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Abstract: The famous empirical model for the horizontal force estimation of farm implements was
issued by the American Society of Agricultural Biological Engineers (ASABE). It relies on information
on soil texture through its soil texture adjustment parameter, which is called the Fi -parameter. The
Fi-parameter is not measurable, and the geometry of the plow through the machine parameter values
are not measurable; however, the tillage speed, implement width, and tillage depth are measurable.
In this study, the Fi-parameter was calibrated using a regression technique based on a soil texture
norm that combines the sand, silt, and clay contents of a soil with R2 of 0.703. A feed-forward artificial
neural network (ANN) with a backpropagation algorithm for training purposes was established to
estimate the modified values of the horizontal force based on four inputs: working field criterion,
soil texture norm, initial soil moisture content, and the horizontal force (which was estimated by the
ASABE standard using the new—Fi-parameter). Our developed ANN model had high values for the
coefficient of determination (R2) and their values in the training, testing, and validation stages were
0.8286, 0.8175, and 0.8515, respectively that demonstrated the applicability for the prediction of the
modified horizontal forces. An Excel spreadsheet was created using the weights of the established
ANN model to estimate the values of the horizontal force of specific tillage implements, such as a
disk, chisel, or moldboard plows. The Excel spreadsheet was tested using data for a moldboard plow;
in addition, a good prediction of the required horizontal force with a percentage error of 10% was
achieved. The developed Excel spreadsheet contributed toward a numerical method that can be used
by agricultural engineers in the future. Furthermore, we also concluded that the equations presented
in this study can be formulated by any of computer language to create a simulation program to
predict the horizontal force requirements of a tillage implement.

Keywords: tillage; moldboard plow; horizontal force requirements; soil texture norm; machine
learning; agricultural tractor

1. Introduction

Soil tillage, i.e., the initial and fundamental stage of every system of agricultural
production, requires tremendous energy [1]. It is a process that mechanically changes
or manipulates the soil using various plows by cutting, pulverizing, and inverting to
provide favorable conditions for crop growth and acceptable yield [2,3]. Primary tillage
and secondary tillage operations are the basic steps through which to provide good seed
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bed preparation for planting purposes. In the context of primary tillage, moldboard, disk,
and chisel plows are the most common implements for effective soil tillage. However,
tractor and tillage implement matching is the key factor for obtaining high operating
efficiency in actual field operations [4]. Furthermore, farm managers usually employ
information on the horizontal force or power needed to match agricultural tractors with
tillage equipment [5]. Moreover, draft requirement of tillage implement is essential for
appropriate tractor implement matching and the guess of fuel consumption at different
operation conditions [6]. The draft of a tillage implement is affected by soil physical
properties such as dry bulk density and soil moisture content, tillage speed, and tillage
depth [7]. However, reducing the draft force of tillage implements was continuously one of
the most vital aims of researchers [8]. Thus, it is highly important to select the operation
parameters and the implements used to cultivate agricultural products [9]. A great deal of
research was conducted on the subject of predicting the draft force needed by agricultural
implements, and numerous methods for doing so were already developed. The earliest
technique was the mathematical-analytical technique, and numerous mathematical models
were created to forecast the draft force exerted by tillage tools [10]. The high price of
measuring devices and field experiments to acquire draft data of a tillage implement can
support to develop a model to estimate such data. The deployment of these models will
facilitate an overall reduction in data collection costs and the optimization of the affecting
variables. When the measurement of performance indicators for tillage implements such as
draft force is not accurate, the recorded draft data are incorrect and will, therefore, give a
different from the performance of the agricultural machine [11]. On the other hand, the
famous empirical model for draft force (DD) estimation is the ASABE model [12], which
can be described as follows:

DD = Fi×
(

A + B× S + C× S2
)
× L× d (1)

The draft values of the tillage implements were estimated using Equation (1); however,
this relied on the information for soil texture through its soil texture adjustment parameter,
called Fi, which is not measurable. Having said this, Fi is a dimensionless soil texture ad-
justment parameter that has different values depending on soil texture; it is not measurable
but assumed, and it is characterized as coarse, fine, or medium. Furthermore, the soil is
defined as high in clay content in fine soil textures, the soil is considered as loamy soil in
medium textures, and in coarse texture, the soil is considered sandy soil. Moreover, DD
is dependent on the tillage speed (S) and tool width (L) of the tillage implements (when
using chisel plow, it represents the number of tools), as well as the tillage depth (d), which
are all measurable. Additionally, the DD value depends on the geometry of the tillage tool
through assuming the parameters of A, B, and C, as is shown in Equation (1). However, A,
B, and C are constant parameters of machine-specific values, which are assumed for the
tillage implement type [12]. The constant parameter A is a function of soil strength, while
the coefficients of B or C are related to tillage speed, and they refer to the influence of the
working speed on horizontal forces. All parameters in Equation (1) have typical values
that are stated with an expected range or variance due to variations in the type of tillage
equipment and soil texture group [12]. The goal of Equation (1) is to offer a preliminary
prediction equation that can be used with a variety of soil conditions. Equation (1) provides
a reasonable estimate for tillage implement draft, but it also warns that, within the same
wide textural soil class, a range in draft of up to 50% can be anticipated [13]. To overcome
the assumptions of the Fi-parameter in Equation (1), Tianmanee et al. [14] proposed a
mathematical model to predict the Fi-parameter as follows:

Fi =
DD(

A + B× S + C× S2
)
× L× d

(2)
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Using Equation (2), Tianmanee et al. [14] found that the calculated soil texture param-
eter (Fi) for disk plow that is operated in loamy sand soil varied between 1.4–1.5. These
values were greater than the soil texture parameter guidelines of the ASABE [12], which
states it as 0.45–0.70. However, the soil texture parameter (Fi) appeared to be unique in
the instance of that soil texture. Thus, it is important to clarify the Fi-parameter for the
purposes of accurate draft data. Furthermore, in the study of Kumar et al. [15], Equation (1)
was modified by adding two correction factors (K1 and K2) as follows:

DD = K1 ×
(

Fi×
(

A + B× S + C× S2
)
× L× d

)
+ K2 (3)

The correction factors K1 and K2 in Equation (3)—which were 1.735 and 1618,
respectively—were introduced to accommodate for changes in the horizontal force for a
moldboard plow operated in sandy clay loam soil.

According to the above reviews, the values of the horizontal force of tillage imple-
ments change rapidly according to the assumed Fi-parameter in Equation (1); furthermore,
this trend is unpredictable in certain cases. Therefore, the tractor and tillage implement
matching did not fit, fuel consumption increased, and operating efficiency was reduced. In
order to overcome the required suitable Fi-parameter, it was evident that field experiments
are required in different soil textures; however, this is time-consuming and requires suitable
arrangements and equipment for draft measurements to be carried out for the purposes
of relevant analysis and for the calculation of state predictions, as well as to realize the
strong effectiveness of an accurate estimation of the Fi-parameter. Therefore, the available
generated data from previous research works in the field can be obtained to a certain extent,
and the approximate trend of the Fi-parameter can be determined through regression
analysis or other methods. This is of great significance for monitoring the actual draft data
performance of tillage implements of different soil textures, thus saving operational costs
and reducing the error rate of the original ASABE model [12].

Numerous research papers used Equation (1) to estimate the implement horizontal
force for different purposes. Askari et al. [16] employed Equation (1) to assess and con-
firm the values of the horizontal force requirements of mounted tillage implements that
were using an innovative three-point hitch dynamometer. The magnitude of error in the
horizontal force values between measurement and calculation was ±12%. Igoni et al. [17]
used Equation (1) to create a predictive dimensional model using a dimensional analy-
sis technique for the estimation of tractor fuel consumption during the ridging process.
Jyoti et al. [6] used Equation (1) to obtain the horizontal force requirements of tillage imple-
ments and compared them with the actual measurements by using a pull-type load cell.
Shukla and Pandey [18] used Equation (1) to develop an Android application for predicting
the stability of a tractor. Sadek et al. [19] used Equation (1) with a mathematical model
created by a discrete element method to compare the predicted horizontal force for high
plowing speeds during the process of plowing with a disc plow. The results indicated that
the percentage of relative error fluctuated from 8% to 14%. Kim et al. [20] used Equation (1)
to validate the precision of their actual-time tillage depth determination by establishing
a regression model between the measured horizontal force and the predicted data. The
accuracy was assessed by the coefficient of determination (R2), which was around 0.715.
Other researchers offered various applications for objectifying the usefulness of using the
ASABE form [12] in establishing computer programs, which are frequently used to support
farm machinery managers in decision making regarding how to select machinery and
power requirements [21].

Researchers use different types of the force meter to acquire the forces acting on the
tillage implements during the plowing process; in particular, the draft force [22]. Others
applied different statistical approaches and models to predict the draft force acting on
the agricultural implements [23–29]. However, to compensate for the shortcomings of
using the ASABE model [12], researchers developed and evaluated intelligent computing
methods, such as artificial neural network models and fuzzy knowledge-based models,
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which led to greater progress in the application of many technologies. In addition, these
developments provide the possibility to solve complex agricultural engineering problems,
particularly the draft force prediction of agricultural implements [30–37]. After entering
the relevant parameters for the implement, soil, and working conditions, these intelligent
models could provide a straight estimate of the draft force of a tillage implement. However,
to train these models, experimental values had to be acquired from a field experiment or
a soil bin experiment. Additionally, the intelligent models did not take into account the
connection between the draft force and the input parameters that are intended to improve
the comprehension of the tillage process and mechanism [10].

Al-Hamed et al. [32] prepared an ANN model with a backpropagation algorithm to
estimate the horizontal force required to pull a disk plow. The proposed ANN model
used ten input variables: tillage depth, tillage forward speed, sand contents in the soil,
clay contents in the soil, silt contents in the soil, disk configurations such as disk diam-
eter; disk angle, tilt angle, soil bulk density, and soil moisture content. The coefficient
of determination for the validating points of the ANN model were changed between
0.915 and 0.934. Akbarnia et al. [37] employed an ANN model with a backpropagation al-
gorithm to estimate the horizontal force required by a chisel plow possessing a two-winged
share in a loam-textured soil. The input variables were tillage depth, forward speed, and the
width of the wing share. The ANN model estimated the horizontal force with a small error
associated with the measured values. Pentoś and Pieczarka [38] established an ANN model
to estimate the horizontal force of agricultural implements. However, they employed soil
moisture content, soil texture, soil compaction level, horizontal deformation, and vertical
load as input variables in their ANN model. The coefficient of determination was 0.945 for
the horizontal force determination in the model with the testing dataset. Çarman et al. [39]
set up an ANN model employing the backpropagation algorithm to predict the specific
draft force requirements of a moldboard plow in a clay loam soil; this was achieved by
using tillage depth and plowing speed as the input layer, and the specific draft force re-
quirements of moldboard plow as the output layer. This was an attempt to use intelligent
algorithms to predict the draft requirement of the tillage implements, with an error of
less than 1% when compared to the measured draft values. Further research work was re-
quired to demonstrate the generalized value of the developed ANN in other soil conditions.
Furthermore, Nitin et al. [40] estimated tractor power take-off (PTO) performance using a
backpropagation ANN model. Twenty dissimilar variables were considered as the inputs
for a PTO tractor performance expectation. The data that were employed as inputs to train
the ANN model were acquired from 141 reports that belonged to tractor test procedures,
and which were run between year 1997 and year 2013. The optimum ANN model structure
was assigned by a trial-and-error procedure, and 30 different ANN structures were tried.
For prediction, an ANN model with two hidden layers that had 40 and 35 nodes in both the
first and second hidden layers, respectively, gave the maximum performance. The ANN
model can construct a simulation of a tractor’s performance; it also allows the optimal
setting of dissimilar variables, as well as can improve the decision making of a producer in
the proposal of new tractor. Furthermore, scientific revisions showed that usual regression
methods might produce biased outcomes, as they are unable to gauge the multicollinearity
between independent variables [41]. Therefore, a crucial and optimal selection would be to
use ANN, which classifies the linear and non-linear ways while fitting statistical models on
to the original data [42].

To the best of our knowledge, despite extensive literature examination, no study on
the prediction of the soil texture adjustment parameter (Fi) was used in ASABE form [12].
In addition, this method being used to modify the values of the draft force of tillage
implements, as estimated from the form of ASABE [12] by using an ANN model, was
also not tested yet. The importance of conducting this research lies in the fact that the
draft force is a vital factor in determining the energy requirements of tillage implements
for various purposes, including cost analysis, fuel consumption prediction, and matching
agricultural tractors with the correct tillage implements. The ability to accurately predict
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the modified draft force of tillage implements, based on ASABE form [12], through the use
of machine learning models such as ANN can help in producing better farm machinery
management and utilization of the available resources. Furthermore, an accurate prediction
draft force can also aid in mitigating the potential of using tillage implement management
approaches that are associated with consuming diesel fuel, which is a significant concern
in many parts of the world. By accurately predicting the draft force of tillage implements,
farm machinery engineers can determine the variables that will offer less draft force for
tillage implements when conducting tillage operation on a specific soil texture. This is
possible because the user can change tractor power, tillage speed, tillage depth, implement
width, soil bulk density, and soil moisture content as needed to achieve a lower energy
for the plowing process. Conducting this research in the study area is necessary because
the draft force of tillage implements can vary significantly depending on the specific soil
texture and other factors. Therefore, it is essential to develop models that are tailored to the
unique characteristics of the study area to achieve accurate predictions, or so that they can
be used in many parts of the world. Moreover, the novelty of the paper lies in developing a
new soil texture parameter that can address the effect of soil texture on the draft force of
tillage implements.

Hence, the main objectives of this research were the following: (1) to create a regression
model that can predict the soil texture adjustment parameter (Fi) that is used in ASABE
form [12]; (2) to develop an ANN model to modify the values of the draft force of tillage
implements that are estimated from the form of ASABE [12], and which are based on a wide
range of working variables; (3) to obtain the results from a statistical performance evaluation
with an ANN model, and to achieve the importance of certain predictor variables; and
(4) to create a useful Excel spreadsheet to serve as an easy tool through which to obtain the
values of the modified draft force of tillage implements that are based on wide range of
working variables.

2. Materials and Methods
2.1. Sources of the Required Data for Modeling the Modified Horizontal Force via the ANN Method

In this study, two sources were considered in order to acquire the necessary infor-
mation for modeling, via the ANN method and the modified horizontal force. The main
source was from actual tillage field experiments using a chisel plow. These tillage experi-
ments were run in three soil textures (three sites). The soil in the first experimental field
(site) had a silty clay loam with 52% sand, 18% silt, and 30% clay, and was situated in
an agricultural soil. The soil in the second field (site) experiment had a clay texture of
44.4% clay, 15% sand, and 40.6% silt. Finally, the soil in the third field (site) experiment had
a clay texture with 17.7% silt, 28.5% sand, and 53.7% clay. The analysis of each soil texture
was performed according to the standard procedure, which is the generally the best used
process in agricultural machinery investigation [20].

For each soil texture, undisturbed soil samples from five random spots, obtained
through the topsoil layer at a soil depth of 30 cm, were hand-selected by means of a soil
sampling apparatus. The soil samples were weighed via a digital balance, and the weight
of each soil sample was recorded and put in polythene bags. The samples of the soil were
dried in an electric oven, and was kept at 105 ◦C for 24 h. The dried samples of the soil were
re-weighed, and the weight was again noted in order to calculate the levels of the initial
soil moisture content based on a dry weight and initial soil bulk density. Two agricultural
tractors were used in the tillage experiments for measuring the horizontal force (draft) of
the chisel plow, as is described in [6,43–48]. In the first and second experimental sites, the
chisel plow under study was mounted at the rear of Ford tractor (main tractor) model TW15
with a diesel engine of 110 kW at 2300 rpm with help of three-point hitch of the tractor. A
hydraulic dynamometer (pull type) was attached to the front of Ford tractor. An auxiliary
tractor Lamborghini tractor model 1106 with a diesel engine of 110 kW at 2500 rpm was
used to pull the chisel plow mounted through dynamometer. The auxiliary tractor pulled
the chisel plow mounted tractor in neutral gear with the implement in operating condition.
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The idle draft force was also recorded in the same field when chisel plow was in lifted
position. The difference draft at operating and idle condition gave the draft required to
pull the chisel plow. The tillage operation was repeated for all the investigated runs and
draft data for each run were recorded. A Kubota M1 tractor (70 kW) and Belarus (67 kW)
were used as main and auxiliary tractors, respectively, at the first experimental site.

A chisel plow, with seven shanks arranged in two rows, weighed 460 kg (4.51 kN),
had a total width of 175 cm, and was employed in field experiments. The typical tillage
speeds were changed by choosing different gears in the tractor manual transmission, and
the plowing depth was fixed by using the hand located on the tractor. The tillage depth
controller and the tillage depth data were recorded in three replications. The tillage depths
were recorded using a steel measuring tape and by using the undisturbed surface as a
reference. A straight distance of 25 m was used as a practice distance prior to the beginning
of the experimental runs to permit the tractor and the chisel plow to reach the desired
tillage speed and depth. The tillage time was recorded for each run of 20 m. To obtain
the tillage speed, the distance was separated by the time taken to complete the run. The
tillage experiments for the continuous measurement of variables were conducted on a
100 m straight section. The horizontal force was determined under different levels of tillage
speeds, dissimilar tillage depths, and different levels of initial soil moisture content; all of
the levels of variables were under different tractor power settings (Table 1).

Table 1. Levels of tractor power, initial soil bulk density, tillage depth, initial soil moisture content,
tillage speed, and the number of data points using a chisel plow in the experimental sites.

The
Experimental

Sites

Tractor
Power
(kW)

Tillage Depth
(cm)

Tillage Speed
(km/h)

Initial Soil
Moisture Content

(% db)

Initial Soil
Bulk Density

(g/cm3)

Number of
Data Points

(-)

First
experimental

site
67 14.0 2.5, 3.8, 4.8 18.2 1.28 3

Second
experimental

site
82

10, 12, 14, 15 3.5, 4.8, 5.7 18.2 1.40 12

10, 12, 15 4.8 18.2 1.40 3

Third
experimental

site
82

10, 13, 15, 16 2.5, 3.4, 4.8 17.4 1.35 12

10, 14, 17, 18 2.4, 3.5, 4.6, 5.1 17.6 1.30 12

10, 13, 14, 16 2.5, 3.2, 5.1 20.1 1.38 12

9, 11, 14, 16 3.2, 3.7, 4.7, 6.9 19.8 1.36 16

Total Data Points 70

The other source of the required data that was directly related to our study was from
the available prior literature. The data were acquired for different tillage implements,
such as chisel, disk, and moldboard plows [49–57]. The compiled dataset comprised
the horizontal forces that match with the variables of tractor power; plow width; the
percentages of silt, sand, and clay contents in the soil; tillage depth, initial soil bulk density;
tillage forward speed; and the initial soil moisture content.

2.2. The Methodology Steps of This Study

The soil texture norm (STN, dimensionless), which combines all the soil contents of
sand, silt, and Oskoui and Harvey [58] defined clay, as follows:

STN =
log
(

CaSi + Sa
)

100
(4)

In Equation (4), Sa signifies the sand content percentage in the experimental soil. Also,
Si and Ca symbolize the percentages of silt and clay in the soil, respectively. Oskoui and
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Harvey [58] confirmed that the STN reveals the sound effects of all three-soil contents,
and it fluctuates for dissimilar groupings of silt, clay, and sand. However, according to
Table 2 (from ASABE [12]), we assigned values of the Fi-parameter according to values
from ASABE [12] and to the soil texture; however, Table 3 shows the assigned values
of the Fi-parameters that were used in our data to create a regression model to predict
a new Fi-parameter based on soil texture norm (STN). However, we arranged the data
in two columns in Excel, column for Fi-parameter based on soil texture and column for
Fi-parameter according to values from ASABE [12]. Then, we tested all the fit functions in
the Excel spreadsheet and we found that the following formula was the best:

New− Fi− Parameter = 0.684788 + 0.978029× STN− 0.75159× STN2 (5)

Table 2. Values of A, B, C, and the Fi-parameter for estimation drafts as produced via Equation (3)
from ASABE [12].

Implement

Width Machine Parameters
Soil Parameters

Fi-Paramter

Units A B C

F1 F2 F3

Fine Medium Coarse

Soils With High
Clay Content Loamy Soils Sandy Soils

Moldboard plow m 652 0.0 5.1 1.0 0.70 0.45
Chisel plow for 5 cm straight point Tools 91 5.4 0.0 1.0 0.85 0.65
Disk gang, single for primary tillage m 124 6.4 0.0 1.0 0.88 0.78

Table 3. Assigned values of the Fi-parameter according to values from ASABE [12].

Implement Soil Texture Fi-Paramter Acording to Soil Texture

5 cm straight point

Clay 1
Clay loam 0.85

Sandy 0.65
Sandy clay loam 0.65

Silty clay 0.85

Disk gang, single for primary tillage

Clay 1
Clay loam 0.88

Loamy sand 0.78
Sandy loam 0.88

Moldboard plow Clay 1
Clay loam 0.7

Numerous research papers claimed that the draft force of tillage implements are
affected by many variables namely: soil texture, soil moisture content, tillage depth, tillage
speed, tractor power, soil bulk density, implement width, etc. Thus, in our research, we
combined most of these variables in one variable called working field criterion (WFC)
and other variables like soil texture and soil moisture content were considered as inputs;
additionally, the important input was the draft force which was determined by the new—Fi-
parameter. However, these variables were considered to be four inputs to predict the
modified draft force of tillage implements. The working field criterion (WFC) to combine
all working parameters; these are denoted by tractor power (TP, kw), initial soil bulk density
(BD, g/cm3), tillage depth (d, cm), tillage speed (S, km/h), and plow width (L, cm). They
were combined into one variable as follows:

WFC =
TP× 1000× 3.6

BD× 9.81× L× S× d2 (6)
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where the constants 1000, 3.6, and 9.81 are conversion values. Additionally, the other inputs
for the ANN model were the soil texture norm, initial soil moisture content, and horizontal
force, as estimated with Equation (1) and by using the new—Fi-parameter, which can
be determined by Equation (5). In addition, the research steps to obtain the modified
horizontal force with the ANN model are as follows:

• Collecting the clay content in the soil (percentage), sand content in the soil (percentage),
and silt content in the soil (percentage);

• Calculating the STN with Equation (4);
• Calculating the new—Fi-parameter with Equation (5);
• Collecting the tillage depth (d, cm), tillage speed (S, km/h), tractor power (TP, kW),

initial soil bulk density (BD, g/cm3), the plow width (cm) for disk and moldboard
plows, and the no. of tools for chisel plows;

• Calculating the WFC with Equation (6);
• Selecting the parameters in Equation (1) for chisel plows (Table 2) as follows: No. of

tools, A = 91, B = 5.4, C = 0, tillage speed, and tillage depth;
• Calculating the horizontal force estimated from Equation (1) using the new—Fi-

parameter for the chisel plows;
• Selecting the parameters in Equation (1) for the moldboard plow (Table 2) as follows:

A = 652, B = 0, tillage speed, tillage depth, and plow width;
• Calculating the horizontal force estimated from Equation (1) using the new—Fi-

parameter for moldboard plows;
• Selecting the parameters in Equation (1) for disk plows (Table 2) as follows: A = 124,

B = 6.4, C = 0, tillage speed, tillage depth, and plow width;
• Calculating the horizontal force estimated from Equation (1) using the new—Fi-

parameter for disk plows.

Finally, Table 4 illustrates the number of data points and the statistical criteria of the
acquired data that were used in this study for three different tillage implements (disk,
chisel, and moldboard plows).

Table 4. The statistical criteria of the acquired data used in this study for three different tillage
implements (disk, chisel, and moldboard plows).

Working Parameters
Statistical Criteria

Minimum Maximum Mean Standard
Deviation

No. of Data
Points

Tractor power (TP), (kW) 44.76 104.44 60.77 17.47 377
Initial soil moisture content (MC),(% db) 6.31 28.73 20.20 4.41 377
Initial soil bulk density (BD), (g/cm3) 1.07 1.78 1.32 0.12 377
Soil texture norm (STN),(-) 0.03 0.84 0.50 0.27 377
Old Fi-parameter (-) 0.65 1.00 0.92 0.13 377
New—Fi-parameter (-) 0.713 1.003 0.924 0.108 377
Tillage depth (d), (cm) 10.00 30.00 20.47 4.52 377
Tillage speed (S), (km/h) 1.50 9.00 3.96 1.28 377
Plow width (L), (cm) 34.51 385.00 122.81 39.98 377
No. of chisel tools (-) 5 15 8.04 2.75 90
Working field criterion (WFC), (-) 0.019 2.328 0.134 0.213 377
Horizontal force determined using
Equation (1) and new—Fi-parameter
(DD), (kN)

0.42 25.72 14.88 4.33 377

Measured horizontal force, (kN) 0.38 25.85 16.92 5.01 377

2.3. Artificial Neural Network Development

An effective analytical technique for modeling complicated, multidimensional, and
highly nonlinear interactions is the artificial neural network (ANN) [59]. Thus, ANNs are
engaged to aid with explaining the compound practical issues in agricultural endeavors [60].
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Artificial neurons, which are a huge number of simple processing components that are
arranged in layers, constitute an ANN. Multilayer perceptron (MLP), also known as a
feed forward network that was trained by using one of the learning methods (specifically
a backpropagation algorithm), is the most widely used ANN architecture for predictive
modeling. The input layer and output layer are the two primary layers in MLP. Additional
(hidden) layers are sandwiched in between the input and output layers. In most cases,
synapses fully connect neurons in adjacent layers. The quantity of input and output
variables in the model is represented by the number of nodes in the input and output
layers, respectively.

To create an ANN model, at least three layers—the input layer, the hidden layer, and
the output layer—must be present (Figure 1). Nodes that correspond to input variables
are present in the input, whereas nodes that relate to output variables are present in the
output. The input layer is used to distribute the inputs to a variety of hidden layers, each
of whose outputs is linked to an output layer; this is then connected to the inputs of the
following layer by connection weight. The weighted connections make it possible for data
to pass across layers more simply since the node generates a weighted total of all its net
inputs after accepting the data from the layer before it, which is as follows:

ti = ∑n
j=1

(
wij × xj + bi

)
(7)
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In Equation (7), the number of inputs is n, the weight of the link between nodes i and j
is wij, the input from node j is xj, and the bias is bi. The weighted value is then subjected to
a transfer function f(ti) to determine the node output (Oi):

Oi = f(ti) (8)

There is no set rule for how many neurons should be in a hidden layer, yet this has a
substantial impact on the quality of the model. Therefore, a trial-and-error method was
used in this study to estimate the ideal number of neurons that should be in the hidden
layers. The commercial neural network program of Qnet 2000 for Windows was used to
run ANN simulations [60]. The Qnet backpropagation neural modeling system is capable
of making predictions in response to the modeler’s artificial input vector [61]. Its ANN
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design was decided to be an MLP with a single hidden layer. The input layer had four
nodes in it: working field criterion (WFC), soil texture norm (STN), initial soil moisture
content (MC), and the horizontal force, which was estimated with Equation (1) using the
new—Fi-parameter (DD). The output was one variable: the modified horizontal force
(MHF) for any of the tillage implements (chisel, disk, and moldboard plows). A total of
377 data points were obtained, and they were divided into training, test, and validation
sets at random in 70:15:15 ratios. The minimum and maximum input as well as the output
parameter values are shown in Table 2. Using the following equation, the Qnet 2000 [60]
standardized these values into the range (0.15–0.85) as follows:

V =
(v− vmin)

(vmax − vmin)
× (0.7) + 0.15 (9)

In Equation (9), v stands for the input and output parameters’ original values (mea-
sured values), V is the parameter’s normalized value, and vmax and vmin are the input and
output parameters’ maximum and minimum values, respectively, in the training dataset.

The hidden layer’s number of neurons was set during the ANN model construction
process to be between 5 and 35. The neurons had sigmoidal and hyperbolic tangent transfer
functions. The algorithm randomly selected the initial weights and biases of the neurons.
The training data comprised 263 patterns, the testing data set was 57 data points, and
the validation data set comprised 57 data points. The training process’s evaluation of the
model’s quality was based on the correlation coefficient and training error values of the
two metrics. The ANN model chosen at the conclusion of the training procedure was the
one that provided the smallest training error while still having a decent correlation. The
final network included 4 neurons for the input layer, 20 neurons for the hidden layer, and
1 neuron for the output layer, and this was achieved after multiple attempts to change the
network topology (Figure 2).

2.4. Calculation of Variable Contribution Percentage on Predictors

Predictive modeling often refers to an ANN as a “black box” when it is deployed.
However, a number of approaches were put forth by academics to ascertain the role played
by each independent input variable in an ANN model. Due to a variety of model types, an
ambiguous model structure, the random initialization of connection weights, etc., choosing
the best ANN model might be challenging. As a result, the outcomes can be deceptive
when a single ANN architecture is employed to extract the contribution of variables [62,63].
Therefore, in this work, the suggested ANN model was computed by using the findings of
predictor variable contributions with the methods outlined by Vesta Services [60].

2.5. Criteria for Evaluating ANN Model Performance

The created ANN model can be assessed using multiple criteria by comparing the
model predictions to the measured values in the testing, training, and validation datasets.
The root mean square error (RMSE) and mean absolute error (MAE) are two examples
of these criteria [64]. The measured and predicted values are visually compared using
scatter plots.

RMSE =

√
∑N

i=1(Pi − PA)
2

N
(10)

MAE =
1
N
×
∣∣∣∣∑N

i=1(Pi − PA)
2
∣∣∣ (11)

In Equations (10) and (11), N is the total number of observations, and Pi and PA are the
predicted modified horizontal force for tillage implements and measured values, respectively.
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2.6. The Required Equations for Creating the Excel Spreadsheet

Using the measured data, the ANN model was trained. Working field criterion (WFC)
(dimensionless), soil texture norm (STN) (dimensionless), initial soil moisture content (MC)
(%db), and horizontal force were determined by Equation (1) using the new—Fi-parameter
(DD) (kN), which acted as inputs. The output was the modified horizontal force (MHF)
for a tillage implement like chisel plow, moldboard plow, or disk plow. The three network
layers, four input nodes, one output node, one hidden layer with twenty nodes, sigmoid
transfer function, learn rate of 0.002854, momentum of 0.8, and iteration of 600,000 were
some of the characteristics of the ANN used in the current study. For calculating the MHF,
each input and equation, which were used to compute the normalized value of each input,
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were normalized. The maximum and minimum values for the inputs are shown in Table 4.
However, the normalized values of the inputs are as follows:

WFCN =
(WFCA −WFCmin)× 0.7
(WFCmax −WFCmin)

+ 0.15 (12)

STNN =
(STNA − STNmin)× 0.7
(STNmax − STNmin)

+ 0.15 (13)

MCN =
(MCA −MCmin)× 0.7
(MCmax −MCmin)

+ 0.15 (14)

DDN =
(DDA −DDmin)× 0.7
(DDmax −DDmin)

+ 0.15 (15)

WFCN, WFCmax, WFCmin, and WFCA are the normalized, maximum, minimum, and
measured values of working field criterion, respectively. STNN, STNmax, STNmin, and STNA
are the normalized, maximum, minimum, and measured values of the soil texture norm,
respectively. MCN, MCmax, MCmin, and MCA are the normalized, maximum, minimum,
and measured values of the initial soil moisture content, respectively. DDN, DDmax, DDmin,
DDA are the normalized, maximum, minimum, and measured values of the horizontal
force, as determined by Equation (1) when using the new—Fi -parameter, respectively.

Next, the summation equations as indicated in Equation (7) were computed for the
modified horizontal force with the connection weight values obtained from the trained
ANN model (Table 5). There were 20 summation equations, which were as follows:

Sum1 = 0.1986×WFCN + 0.6715× STNN − 0.5673×MCN − 0.9352×DDN + 0.0433 (16)

to

Sum20 = 0.1127×WFCN + 0.72032× STNN + 1.0166×MCN − 3.0348×DDN + 1.351 (17)

Then, a transfer function (sigmoid) was applied to the weighted value (there were
20 equations) in order to determine the node output F1, F2, F3, F4, F5, F6, . . . , F20, which
is given in Equation (9) as follows:

F1 =
1

((1 + exp(−Sum1)))
(18)

To
F20 =

1
((1 + exp(−Sum20)))

(19)

Next, the summation equation in the final layer was again computed for the modified
horizontal force using the connection weight values obtained from the trained ANN model,
which were as follows:

SumQ = 1.74604× F1 + 7.64956× F2− 1.77976× F3 + 7.47171× F4− 0.89896× F5 + 4.91783× F6
+ 1.1986× F7− 2.04111× F8− 1.86761× F9− 5.33443× F10 + 10.35458× F11
+1.69787× F12 + 4.62275× F13 + 0.090114× F14− 7.62866× F15− 1.17958× F16
− 1.90186× F17− 8.60109× F18− 1.58669× F19 + 2.55003× F20− 0.43512

(20)

Then, normalized node output (FF), which represents the normalized target from the
trained ANN model (modified horizontal force) was computed as follows:

FF =
1

((1 + exp(−SumQ)))
(21)
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Next, modified horizontal force (kN) was computed as follows:

Modified horizontal force, (MHF, kN) =
(FF− 0.15)× (DDmax −DDmin)

(0.7)
+ DDmin (22)

To determine the relative error, the predicted value (Pi) by the measured value (PA)
was subtracted and then the absolute of that number by the measured value to obtain the
relative error was divided. We can then multiply by 100 to obtain the percent error (PE, %)
as follows:

PE(%) =
|(Pi − PA)|

PA
× 100 (23)

Table 5. Connection weight values for Equations F1, F2, F3, F4 . . . . . . .., F20 for the modified
horizontal force calculation (for F2, it could put Sum2, for F3, it could put Sum3 and so on).

Weights
Input Variables

Basis (bi)
WFCN STNN MCN DDN

W1j 0.1986 0.6715 −0.5673 −0.9352 0.0433
W2j −5.7815 −2.7118 −3.9312 −1.1553 3.6839
W3j 0.7341 0.8987 1.2139 0.1118 0.1409
W4j −11.6507 −4.9535 −1.0653 8.1518 0.8038
W5j 0.0264 0.5578 0.7884 0.1693 0.0233
W6j 1.4715 −1.9147 7.9025 3.7653 −5.9760
W7j −1.0805 1.9518 1.5860 1.4205 0.6643
W8j 0.8163 0.2288 −0.5599 −2.9521 −0.3651
W9j −0.0259 −0.0534 1.0571 0.6236 −0.5466
W10j 2.7837 6.4499 −18.5676 −7.1681 5.6709
W11j 15.1903 5.0058 −0.3010 −4.4041 −2.2968
W12j −1.2594 2.4725 1.7532 1.6324 0.4469
W13j −3.2729 6.3007 4.1236 −1.4847 −1.5261
W14j −0.0491 0.2883 −1.8606 −0.9303 −1.1285
W15j −3.7142 −4.2561 6.8057 1.8025 0.2621
W16j −0.2554 0.2380 0.8167 0.4158 −0.1122
W17j −0.5280 −1.2007 2.0617 0.8477 1.3782
W18j 9.2521 6.0748 1.6795 −1.0984 −1.7335
W19j 0.1171 0.7396 1.2181 0.0506 0.0642
W20j 0.1127 0.7203 1.0166 −3.0348 1.3510

3. Results and Discussion
3.1. Analysis of the New—Fi-Parameter

A regression model was proposed, as described in Equation (5), to predict the new—Fi-
parameter. However, Table 6 shows the regression statistics for establishing the new—
Fi-parameter regression model Equation (5). Important information about how to fit the
model to the data can be found in the regression statistics. The R-squared (R2) value, also
called the coefficient of determination, is widely accepted as a scale for assessing regression
analysis [65]. It revealed how accurately the model predicted the response variable’s
potential to change. The R2 value falls within a certain range of numbers (0, 1). R2 would
equal one if the model and data were perfectly matched; hence, the closer it is to that value,
the better the model fits the data [66].

Table 6. The regression statistics from Excel for establishing Equation (5).

Regression Statistics Value

Coefficient of determination 0.703
Adjusted coefficient of determination 0.702

Standard error 0.0706
No. of observations 377
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3.2. Pearson’s Correlation Coefficients for Explanatory Variables

The Pearson’s correlation coefficients between the explanatory variables were deter-
mined prior to creating the ANN model, as is shown in Table 7. The correlation coefficients
between the input parameters were relatively low, as is seen in Table 5. There was just a
slight negative correlation, with a coefficient value of r = −0.559, between the working
field criterion and the horizontal force that was estimated by Equation (1) when using
the new—Fi-parameter. This was due to the working field criterion being constituted of
five variables (tractor power, soil bulk density, tillage depth, tillage speed, and implement
width), all of which exhibited a strong effect on the horizontal force requirements of tillage
implements, as was shown in previous studies [55–59]. Additionally, we observed the
moderate positive correlation, with a coefficient value of r = 0.544, between the soil texture
norm and horizontal force estimated by Equation (1). However, the positive correlation
(r = 0.347, Table 5)—between the initial soil moisture content and the horizontal force
estimated by Equation (1) when using the new—Fi-parameter—indicated that that mois-
ture content had a direct relation with the horizontal force estimated by Equation (1).
This same trend was observed in previous studies [57,58]. However, in other research
papers [55,67–72], the inverse relationship between the initial soil moisture content and
horizontal force was observed. The drop in horizontal force caused by increased soil mois-
ture content can be attributable to both the change in soil resistance and the decrease in soil
failure force [67].

Table 7. Pearson’s correlation coefficients (r) between the explanatory variables (p < 0. 05).

Input Variables Working Field
Criterion (WFC)

Soil Texture Norm
(STN)

Initial Soil Moisture
Content (MC)

Horizontal Force
Determined Using
Equation (1) Using
New—Fi-Parameter

(DD)

Working field criterion (WFC) 1
Soil texture norm (STN) 0.018 1

Initial soil moisture content (MC) −0.181 0.346 1
Horizontal force determined

using Equation (1) using
new—Fi-parameter (DD)

−0.559 0.544 0.347 1

Soil texture has a clear effect of a draft force; however, when compared to sandy soil,
Novak et al. [73] found that a cultivator’s horizontal force increased by around 30% when
working in clayey soil. Additionally, according to Chen et al. [74], sandy loamy soil has the
greatest values and coarse sand soil have the lowest values of horizontal force with a broad
sweep plow. The study’s findings show that increasing the working field criterion causes
the modified horizontal force to decrease, while increasing the soil texture norm and initial
soil moisture content causes the modified horizontal force to grow.

3.3. Performance of the Development of the ANN Model

Unlike traditional statistical methods, the ANN approach is a data-based strategy.
Therefore, prior understanding of the connections between the input factors is not nec-
essary in this instance [75]. Additionally, non-linear ANN models can be used to infer
relationships between the input and output parameters that are more trustworthy and
robust [76]. Although helpful, the published material does not cover all aspects of ANN
theory and methodology [77,78]. The selection of training algorithms and functions for
ANN development depends on the nature of the problem and the dataset [79]. Additionally,
the performance of the ANN model was evaluated based on various metrics, such as the
root mean squared error, mean absolute error, and the coefficient of determination. By
carefully monitoring the training process and evaluating the performance of the ANN
model using appropriate metrics, we developed an ANN model with a high prediction
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accuracy. However, the ANN model used in this study was a feed-forward-type ANN
with a backpropagation algorithm for training purposes. It was established to estimate
the modified values of the horizontal force based on four inputs: working field criterion,
soil texture norm, initial soil moisture content, and horizontal force, as estimated by the
ASABE standard when using the new—Fi-parameter. Table 8 depicts some numerical data
for inputs, measured draft force (output), and predicted modified horizontal force using
the developed ANN model (target).

Table 8. Some numerical data for inputs, measured draft force (output), and predicted modified
horizontal force using the developed ANN model (target).

Inputs Output

WFC:
Combined
Different

Variables (-)

STN:
Representing

Soil Texture (-)

MC:
Soil Moisture

Content (% db)

DD
Calculated Using

ASABE form by the
Modified

Fi-Parameter (kN)

Measured: Draft Force
Measured in the Field
Experiments or from

Previous Studies (kN)

Predicted:
Modified

Horizontal Force
(kN)

0.019 0.042 6.31 3.49 6.15 6.55
0.075 0.105 7.34 16.47 11.00 11.92
0.036 0.105 7.34 23.68 15.90 14.87
0.152 0.105 7.34 7.69 5.54 5.07
0.073 0.105 7.34 11.05 8.33 8.47
0.095 0.105 7.34 8.32 6.56 6.19
0.046 0.105 7.34 11.96 9.60 9.51
0.031 0.105 7.34 13.08 10.58 10.80
0.050 0.105 7.34 9.88 8.01 7.96
0.065 0.105 7.34 9.10 7.41 7.04
0.024 0.105 7.34 14.20 11.92 11.91
0.108 0.457 8.26 19.55 16.30 16.50
0.053 0.457 8.26 13.67 15.41 15.35
0.065 0.042 11.58 1.87 3.25 3.51
0.126 0.030 13.82 10.45 16.67 16.54
0.074 0.030 13.82 10.99 18.15 18.66
0.058 0.030 13.82 11.51 19.06 19.15
0.463 0.596 14.69 3.14 2.19 2.71
2.232 0.596 14.69 1.72 1.30 0.95
0.277 0.596 14.69 4.06 3.15 3.58
1.339 0.596 14.69 1.84 1.62 1.61
2.328 0.596 14.69 0.42 0.38 0.63

The established ANN model in this study used a dataset to train the ANN configura-
tions with the various numbers of neurons in the hidden layer, the number of epochs, as
well as the various initial connection weights that are made up of neurons with various
transfer functions. Thus, several epochs and neurons were evaluated by trial and error in
order to find the best configuration for the ANN in terms of predicting the modified values
of the horizontal force of certain tillage implements.

The best ANN configuration should have low values of MAE and RMSE, as well as a
high R2 [62]. The best ANN configuration from the network construction employed a single
hidden layer with twenty nodes. Table 8 provides more information on the characteristics
of the best ANN architectures. For the normalized data, the training error value was
calculated to be 0.045099. For the training, testing, and validation datasets, as shown in
Table 6, our ANN model demonstrated high values of R2, as well as low values of RMSE
and MAE. These outcomes demonstrated the high accuracy and great generalizability
of our existing ANN for forecasting the modified horizontal force of tillage instruments.
The RMSE, MAE, and R2 values for the best ANN configuration for the testing dataset
were 2.105 kN, 1.349 kN, and 0.8175, respectively (Table 9). In the training, testing, and
validation datasets, the performance of the anticipated values for the modified horizontal
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force is shown in Figure 3. In addition, the accuracy of the ANN model’s predictions
can be evaluated by comparing the predicted horizontal force with measured values that
are determined through the field measurements. Additionally, the model’s accuracy can
be improved by adjusting the model’s hyper parameters and optimizing the training
process [80]. Overall, an ANN model can be a useful tool for predicting the modified
horizontal force for the selected tillage implements and for ensuring that the established
model is suitable for frame machinery management purposes.

Table 9. Performance evaluation parameters for predicting the modified horizontal force of the
established ANN for structure 4-20-1.

Dataset R2 RMSE, kN MAE, kN No. of Data Points

Training 0.8286 0.733 0.255 263
Testing 0.8175 2.105 1.349 57

Validation 0.8515 2.523 2.155 57

Figure 3. Relationship between the measured horizontal force and predicted modified horizontal
force (MHF) using the training, testing, and validation datasets.
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The use of ANN models for predicting the draft force of tillage implements can save
time and resources by providing quick and accurate predictions for energy requirements
without the need for extensive field testing. It can also help farmers make informed
decisions about matching a mechanization unit. However, there are also limitations in
using ANN models for predicting the draft force of tillage implements and other parameters.
The accuracy of the ANN model is contingent on the quality and quantity of the training
data used [80]. Additionally, the model’s accuracy may decrease when applied to data with
significant differences from the training dataset [80]. Various studies are available on the
draft force, which is modeled by ANN method, for tillage implements [81]; however, the
former ANN modeling approaches did not attempt to modify the draft force of ASABE
draft form [12]. Hence, the authors of this paper presented this applied ANN model
for predicting the modified draft force of the famous primary tillage implements that
are used for farm machinery management purposes. Compared to other studies, the
present work stands alone with a novel approach; it has significant value in formulating
the soil Fi-parameter used by ASABE [12] for the purposes of draft determination and for
modifying the famous draft force that is detailed in the ASABE form [12]. In conclusion,
ANN modeling proved to be a valuable tool for predicting the modified draft force of
certain primary tillage tools and for ensuring that the prediction data are suitable for farm
machinery management. However, the model’s limitations must be considered when
interpreting its results. Hence, the results of this study should be used as a complement
to traditional field-testing rather than as a replacement. There was no limitation of the
investigated ANN model to different types of farm implements. However, the potential
challenges or variations in the performance will depend on the quality and quantity of the
training data used.

3.4. Examining the Effects of Independent Input Variables

By using the Qnet2000 software program, the analysis of the contributions for the
independent input variables was accomplished [60]. Figure 4 presents the analysis of the
independent input variables contribution by the ANN model (4-20-1). As per Figure 4,
the horizontal force that was assessed by the ASABE form (DD) had the biggest impact
on the modified horizontal force when using the new—Fi-parameter and the working
field criterion: 36.10% and 28.05%, respectively. The modified horizontal force was less
affected by the soil moisture content and soil texture norm parameters by 14.66% and
21.19%, respectively.
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3.5. Creating an Excel Spreadsheet for Calculation of the Modified Horizontal Force (MHF)

Through using the developed equations (from 12 to 22) that were based on the ex-
tracted weights from the trained ANN model, an Excel spreadsheet was created. The Excel
spreadsheet can be used to manage the variables that will offer a lesser draft force for tillage
implements (disk, chisel, and moldboard plows) when conducting tillage operation on
a specific soil texture as the user can change tractor power, tillage speed, tillage depth,
implement width, soil bulk density, and soil moisture content to achieve a lower draft force.
The created Excel spreadsheet was tested to estimate the modified horizontal force, using
the data for a moldboard plow (Table 10); however, a good prediction of the required hori-
zontal force with a percentage error (PE) of 10% was achieved. However, a screen capture
of the developed worksheet template for the determination of the modified horizontal force
using ANN model is shown in Figure 5.

Table 10. The data for moldboard plow use for estimating the modified horizontal force in the created
Excel spreadsheet.

Variable Value Unit

Tractor power 40 (kW)
Sand percentage 25 (%)
Silt percentage 15 (%)

Clay percentage 60 (%)
Soil texture Clay (-)

Soil texture norm 0.705655 (Dimensionless)
Working field criterion 0.062147 Dimensionless

Initial soil moisture content 13 (% db)
Soil bulk density 1.35 (g/cm3)

Tillage depth 18 (cm)
Tillage speed 5 (km/h)

Implement width 1.08 (m)
New—Fi-parameter 1.000647 (Dimensionless)

Measured horizontal force 11.01 (kN)
Horizontal force determined using Equation

(1) and new—Fi-parameter (DD) 12.68 (kN)

Predicted MHF using ANN model based on
the created Excel spreadsheet 9.91 (kN)

PE = |(9.91−11.01)|
11.01 × 100 = 10%

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 23 
 

on a specific soil texture as the user can change tractor power, tillage speed, tillage depth, 

implement width, soil bulk density, and soil moisture content to achieve a lower draft 

force. The created Excel spreadsheet was tested to estimate the modified horizontal force, 

using the data for a moldboard plow (Table 10); however, a good prediction of the re-

quired horizontal force with a percentage error (PE) of 10% was achieved. However, a 

screen capture of the developed worksheet template for the determination of the modified 

horizontal force using ANN model is shown in Figure 5. 

Table 10. The data for moldboard plow use for estimating the modified horizontal force in the cre-

ated Excel spreadsheet. 

Variable Value Unit 

Tractor power 40 (kW) 

Sand percentage 25 (%) 

Silt percentage 15 (%) 

Clay percentage 60 (%) 

Soil texture Clay (-) 

Soil texture norm 0.705655 (Dimensionless) 

Working field criterion 0.062147 Dimensionless 

Initial soil moisture content 13 (% db) 

Soil bulk density 1.35 (g/cm3) 

Tillage depth 18 (cm) 

Tillage speed 5 (km/h) 

Implement width 1.08 (m) 

New -Fi - parameter 1.000647 (Dimensionless) 

Measured horizontal force  11.01 (kN) 

Horizontal force determined using Equation (1) and new –Fi- parameter (DD) 12.68 (kN) 

Predicted MHF using ANN model based on the created Excel spreadsheet 9.91 (kN) 

PE =
|(9.91−11.01)|

11.01
× 100 = 10% 

 

Figure 5. Screen capture of worksheet templet for the determination of the modified horizontal force 

using ANN model. 

4. Conclusions 

In this study, the Fi - parameter—which is not measurable and assumed to describe 

soil texture in the famous empirical model created by the American Society of Agricultural 

Biological Engineers (ASABE) for the horizontal force estimation of tillage implements—

was calibrated using a regression technique based on soil texture norms; it combined the 

sand, silt, and clay contents in a soil with an R2 of 0.703. The purpose was to measure the 

Fi - parameter to modify the empirical model issued by ASABE to give accurate draft val-

ues for tillage implements. Additionally, a set of variables—tractor power, plowing speed, 

Figure 5. Screen capture of worksheet templet for the determination of the modified horizontal force
using ANN model.

4. Conclusions

In this study, the Fi-parameter—which is not measurable and assumed to describe soil
texture in the famous empirical model created by the American Society of Agricultural Bio-
logical Engineers (ASABE) for the horizontal force estimation of tillage implements—was
calibrated using a regression technique based on soil texture norms; it combined the sand,
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silt, and clay contents in a soil with an R2 of 0.703. The purpose was to measure the
Fi-parameter to modify the empirical model issued by ASABE to give accurate draft values
for tillage implements. Additionally, a set of variables—tractor power, plowing speed,
initial bulk density, implement width, and tillage depth—were formulated into one vari-
able, which was labeled the working field criterion, to represent working conditions. The
relationships between the working field criterion, the soil texture norm, the initial soil
moisture content, the horizontal force estimated from the ASABE model based on the new
Fi-parameter as independent variables, and the modified horizontal force as a dependent
variable, were all accurately and mathematically modeled by an ANN with a configuration
of 4-20-1. The results suggested that establishing an ANN model as an operative tool can
be used for accurately predicting draft force of tillage implements in this study: R2 value of
0.8515, MAE value of 2.155 kN, and RMSE value of 2.523 kN). This was achieved by using
the validation dataset of the modified horizontal force for certain tillage implements such
as chisel, moldboard, and disk plows.

The relative contribution of Input variables was assessed using the established ANN
model. The modified horizontal force was most significantly influenced by the working field
criterion and horizontal force by 28.05% and 36.10%, respectively (as was calculated by the
ASABE form when using the new—Fi-parameter). It should be underlined that the selection
of suitable parameters (i.e., tractor power, tillage depth, tillage speed, and implement width)
are essential for the effective tillage management of certain soil parameters such as texture,
bulk density, and moisture content. Through using the developed equations based on the
extracted weights from the trained ANN model, an Excel spreadsheet was created. This
spreadsheet can be used to manage the variables that will produce a lesser draft force for
tillage implements when they are being used to conduct tillage operations on a specific
soil texture. This is possible, as the user can change the tractor power, tillage speed, tillage
depth, implement width, and the soil bulk. Additionally, the developed Excel spreadsheet
contributes a numerical method that can be used by agricultural engineers in the future.
Furthermore, we can recommend to use the ASABE form to estimate the draft force for a
tillage implement by replacing Fi-parameter with the new—Fi-parameter developed in this
study as the new—Fi-parameter for soil texture is now measurable.
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