach necessitates a substantial volume of battery-related
data to ensure the precision of the prediction [28]. However, the available samples of battery
aging data for new-type batteries are typically limited in scale. Therefore, the limited data
samples are insufficient to fully describe the entire degradation process of the battery.
It will require a significant amount of time to gather adequate aging data for the tested
battery. For instance, in the Oxford dataset on battery degradation, lithium iron phosphate
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(LFP) batteries undergo cyclic charging and discharging at a rate of 1C until they reach
the EOL. This entire process spans over 8000 cycles and lasts for nearly 300 days [29].
Hence, the utilization of data from pre-existing batteries for prognosticating novel battery
types is being contemplated. Although the public datasets for lithium-ion batteries are
abundant, the data on different types of batteries often fail to accurately reflect the nuances
of aging between each other. Furthermore, the degradation of lithium-ion batteries varies
under different operating conditions, posing challenges for accurate predictions in practical
applications. Hence, it is crucial to establish a transferable predictive methodology for
the remaining useful life (RUL) of lithium-ion batteries based on small data samples.
This approach should effectively apply valuable information from historical data to a
small number of battery samples under test, thereby significantly reducing the overall
development cycle of the battery life prediction algorithm.

To accomplish the aforementioned objectives, transfer learning (TL) can be employed
to facilitate the transfer of battery aging knowledge across disparate battery datasets. The
contributor and receiver of the transfer are called the source domain and the target domain,
respectively [30]. For lithium-ion batteries, there is a difference in the distribution between
the source domain and the target domain due to different operating conditions or battery
types, and this difference is called domain shift [31]. To solve the domain shift between
different distribution datasets, literature [32] established a battery RUL prediction model
using the migration method from the perspective of cycle consistency of degradation
trend. Similarly, the literature [33] combined the particle filter and LSTM network and
proposed a TL-LSTM-PF model with transfer learning ability, which better realized the
transfer prediction between datasets of different charging conditions on the LFP battery.
Although these studies have yielded favorable outcomes, there remain two aspects that
require further investigation.

1. In some existing methods for predicting the RUL, there is a degree of data overlap
between the source and target domains. However, in the actual situation, the target
domain data reflects the aging degree of the new battery under the current working
conditions. The source domain data are often from old batteries. Data between
these two domains should not overlap. Although setting up experiments under
partial overlap will reduce the difficulty of transfer learning and help to obtain better
experimental results, it does not meet the needs of actual engineering.

2. RUL migration prediction is limited to the same type of battery under different
working conditions and does not extend to migration between different types of
batteries. To provide users with accurate battery life information, it often takes a lot
of time to perform cycle aging experiments to predict the life of new battery models.
However, this will delay the sale of new type battery, so data from older batteries
with different materials can be considered for migration prediction. For example, the
migration from LFP batteries aging data to lithium cobalt oxide (LCO) batteries aging
data can be explored.

To address the aforementioned limitations, this paper proposes a transfer learning
approach based on small sample sizes that leverages the strengths of both ensemble learning
and transfer learning. The approach called regression tree transfer adaptive boosting (RT-
TrAdaBoost) utilizes the directly measurable charging voltage and temperature as input
variables, facilitating accurate prediction of the RUL of lithium-ion batteries. To enhance
the ability to capture intrinsic features, we have innovatively employed classification
and regression tree (CART) as the base learner of the RT-TrAdaBoost model for learning
the mapping relationship between aging data and remaining life. Subsequently, non-
overlapping target and source domains are created from the battery dataset, followed by
conducting experiments under various working conditions and different types of batteries.
Finally, the proposed approach is validated on both a personal computer and an edge
intelligent computing module. Through analysis of errors and calculation times, it has been
demonstrated that this approach is both fast and effective. The main contributions of this
paper are summarized as follows:
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1. To accurately transfer battery knowledge from historical data to small samples, this
paper utilizes the advantages of ensemble learning and transfer learning to establish
the RT-TrAdaBoost model for predicting the RUL of lithium-ion batteries.

2. Considering the deployment of the approach on BMS, the directly measurable charg-
ing voltage and temperature curves are used as the input of the model. Utilizing
CART as the base learner of the established model improves the model’s ability to
capture battery data features.

3. This paper establishes non-overlapping target and source domains in order to make the
research more practical. We not only evaluate the adaptability of the RT-TraAdaBoost
model under varying working conditions for a single battery type but also investigate
its transferability from LFP batteries to LCO batteries. The experimental results demon-
strate satisfactory performance in terms of prediction accuracy and processing time.

The subsequent chapters are structured as follows: Section 2 introduces the proposed
RUL prediction approach for lithium-ion batteries. Section 3 presents data preparation.
Section 4 focuses on the analysis of the experimental results. Section 5 summarizes the
conclusions drawn from this study.

2. Method for RUL Prediction

This section presents a lithium-ion battery RUL prediction model based on the RT-
TrAdaBoost algorithm. It aims to transfer the knowledge of lithium-ion battery aging
from historical data to small-scale samples of batteries under test. First, we formulate the
RUL prediction problem. Then, the working principle of CART is introduced. Finally, the
transfer learning framework is introduced based on AdaBoost. The CART-based learner is
used to describe the mapping relationship between the battery aging data and the RUL,
and the RT-TrAdaBoost model for predicting RUL is developed.

2.1. Problem Formulation

To enable transfer learning, we employ partially labeled training data with the same
distribution as the test data to build an RUL prediction model. These data are called the
same-distribution training data. When the size of the training data with the same distri-
bution is insufficient, it becomes very difficult to train a precise battery aging mapping
relationship for the test data. The training data whose distribution is different from that
of the test data are called diff-distribution training data. Although these data are usually
ample, their RUL prediction results on test data are often not ideal due to the different dis-
tribution. Specifically, let Xs be the same-distribution sample space, Xd the diff-distribution
sample space, and S the label. The concept of battery aging is a function f (·) mapped from
X to Y, where X = Xs ∪ Xd, which can be expressed as follows

f (•) : X → Y, X = Xs ∪ Xd (2)

The test dataset is represented by S =
{
(xt

i )
}

, where xt
i ∈ Xs(i = 1, . . . , k). k is the size

of the unlabeled testing set S. The training dataset T ⊆ {X×Y} is split into two labeled sets,
Tsource and Ttarget. Tsource represents the Tsource =

{
(xd

i , c(xd
i ))
}

, where xd
i ∈ Xd(i = 1,. . . ,n).

Ttarget is denoted by Ttarget =
{
(xs

j , c(xs
j ))
}

, where xs
j ∈ Xs(i = 1, . . . , m). m and n are the

sizes of Ttarget and Tsource separately. c(x) is the label of the data sample x. The combined
training set T = {(xi, c(xi))} is expressed as follows

xi =

{
xd

i , i = 1, . . . , n
xs

i , i = n + 1, . . . , n + m
(3)

Tsource corresponds to the source domain battery data, but it is unknown which part
Tsource is beneficial for training. Thus, utilizing Ttarget to find out the useful part of Tsource,
which is the running idea of the RT-TrAdaBoost algorithm. Therefore, given a small amount
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of labeled training data Ttarget of the same distribution, training data Tsource of a different
distribution, and unlabeled test data S, the goal of RT-TrAdaBoost is to train a strong learner
f̂ (•) such that the unlabeled data. The prediction error on the set S is minimum, which can
be described as follows.

min
∣∣∣ f̂ (xi)− c(xi)

∣∣∣
s.t.xi ∈ Xs(i = 1, . . . , k)

(4)

2.2. CART

To enhance the feature capture ability of the model for battery aging data, this paper
adopts CART as the base learner to depict the correlation between battery aging information
and the RUL. The CART grows iteratively and can establish a nonlinear mapping on the
given data [34]. Moreover, CART employs the principle of minimizing squared error to
identify data features and grows into a binary decision tree by recursively splitting nodes
based on prominent features in the data [35]. Randomly select the k-th variable x(k) of the
feature data of the training set as the split variable, and the value s of this variable is used
as the split point. The split point can divide the dataset into two regions R1 and R2:

R1(k, s) =
{

x
∣∣∣x(k) ≤ s

}
, R2(k, s) =

{
x
∣∣∣x(k) ≥ s

}
(5)

The output predictions c1 and c2 for each region are

cm =
1

Nm
∑xi∈Rm(k,s) cim(m = 1, 2) (6)

Among them, cim is the optimal value of the i-th group of training data in the region
m, and Nm indicates the amount of data in the region. Taking this as a comparison, the sum
of squared errors in each area can be minimized by traversing the different values of k and
s. The equation is as follows

LCART = min
k,s

 ∑
xi∈R1(k,s)

(cim − c1)
2 + ∑

xi∈R2(k,s)
(cim − c2)

2

 (7)

where k and s are the best-split variables and split points. In subsequent splits, the above
steps will be repeated until a complete decision tree is formed. The number of repetitions
is related to the depth setting of the tree. In this paper, the maximum depth of CART is
set to 5 layers, as shown in Figure 1. The resultant tree structure indicates a sequential
arrangement of battery aging feature importance within the training dataset, serving as the
base learner for RT-TrAdaBoost methodology and playing an essential role in predicting
the RUL.
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2.3. AdaBoost Algorithm

AdaBoost is an ensemble learning algorithm based on boosting strategy [36]. First,
it updates the weights of each sample through continuous iteration and trains to form
a learner with preliminary capabilities. Then, through a weighted linear combination,
each base learner is integrated into a strong learner with mature capabilities. Whether it
is updating sample weights or weighting in ensembles, the AdaBoost can adapt to the
training error rate to ensure that samples with lower error rates or base learners have higher
weights. The principle of AdaBoost is briefly introduced below.

First, an initial weight vector is set such that each sample has an equal initial weight
as follows.

wt
i =

1
n 1 ≤ i ≤ n, t = 1 (8)

Then, the base learner is used as a mapping ht, which t represents the number of
iterations. The map is trained with the training set T and weight vectors and validated on
the testing set. Among all the test samples, the value dt with the largest error is

dt = maxn
i=1|yi − ht(xi)| (9)

Since the key of AdaBoost is to redistribute weights to samples with large errors in
the next iteration, the measurement of the error size should be compared with the largest
error value in all samples. To describe the training error, the error needs to be normalized.
Applying the exponential loss function, the adjusted error et

i of each instance is obtained as

et
i = 1− exp

(
−|yi − ht(xi)|

dt

)
(10)

In the case that the structure of the CART learner and the training set remains un-
changed, the size of these adjustment errors changes with the change of the weight vector.
Therefore, the sum of the product of the sample weights and the corresponding adjustment
errors can be used to measure the predictive performance of the mapping. The resulting
value is the total error of the mapping:

εt =
n

∑
i=1

et
i w

t
i (11)

In general, the probability of a random judgment error is 0.5. Therefore, when εt is
greater than 0.5, the iteration will stop. Confidence for this error is usually defined βt
as follows:

βt =
εt

1− εt
(12)

The lower the βt is, the higher the reliability of the prediction made by the mapping.
Utilize this value to update the sample weight vector as follows:

wt+1
i =

wt
i β

1−et
i

t
Zt

(13)

where Zt represents the normalization constant, which ensures that its sum is still 1 after
the weights are reassigned. The whole iterative process is shown in Equations (9)–(13). The
smaller the loss produced by the sample xi in t-th iteration, the lower the weight of the next
iteration will be. As the number of iterations increases, the learners focus on samples with
larger errors by increasing the weight.

The second weight adjustment occurs after the iteration stops, and all learners are
weighted together. For a given input xi, each learner will make a prediction and get the
result ht(xi). Finally, using ln(1/βt) as weights, the weighted median of all learner results
is the total prediction h f (x).
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Despite its predictive capabilities, the Adaboost algorithm presupposes that all training
data is distributed identically. However, differences in operating conditions or battery
types can result in variations between the distribution of historical datasets and those to be
tested, ultimately leading to a decrease in RUL prediction accuracy.

2.4. RT-TrAdaBoost Model

To solve the problem of low prediction accuracy, this section performs migration
improvement based on the AdaBoost algorithm and develops the RT-TrAdaBoost model
based on the CART-based learner. The model predicts lithium-ion battery RUL using only
minimal data samples of the battery under test. It can effectively transfer the concept of
lithium-ion battery aging in different distributed datasets from the historical battery dataset
to the dataset under test, and its principle is illustrated in Figure 2.
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Compared with the AdaBoost algorithm, the improvement of the RT-TrAdaBoost
algorithm mainly reflects two aspects. One is to embed CART as a base learner into
the algorithm, and the other is to treat the battery samples used for training unequally.
Specifically, the weight vector produced by the t-th iteration is first normalized by

pt =
wt

∑n+m
i=1 wt

i
(14)

Use the combined training set T mentioned in Section 2.1 and the standardized weight
pt generated by the t-th iteration to train on CART to obtain the mapping between battery
aging information and RUL. The mapping is validated on the testing set, and the prediction
error is calculated. The maximum value is

Dt = maxn
i=1|c(xi)− ht(xi)| (15)

The error is also adjusted using the exponential loss function in the same way as
Equation (10). The adjusted error reflects the predictive power of the mapping for each
sample on the testing set. Then, to evaluate the effect of the current round of iteration and
adjust the weight of the next iteration, the sum of these errors is calculated.

εt = ∑n+m
i=n+1

wt
i · et

i

∑n+m
i=n+1 wt

i
(16)
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Compared with the AdaBoost approach, the RT-TrAdaBoost does not include the
source domain data Tsource when calculating the sum of errors. It aims to make the target
domain data Ttarget with the same distribution as the testing sets play a greater role in
training. Likewise, Equation (12) is used to calculate the confidence of this part of the sum
of errors. For the source domain data, fixed confidence is used as follows:

β =
1

1 +
√

2 ln n
N

(17)

Then, the new weight vector in the next iteration is updated with Equation (18).

wt
i =

{
wt

i βet
i , 1 ≤ i ≤ n

wt
i β
−et

i
t , n + 1 ≤ i ≤ n + m

(18)

The updated weights are, in turn, normalized by Equation (12). In this way, samples
in the target domain and samples with smaller prediction errors in the source domain will
get greater weights. For some samples with large prediction errors in the source domain,
the weight will gradually decrease. After multiple iterations, the battery aging information
in the source domain will gradually migrate to the target domain. Finally, by taking the
weighted median of all the mapping sets produced by iterations, the expression is

h f = inf

y ∈ Y : ∑
t:h f≤y

ln
(

1
βt

)
≥ 1

2∑
t

ln
(

1
βt

) (19)

h f represents the final mapping result. The pseudocode of the RT-TrAdaBoost is given, as
shown in Algorithm 1. According to Algorithm 1, if the prediction results of diff-distribution
training samples significantly deviate from the actual values in each iteration round, it suggests
that these samples may differ greatly from those in the same-distribution training data set
and thus fail to accurately reflect battery aging details. Therefore, it is necessary to decrease
its weight during training in order to mitigate its impact on the subsequent iteration. The
weights of these diff-distribution training samples gradually diverge from those of the same-
distribution battery samples. After sufficient iterations, the diff-distribution training weight of
samples that better fit the same-distribution will be increased, while those that are dissimilar
to the same-distribution training samples can only obtain lower weights. This process is the
key component for achieving accurate battery RUL prediction using the proposed method.
The flowchart of the entire proposed method is depicted in Figure 3.Appl. Sci. 2023, 13, 8498 9 of 25 
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Algorithm 1. Training algorithm for estimating the RUL

Input unlabeled dataset S

Data The combined sample set T consisting of both Tsource and Ttarget
1 Initialize the weight vector w1

i
For t = 1, . . . , N:

2 Set normalized weight vector pt

3 Use the combined training set T and the t-th iteration normalized weight vector pt to train on the base learner
CART to obtain the hypothesized mapping ht. Enter S to get the label.

4 Compute the adjusted error et
i for the label of each sample on S the:

let Dt = maxn
i=1|c(xi)− ht(xi)|

then et
i = 1− exp(−|c(xi)− ht(xi)|/Dt)

5 Compute the total adjusted error of ht on Ttarget:

εt = ∑n+m
i=n+1

wt
i ·et

i
∑n+m

i=n+1 wt
i

6 Let βt = εt/(1− εt) and β = 1/(1 +
√

2 ln n/N). Once the value is greater than 0.5, stop iterating.
7 Update the new weight vector:

wt+1
i =

{
wt

i βet
i , 1 ≤ i ≤ n

wt
i β
−et

i
t , n + 1 ≤ i ≤ n + m

Output y = h f (x) is the weighted median of all mapping results ht(x), t ∈ (1, N), and the mapping weight is ln(1/βt)

3. Data Preparation
3.1. Experimental Dataset
3.1.1. Stanford–MIT–Toyota Dataset

Attia et al. publicly released the Stanford–MIT–Toyota dataset, which utilized LFP
batteries manufactured by A123 Systems [37]. The information on the battery is shown
in Table 1.

Table 1. The information of battery in Stanford–MIT–Toyota dataset.

Stanford–MIT–Toyota Dataset

Manufacturers A123 Systems (APR18650M1A)
Battery Type LiFeO4

Nominal Capacity 1.1 Ah
Nominal Voltage 3.3 V

Charging Upper Limit Voltage 3.6 V
Discharging Termination voltage 2.0 V

The cells in this dataset were subjected to cycle charge and discharge experiments at
a constant temperature of 30 degrees Celsius. The charging profile used was called the
six-step fast charging mode. The first four steps of charging were all charged by constant
current, and the total time was fixed at 10 min. The charging current was independently
and randomly set in the four stages of battery SOC of 0–20%, 20–40%, 40–60%, and greater
than 60%. The charging mode of the last two steps of all cells was the constant current
and constant voltage (CCCV) under 1C. This paper selects the fifth batch of the dataset for
research. This batch contains 9 different working conditions and a total of 45 batteries. All
cells are still named according to their working condition type and channel number. For
example, the cell tested in the 38th channel of the first working condition is called g1c38,
and its voltage and temperature curves are shown in Figure 4. The corresponding details
of working conditions and cell numbers are illustrated in Table 2.
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Table 2. The working condition of the battery in the Stanford–MIT–Toyota dataset.

Number The First Four Steps Cell Number

1 3.6A→ 6A→ 5.6A→ 4.755A g1c11, g1c12, g1c27, g1c29, g1c38
2 4.4A→ 5.6A→ 5.2A→ 4.252A g2c8, g2c15, g2c18, g2c32, g2c48
3 4.8A→ 5.2A→ 5.2A→ 4.16A g3c1, g3c2, g3c10, g3c20, g3c42
4 5.2A→ 5.2A→ 4.8A→ 4.16A g4c6, g4c7, g4c37, g4c41, g4c45
5 6A→ 5.6A→ 4.4A→ 3.834A g5c9, g5c21, g5c22, g5c31, g5c36
6 7A→ 4.8A→ 4.8A→ 3.652A g6c3, g6c25, g6c26, g6c28, g6c44
7 8A→ 4.4A→ 4.4A→ 3.94A g7c13, g7c16, g7c23, g7c24, g7c47
8 8A→ 6A→ 4.8A→ 3A g8c14, g8c17, g8c30, g8c35, g8c39
9 8A→ 7A→ 5.2A→ 2.68A g9c19, g9c33, g9c34, g9c40, g9c43

3.1.2. Oxford Battery Degradation Dataset

The Oxford Battery Degradation Dataset (Hereinafter referred to as the Oxford dataset)
was released by Birkl et al. using the SLPB533459H4 LCO battery manufactured by Kokam.
The rated capacity of this battery is 740 mAh [29]. The specifications of the battery are
shown in Table 3.

Table 3. The specifications of battery in Oxford dataset.

Oxford Battery Degradation Dataset

Manufacturers Kokam (SLPB533459H4)
Battery Type LiCoO2

Nominal Capacity 740 mAh
Nominal Voltage 3.7 V

Charging Upper Limit Voltage 4.2 V
Discharging termination voltage 2.7 V

The dataset includes a total of 8 batteries, which were placed on the Bio-Logic MPG-
205 battery test equipment. These cells were tested in a thermal chamber at 40 degrees
Celsius. The charging strategy adopted the CCCV, and the discharge mode was constant
current discharge to cut-off voltage. It is worth noting that this dataset only includes
the constant-current charge and constant-current discharge stages of the battery charging
process, both at 1C current. Therefore, this dataset does not capture current data. The
eight cells in the Oxford dataset are named Cell1 to Cell8 in sequence. Taking Cell7 as an
example, the charging voltage and temperature curves are shown in Figure 5.
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3.2. Data Selection and Preprocessing

The Stanford–MIT–Toyota dataset experiences complex charging conditions, which
exhibit richer characteristics of lithium-ion batteries than its smooth discharge process.
The intuitive reflection of this can be observed through the voltage and temperature curve
changes in Figure 4. Therefore, the complete charging voltage curve and temperature curve
are selected to verify the RUL prediction method proposed in this study. The data selection
of the Oxford dataset is also the same as the Stanford–MIT–Toyota dataset.

To ensure the data accurately reflect the battery aging characteristics and to facilitate
the inspection of the RUL prediction method, data preprocessing is required. In the
Stanford–MIT–Toyota dataset, there exists a small amount of outlier data that stems from
occasional measuring instrument faults and periodic time information peaks during testing.
These outliers cannot objectively reflect the nature of the battery itself and, therefore,
require filtering. The Oxford dataset has had the anomalous cycle removed directly from
the dataset before release.

Next, the data are resampled. During the cycle of the battery, the time elapsed in a
series of charging curves obtained is different. For example, in the Stanford–MIT–Toyota
dataset, the No. 11 battery spent 27 min on the first full charge, while the 761st charge took
about 21 min. Hence, the number of data points is also different for each curve. To prevent
the feature from biasing towards the charging curve with more data points, resampling is
required so that each data sample has the same dimension. Since there is a certain error in
the sampling time interval of the Stanford–MIT–Toyota dataset, an interpolation operation
is performed first before resampling. In this way, the values of each charging curve can be
aligned in time intervals. It is worth mentioning that the sampling interval of the Oxford
dataset is stable at 1 s, so the interpolation process can be omitted. Afterward, resampling
the charging curve can obtain a dataset with a uniform dimension.

Finally, the voltage and temperature variables in the charging curve are normalized,
respectively. The method is as follows

x′ =
x−min(x)

max(x)−min(x)
(20)

Since the voltage ranges and test temperature ranges of the batteries used in the two
datasets are different, normalization should be performed within their respective value
ranges to eliminate unnecessary errors caused by differences in the value ranges.
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4. Experiment and Result Analysis
4.1. Evaluation Criteria

For the performance evaluation of the proposed approach, the mean absolute er-
ror (MAE), maximum error (MAX), root mean square error (RMSE) and mean absolute
percentage error (MAPE) are selected. The equations are as follows:

MAE =
1
nc

∑nc
i=1|yi − ỹi| (21)

MAX = max(|yi − ỹi|) (22)

RMSE =

√
1
nc

nc

∑
i=1

(yi − ỹi)
2 (23)

MAPE =
1
nc

nc

∑
i=1

∣∣∣∣yi − ỹi
yi

∣∣∣∣ (24)

where the ỹi and yi are the predicted capacity and actual capacity for the lithium-ion battery,
respectively. nc represents the number of cycles when the battery reaches the EOL and i
denotes the index of nc. The lower these values, the more accurate the predicted results. In
this study, computational time is also a pivotal evaluation criterion.

4.2. Implementation Details

The lithium-ion battery RUL prediction model established in Section 2 is verified with
the two datasets preprocessed in Section 3. Specifically, transfer experiments of different
working conditions and different types of batteries are designed. The former is to realize
the RUL migration prediction capability between different working conditions on the same
type of lithium-ion battery. The latter aims to realize the ability to migrate battery data
from LFP to LCO. This subsection will introduce the dataset division and training way of
these two experiments in detail.

4.2.1. Different Working Conditions

Table 2 shows the working conditions of each battery in the Stanford–MIT–Toyota
dataset. To ensure that there are no overlapping working conditions between the source and
target domains, the g2c32, g3c2, and g5c31 battery data each become the source domains,
and some data in g1c38, g2c48, and g7c47 batteries are used as target domains. The data
except for the target domains in g1c38, g2c48, and g7c47 are selected as the testing sets,
respectively. The proportion of data volume is shown in Table 4.

Table 4. Dataset division and data size ratios in working conditions migration experiment.

Group Source + Traget→ Test Data Volume Ratio

A

1 g5c31 + g1c38→ g1c38 1038:492:123
2 g3c2 + g2c48→ g2c48 773:868:217
3 g5c31 + g2c48→ g2c48 1038:868:217
4 g2c32 + g7c47→ g7c47 988:591:147

4.2.2. Different Types of Batteries

The g1c38, g2c32, g2c48, g3c2, g5c31 and g7c47 battery data in the Stanford–MIT–
Toyota dataset are used as the source domains. Part of the cell data of Cell1 and Cell7
in the Oxford dataset is used as the target domains. And select the Oxford dataset Cell1
and Cell7 battery data except for the target domains as the testing sets. Table 5 provides
specific details.
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Table 5. Dataset division and data size ratios in battery type migration experiment.

Group Source + Traget→ Test Dataset Data Volume Ratio

B

1 g1c38 + Cell1→ Cell1 615:61:17
2 g2c32 + Cell1→ Cell1 988:61:17
3 g2c48 + Cell1→ Cell1 1085:61:17
4 g3c2 + Cell1→ Cell1 773:61:17
5 g5c31 + Cell1→ Cell1 1038:61:17
6 g7c47 + Cell1→ Cell1 738:61:17

C

1 g1c38 + Cell7→ Cell7 615:59:17
2 g2c32 + Cell7→ Cell7 988:59:17
3 g2c48 + Cell7→ Cell7 1085:59:17
4 g3c2 + Cell7→ Cell7 773:59:17
5 g5c31 + Cell7→ Cell7 1038:59:17
6 g7c47 + Cell7→ Cell7 738:59:17

4.2.3. Training Settings

To compare with the proposed RT-TrAdaBoost approach, experiments are also con-
ducted on the more popular convolutional neural network transfer learning (CNN-TL)
approach and the AdaBoost approach based on ensemble learning. The CNN-TL has
a total of four one-dimensional convolutional layers, four pooling layers and one fully
connected layer. The convolutional layer filters are 38, and the kernel size is 32. Both the
AdaBoost approach and the RT-TrAdaBoost approach have 15 CART base learners, each
with a maximum depth of 5 layers. In particular, as mentioned in Section 2.3, the AdaBoost
approach assumes that all data available for training is identically distributed. Therefore, in
the case that the target domain samples are insufficient to train the RUL prediction model
alone, the target domain and source domain data are combined to train the AdaBoost.

4.3. Working Condition Migration Analysis

Table 4 in Section 4.2 divides the datasets used in the migration experiments. The
experiments are conducted on Group A1, Group A2, Group A3 and Group A4. The RUL
prediction results are shown in Figure 6.

From the experimental results in Figure 6, all approaches reflect the overall down-
ward trend of lithium-ion battery RUL. However, there are differences between the three
approaches. In the initial stage of RUL decline, the CNN-TL approach tends to exhibit
significant prediction errors, whereas AdaBoost and RT-TrAdaBoost demonstrate supe-
rior fitting capabilities. In the middle stage of the battery cycle, the CNN-TL approach
exhibits some fluctuations and is comparatively less robust than the other two boosting
approaches. However, around the 100th and 400th cycles, fluctuations in the AdaBoost
approach highlight the limitations of non-transfer learning methods to adapt to changing
working conditions.

Figure 7 represents a more intuitive comparison of the error distribution between
predicted and measured values. The yellow, pink and green parts represent the RUL
prediction errors of the CNN-TL, AdaBoost and RT-TrAdaBoost, respectively. The error of
the CNN-TL approach is much larger than that of AdaBoost and RT-TrAdaBoost, which
confirms the prediction performance of the model in Figure 6. Further analysis shows
that in GroupA1, GroupA3 and GroupA4, the RT-TrAdaBoost approach shows better
performance than AdaBoost, the distribution of error data is more concentrated, and the
error value is also smaller. But in GroupA2, the error performance of the RT-TrAdaBoost
model is slightly worse than that of the AdaBoost approach, which may be caused by the
fact that the sample size of the source domain in this group is smaller than that of the
target domain. In the other three groups, the data size of source domains to battery aging
migration is larger than that of the target domains. In comparison, the RT-TrAdaBoost
model exhibits better predictive performance when a large number of historical samples
are transferred to a smaller sample set.
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Figure 8 and Table 6 provide a comparative analysis of the evaluation results for each
approach. The larger the criteria, the closer the color of the square approaches magenta;
otherwise, it tends toward dark green. To highlight the differences in the evaluation criteria
of each method in a single group, the color scale of each group is set independently. The
MAE of the RT-TrAdaBoost model in the four groups reached 0.58%, 1.04%, 0.63% and
0.36%, respectively. The MAE of the AdaBoost algorithm is 0.91%, 0.99%, 0.94% and 0.58%.
While the CNN-TL only performed 4.86%, 8.25%, 8.57% and 3.94%.
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TrAdaBoost is 0.81%, 1.32%, 0.83% and 0.46%, respectively. This means that there are al-
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Table 6. The evaluation criteria of the working condition migration.

Group Algorithms MAE MAX RMSE MAPE

A1 CNN-TL 0.0486 0.1590 0.0595 0.6924
AdaBoost 0.0091 0.0679 0.0136 0.1299

RT-TradaBoost 0.0058 0.0384 0.0081 0.1174

A2 CNN-TL 0.0825 0.3625 0.1086 1.0410
AdaBoost 0.0099 0.0454 0.0133 0.0924

RT-TradaBoost 0.0104 0.0378 0.0132 0.0983

A3 CNN-TL 0.0857 0.3577 0.1106 1.0534
AdaBoost 0.0094 0.0536 0.0131 0.0987

RT-TradaBoost 0.0063 0.0360 0.0083 0.0979

A4 CNN-TL 0.0394 0.3178 0.0589 0.2829
AdaBoost 0.0058 0.0517 0.0083 0.0427

RT-TradaBoost 0.0036 0.0134 0.0046 0.0390

Figures 7 and 8 jointly confirm the RUL prediction errors of the three methods. In
addition to showing excellent performance in terms of average error, the RMSE of RT-
TrAdaBoost is 0.81%, 1.32%, 0.83% and 0.46%, respectively. This means that there are
almost no large outliers in the prediction results and reflects the robustness. From the color
of the squares in Figure 8, the MAX and MAPE of the CNN-TL approach are much larger
than the two ensemble learning methods. This shows that although the CNN-TL approach
has a certain migration ability, it is still limited by the migration between different working
conditions of the LFP battery. In summary, the RT-TrAdaBoost approach can efficiently
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transfer aging knowledge from the source domain composed of historical data to the target
domain on the target domain based on small samples. Although the charging conditions of
these batteries are complex and varied, the method achieved satisfactory RUL prediction
results in this experiment.

4.4. Battery Type Migration Analysis

After verifying the migration prediction effect of the RT-TrAdaBoost model in different
working conditions, this paper further expands the migration prediction experiment between
different types of batteries. In addition to the inconsistency of battery types, other factors, such
as working conditions and temperature, also exhibit significant variations. This experiment
will use six LFP batteries in the Stanford–MIT–Toyota dataset and two LCO batteries in the
Oxford dataset, a total of 12 groups. As shown in Table 5, the sample size ratio of the source
domain and the target domain in each group ranges from about 10:1 to 17.4:1. Similarly, the
RUL prediction results on the three models are shown in Figures 9 and 10.
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In Figures 9 and 10, the RT-TrAdaBoost approach has excellent fitting performance
and is more robust than the AdaBoost method. As for the CNN-TL, although the overall
trend is consistent with the measured values, it exhibits fluctuations locally. Especially at
the 4000th–7000th cycle, the fluctuation of the RUL prediction result curve is particularly
severe. A similar situation also appears in Figure 10. However, although Cell1 and Cell7 are
the same type of battery and their datasets are obtained under the same working condition,
in contrast, the fluctuation of the CNN-TL approach in predicting Cell7 extends to around
the 8000th cycle. This indicates that the CNN-TL also exhibits variances in its adaptability
towards identical battery types, whereas the RT-TrAdaBoost approach is well-suited to
address such discrepancies. By comparison, our proposed method has demonstrated
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favorable RUL prediction outcomes across multiple batteries, showcasing both stability
and precision.

From Figure 11, compared with the other two methods, the error distribution of the
RT-TrAdaBoost method is more concentrated around 0. The finer model performance
is reflected in Figures 12 and 13 through evaluation criteria. Tables 7 and 8 record the
specific values. On the six batteries in Group B, the MAE of RUL prediction by the
RT-TrAdaBoost method is 1.48% to 1.80%. In Group C, it ranges from 1.24% to 1.92%.
The AdaBoost method and the CNN-TL approach are only 1.75% to 2.30% and 3.93% to
7.21% in Group B, respectively. In Group C, they are 1.78% to 2.24% and 4.64% to 6.13%,
respectively. Regardless of the magnitude or scope of the error, it can be inferred that the
RUL prediction outcome obtained through the RT-TrAdaBoost approach is more precise.
From the evaluation of the RMSE index, for the Group B and Group C experiments, the
RT-TrAdaBoost method is 1.50% to 2.24%, which is smaller than the AdaBoost method and
the CNN-TL approach.

Appl. Sci. 2023, 13, 8498 21 of 25 
 

  
(a) (b) 

Figure 11. The error distribution of the results of different lithium-ion battery RUL prediction meth-
ods. (a) Cell1. (b) Cell7. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 11. The error distribution of the results of different lithium-ion battery RUL prediction
methods. (a) Cell1. (b) Cell7.

Table 7. The evaluation criteria of the battery type migration on Group B.

Group Algorithms MAE MAX RMSE MAPE

B1 CNN-TL 0.0557 0.2137 0.0711 0.2620
AdaBoost 0.0202 0.0482 0.0234 0.1798

RT-TradaBoost 0.0180 0.0473 0.0224 0.0780

B2 CNN-TL 0.0466 0.2521 0.0740 0.2667
AdaBoost 0.0233 0.0764 0.0302 0.0804

RT-TradaBoost 0.0162 0.0560 0.0210 0.0604

B3 CNN-TL 0.0560 0.2932 0.0867 0.3830
AdaBoost 0.0192 0.0538 0.0221 0.1070

RT-TradaBoost 0.0162 0.0380 0.0201 0.0484

B4 CNN-TL 0.0721 0.3638 0.1077 0.3452
AdaBoost 0.0175 0.0386 0.0204 0.1055

RT-TradaBoost 0.0153 0.0408 0.0178 0.0640

B5 CNN-TL 0.0393 0.1884 0.0585 0.1921
AdaBoost 0.0205 0.0580 0.0249 0.1664

RT-TradaBoost 0.0148 0.0393 0.0175 0.0746

B6 CNN-TL 0.0538 0.2949 0.0879 0.4085
AdaBoost 0.0212 0.0508 0.0252 0.1389

RT-TradaBoost 0.0167 0.0417 0.0199 0.0637
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Table 8. The evaluation criteria of the battery type migration on Group C.

Group Algorithms MAE MAX RMSE MAPE

C1 CNN-TL 0.0484 0.2127 0.0798 0.2894
AdaBoost 0.0195 0.0551 0.0225 0.1440

RT-TradaBoost 0.0187 0.0489 0.0223 0.0854

C2 CNN-TL 0.0464 0.1767 0.0712 0.2294
AdaBoost 0.0217 0.0552 0.0251 0.1478

RT-TradaBoost 0.0192 0.0384 0.0221 0.0870

C3 CNN-TL 0.0613 0.1987 0.0859 0.2773
AdaBoost 0.0224 0.0357 0.0239 0.1036

RT-TradaBoost 0.0188 0.0377 0.0211 0.0963

C4 CNN-TL 0.0521 0.2014 0.0797 0.2628
AdaBoost 0.0204 0.0583 0.0249 0.0946

RT-TradaBoost 0.0124 0.0361 0.0150 0.0733

C5 CNN-TL 0.0459 0.1685 0.0633 0.2326
AdaBoost 0.0178 0.0427 0.0211 0.1074

RT-TradaBoost 0.0154 0.0333 0.0185 0.0841

C6 CNN-TL 0.0491 0.1745 0.0713 0.2344
AdaBoost 0.0193 0.0413 0.0223 0.0991

RT-TradaBoost 0.0137 0.0396 0.0176 0.0424
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In addition, the color of the squares in Figures 12 and 13 highlights the large differences
between the three models in the two evaluation criteria of MAX and MAPE. Therefore,
on the Stanford–MIT–Toyota and Oxford datasets, the RT-TrAdaBoost method has an
advantage in implementing aging information migration. Not only that but the operating
conditions and temperatures of the two datasets are different. Therefore, under the joint
action of multiple factors, the RUL prediction accuracy in the battery-type migration
experiment is lower than that in the operating condition migration experiment, but the
results still show that the model is effective. On the one hand, the utilization of historical
battery data to migrate to a small sample of existing batteries for testing often encounters
the challenge of being unable to match the battery type and charging conditions. The
challenge has been effectively overcome in this experiment. On the other hand, the original
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intention of choosing migration prediction is limited by the size of the battery data to
be tested. This experiment still shows good predictive ability when the data scale ratio
of the source domain and the target domain is set to nearly 17.4:1. In conclusion, the
RT-TrAdaBoost method has a certain application value in RUL prediction.

4.5. Computational Efficiency Analysis

To show computing efficiency, we count the running time of the three methods on the
personal computer and the edge computing module, respectively. Both model training and
the first test are performed on a computer equipped with an AMD R7-4800H 2.90 GHz CPU,
NVIDIA GeForce RTX 2060 (6GB on-board memory) GPU and 16GB RAM (3200 MHz).
The second test is performed on an edge computing module known as the NVIDIA Jetson
Xavier NX. Taking g1c38 migration to Cell1, for example, Table 9 records the average time
of 10 runs.

Table 9. The runtime of lithium-ion battery RUL prediction methods.

Batteries Time CNN-TL AdaBoost RT-TrAdaBoost

g1c38→ Cell1
Training 241.77 s 7.776 s 10.33 s

First testing 0.18 s 0.002 s 0.025 s
Second testing 0.19 s 0.007 s 0.091 s

From Table 9, the CNN-TL approach with transfer learning ability requires a long
training time. In contrast, both the AdaBoost method and the RT-TrAdaBoost model
have shorter training times. In the two tests, the test times of the three models did not
change in order of magnitude. The RT-TrAdaBoost takes much less time than the CNN-TL
approach in both tests. Since the RT-TrAdaBoost has improved the weight distribution,
it has performed certain operations in the process of transferring knowledge from the
source domain to the target domain, so it takes slightly more time than the AdaBoost
approach. However, considering the actual need to realize RUL prediction on BMS and
comprehensively measure the time cost and prediction accuracy, the operation time of the
RT-TrAdaBoost method is acceptable.

5. Conclusions

Accurate RUL prediction is especially important for reducing lithium-ion battery
maintenance costs and improving equipment safety. This paper proposes a transferable
RUL prediction approach based on small samples. The RT-TrAdaBoost model for RUL
prediction we established not only overcomes the problem of a few battery aging data
samples but also achieves transfer prediction between different working conditions and
different types of batteries. The CART is chosen as the base learner improves the feature
recognition ability of RT-TrAdaBoost. The well-characterized lithium-ion battery charge
voltage and temperature curves are applied as input for RUL prediction. It has certain
engineering practicability to mine useful information from BMS directly measurable data
to predict RUL. Finally, the RT-TrAdaBoost model is deployed on computer and edge
computing modules, and the accuracy and efficiency of the model are verified using
two public datasets. The MAE and RMSE of transfer prediction under different working
conditions ranged from 0.36% to 1.04% and 0.46% to 1.32%, respectively. In the migration
experiment from LFP battery to LCO battery, the MAE and RMSE are 1.24% to 1.92% and
1.50% to 2.24%. Also, the values on MAX and MAPE are lower. In the future, there will
be more comprehensive research conducted on the degradation of lithium-ion battery life,
and data-driven methods will be explored to address issues such as dynamic perception
and fault detection of lithium-ion battery aging. This paper can also provide ideas for the
remaining life prediction of batteries made of other materials.
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