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T.T.; Jeon, J.-H. Dielectric

Spectroscopy Studies and Modelling

of Piezoelectric Properties of

Multiferroic Ceramics. Appl. Sci.

2023, 13, 7193. https://doi.org/

10.3390/app13127193

Academic Editor: Theodore E.

Matikas

Received: 17 April 2023

Revised: 9 June 2023

Accepted: 12 June 2023

Published: 16 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Dielectric Spectroscopy Studies and Modelling of Piezoelectric
Properties of Multiferroic Ceramics
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Abstract: Compounds and solid solutions of bismuth ferrite (BiFeO3)—barium titanate (BaTiO3)
system are of great scientific and engineering interest as multiferroic and potential high-temperature
lead-free piezoelectric materials. In the present paper, the results of research on the synthesis
and characterisation of 0.67Bi1.02FeO3–0.33BaTiO3 (67BFBT) ceramics in terms of crystal structure
and dielectric and piezoelectric properties are reported. It was found that the produced 67BFBT
ceramics were characterised by a tetragonal crystal structure described by the P4mm space group,
an average crystallite size <D> ≈ 80 nm, and an average strain <ε> = 0.01%. Broad-band dielectric
spectroscopy (BBDS) was employed to characterise the dielectric response of polycrystalline ceramics.
The frequency range from ν = 10−1 Hz to ν = 105 Hz was used to characterise the influence of the
electric field strength on dielectric response of the ceramic sample at room temperature. The dielectric
spectra were checked for consistency with the Kramers–Kronig test, and the high quality of the
measurements were confirmed. The electric equivalent circuit method was used to fit the dielectric
spectra within the frequency range that corresponded to the occurrence of the resonant spectra of the
radial mode for thin disk sample, i.e., from ν = 105 Hz to ν = 107 Hz and the temperature range from
T = −20 ◦C to T = 50 ◦C. The electric equivalent circuit [RsCPE1([L1R1C1]C0)] was used, and good
fitting quality was reached. The relevant calculations were performed, and it was found that the
piezoelectric charge coefficient exhibited a value of d31 = 35 pC/N and the planar coupling factor was
kp = 31% at room temperature. Analysis of impedance spectra performed in terms of circumferential
magnetic field made it possible to establish an influence of magnetic field on piezoelectric parameters
of 67BFBT multiferroic ceramics. Additionally, the “magnetic” tunability of the modulus of the
complex dielectric permittivity makes 67BFBT a sensing material with vast potential.

Keywords: electroceramics; structure; impedance spectroscopy; piezoelectric properties; modelling;
“magnetic” tunability

1. Introduction

From a scientific point of view, multiferroic materials are a somewhat mysterious yet,
at the same time, extremely interesting class of materials. Thanks to the unique properties
of these materials, which are characteristic of both ferroelectric and ferromagnetic materials,
they have a wide range of potential applications. Multiferroic materials can open new
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horizons in the design of modern devices, especially those whose operation is based on
controlling the electrical properties of materials (and thus influencing the parameters of
the electrical circuit) by changing the magnetic field and vice versa, i.e., controlling the
magnetic properties of materials by changing electric field strength [1].

Let us consider the terminal elements of bismuth ferrite (BiFeO3)—barium titanate
(BaTiO3) system. It is well known that BiFeO3 has an ABO3-type perovskite structure
and is one of the few materials characterised by the coexistence of ferroelectric and
(anti)ferromagnetic properties at room temperature. Because of this essential feature of
multiferroics, BiFeO3 (BFO) is considered the most suitable among all available multiferroic
materials for the development of practical spintronic devices and related technologies [2].
BaTiO3 (BT) belongs to the corner-sharing oxygen octahedral material family (structure),
which was discovered during World War II. Since then, it has remained one of the most
widely used and systematically studied non-linear dielectric materials and is considered
the prototype for ferroelectric ceramics as well as being the first piezoelectric ceramics
transducer ever developed [3]. Since the discovery of BT in the early 1940s, it has been
continually used in new industrial and commercial applications. Its unique physical char-
acteristics, e.g., values of piezoelectric (d33 ~190 pC/N) and dielectric (εr ~1700 and low
dielectric losses at room temperature) parameters, enable the use of BT ceramics for capaci-
tors, multilayer capacitors, ultrasonic transducers, pyroelectric infrared sensors, positive
temperature coefficient resistors, and energy storage devices [4,5].

However, neither BFO nor BT are actually used in their pure chemical form. To
optimise properties for specific applications, they are often combined with various addi-
tives that adjust and enhance their basic properties. They are also combined with each
other to form either compounds or ceramic–ceramic composites, which have received
a lot of scientific interest [6–8]. To justify the above-mentioned points, let us point out
a bulk ternary BiFeO3–BaTiO3 and PbTiO3 system [9] that was fabricated and studied
as a potential high-temperature piezoelectric ceramics transducer. In case of Tm-doped
0.7Bi1−xTmxFeO3–0.3BaTiO3 (x = 0–0.05) ceramics, it was found that Tm-induced struc-
tural modifications yielded improvements in the dielectric constant, remnant polariza-
tion, and remnant magnetization values [10]. On the other hand, studies of Mn-modified
(1 − x)BiFeO3–xBaTiO3 ceramics showed that the addition of Mn improved dielectric losses
and increased dc resistivity in bulk BiFeO3–BaTiO3, greatly enhancing the piezoelectric
response; however, the poor stability of the poled domain structure caused rapid ageing
and a large difference between low- and high-field piezoelectric charge coefficient d33 [11].

The main motivation to carry out the present research was the high potential for
practical application that the materials of the BiFeO3–BaTiO3 system have. In addition, the
issues of the physics and technology of multiferroic materials are extremely rich, interesting,
and non-trivial from a scientific point of view. Novel materials of rich functionality can
be created by means of combining and properly modifying bismuth ferrite and barium
titanate. Therefore, the chemical composition 0.67Bi1.02FeO3–0.33BaTiO3 (67BFBT) was
chosen as the research material due to its potential use as an alternative to lead-based
piezoelectric materials [8,11,12].

The aim of the present research was to synthesise 0.67Bi1.02FeO3–0.33BaTiO3 (67BFBT)
multiferroic ceramics and characterise the produced ceramics in terms of crystal structure,
surface morphology, impedance spectroscopy, and piezoelectric properties, including
modelling with the electric equivalent circuit method and the use of a circumferential
magnetic field to reveal the effect of a weak magnetic field on the piezoelectric and dielectric
properties of 67BFBT ceramics.

2. Materials and Methods

Ceramics of 0.67Bi1.02FeO3–0.33BaTiO3 composition were synthesised by a conven-
tional solid-state reaction process. Chemically pure Bi2O3 (Sigma Aldrich, Burlington, MA,
USA, 99.9%), Fe2O3 (Sigma Aldrich, USA, 99%), TiO2 (Sigma Aldrich, USA, 99.8%) metal
oxides, and BaCO3 (Sigma Aldrich, USA, 99%) were used as raw materials. To obtain a
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homogeneous mixture, stoichiometric amounts of oxide and carbonate precursors were
first carefully weighted. Then, they were mixed thoroughly by ball-milling in a polyethene
bottle with yttria-stabilised ZrO2 (YSZ) balls for 24 h in ethanol dispersion reagent. After
that, they were calcined at 900 ◦C for 6 h in a box furnace. Later on, the calcined powder was
ball-milled again for 24 h, and then the dried powder was slightly pressed into compacts in
a stainless steel die into disks with a diameter of 10 mm using a uniaxial press, followed by
cold isostatic pressing (CIP) at 200 MPa for 5 min. The green pellets were sintered at 970 ◦C
for 3 h in a box furnace.

The relative density, crystal structure, and microstructure of the sintered sample were
examined by using the Archimedes method, an X-ray diffractometer (XRD, D/Max-2500,
Rigaku, Japan), and a scanning electron microscope (SEM, JEOL JSM-7900F), respectively.
Two-dimensional grain sizes of the sintered 67BFBT ceramics were calculated by measuring
more than 100 grains area in the SEM image using ImageJ—a public domain Java image
processing and analysis programme [13,14]. The obtained values were then converted to
three-dimensional grain sizes by multiplying by a factor of 1.68 [15].

Broad-band dielectric spectroscopy measurements (BBDS) [16] were carried out using a
system consisting of a high performance frequency analyser (Alpha-AN) and a temperature
control system (Quatro Cryosystem) via Novocontrol. It is well known (see [17,18]) that,
by applying the suitable strategy and alternative methods of analysing the experimental
immittance data obtained as a result of the BBDS measurement, it is possible to characterise
the electrical and dielectric properties of the ceramic material.

Spectroscopic measurements were carried out on disk-shaped pieces that were 7.52 mm
in diameter and 0.6 mm thick. To ensure a good electric contact, the sample ends were
cleaned with a soft acid solution and silver electrodes (silver paste) were deposited. Before
the measurement, the system was cooled down to −20 ◦C with liquid nitrogen. The mea-
surements were performed during the heating cycle up to a maximum temperature of 50 ◦C.
Dielectric spectra were recorded at programmed temperatures with a temperature step of
10 ◦C 15 min after the temperature had been stabilised. The measurement software allowed
a frequency run of 40 points per decade in the measuring frequency range. WinDATA Novo-
control software was used for the recording, visualization, and processing of experimental
data. However, to check the consistency of the experimental data, a computer programme
created by Boukamp was used [17,19]. The Kramers–Kronig test was carried out for exper-
imental data measured at room temperature within a frequency range from ν = 10−1 Hz
to ν = 105 Hz. The amplitude of the test voltage and related electric field strength were as
follows: Uac = 0.1 Vrms (Eac = 166 V/m), Uac = 0.2 Vrms (Eac = 333 V/m), Uac = 1.0 Vrms,
(Eac = 1666 V/m), and Uac = 2.0 Vrms (Eac = 3333 V/m) (root mean square—rms). Practical
application of the impedance data validation method in the study of electroceramics was
described by us in detail elsewhere (in [20] and the references cited therein). Experimental
data recorded within a frequency range from ν = 105 Hz to ν = 107 Hz, which corresponded
to the occurrence of radial mode resonance spectra for a sample in the form of a thin disk,
were fitted to the electric equivalent circuit [RsCPE1([L1R1C1]C0)]. Complex non-linear
least squares method (CNLS) was employed for fitting [17,19].

Piezoelectric parameters were calculated according to resonance (anti-resonance
method) [21,22]. For this method, an accurate impedance analyser is a crucial require-
ment for use in testing (a Novocontrol high-performance frequency analyser was used for
the current study’s experiments). The resonant frequencies (νr) and anti-resonant frequen-
cies (νa) were detected based on spectroscopic characteristics measured in the course of
BBDS experiments, and the free capacitance CT at 1 kHz was measured [23].

Calculations were performed using the classical formulas for radial vibrations of a
disk-shape sample [21–25].
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3. Results and Discussion
3.1. Morphology Studies of 0.67Bi1.02FeO3–0.33BaTiO3 Ceramics

The morphology of 0.67Bi1.02FeO3–0.33BaTiO3 ceramics sintered at 970 ◦C is shown in
Figure 1a, whereas a histogram of the grain size distribution is shown in Figure 1b.
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One can see from Figure 1a that several polygonal voids are present in the cross-section
of the ceramic sample subjected to the SEM investigation preparation procedure. It is worth
noting that all the voids visible in the photo (Figure 1a) exhibit regular, mostly pentagonal
shapes that resemble the shape of the grains of the ceramics under study. Therefore, it is
reasonable to suppose that the voids were “man-made” and created during the mechanical
treatment of the cross-section surface of the ceramic sample (i.e., sample preparation for
SEM investigation). It is reasonable to suppose that the grains that initially took their sites
were removed from their original positions by mechanical treatment.

The grain size distribution was measured with the help of an image processing and
analysis programme (ImageJ [13,14]) on the basis of SEM photos of the ceramic sample
(Figure 1a), and the results are given in Figure 1b. The mean and median values of the
average grain size were approximately 4.7 and 4.4 µm, respectively.

3.2. X-ray Diffraction Studies

As an example, an X-ray diffraction pattern of 67BFBT ceramics sintered at 970 ◦C
is shown in Figure 2. The search-match process was performed using Match! software
(Crystal Impact, Bonn, Germany) [26]. Phase analysis was performed, and it was found
that the reference pattern of Ba0.3Bi0.7FeO2.85 [27] matches all peaks shown within the
measuring range 2Θ with Figure-of-Merit (FoM) parameter FoM = 0.96.

It is worth noting that the reference pattern (source of entry: Crystallography Open
Database; COD ID 4341652) exhibited a tetragonal structure (space group P4mm) with
the following unit cell parameters: a = 3.9963 Å and c = 4.0032 Å. Based on Archimedes’
method and calculations of theoretical density, it was found that 67BFBT ceramics reached
a relative density of 94.5%.

Line profile analysis was performed, and the resulting Williamson–Hall plot is shown
in Figure 3.

One can see from the Williamson–Hall plot that the average size of the crystallites
is <D> = 801 Å. The average strain (<ε>), which is a measure of micro-deformations, is
<ε> = 0.01%.
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3.3. Data Validation of Impedance Measurements

It is commonly known (e.g., see [16–19]) that impedance spectroscopy is extremely
susceptible to random disturbances. Therefore, knowing the quality of the measured
impedance data is extremely important to facilitate correct analysis. Kramers–Kronig
(K-K) relations are very helpful for data validation [17,19]. The Kramers–Kronig rule states
that the imaginary part of a dispersion is fully determined by the form of the real part of
dispersion over the frequency range ∞ ≥ ν ≥0. Similarly, the real part of dispersion is
determined by the form of the imaginary part of dispersion [17]. In the present study, an
analysis based on the K-K relations was performed with the use of the computer programme
created by Boukamp [17,19].

Kramers–Kronig transform test results of impedance data measured for 67BFBT ce-
ramics at room temperature (RT) within the frequency range ∆ν = (10−1–105) Hz are shown
in Figures 4a and 5a. A complex impedance diagram combined with K-K transform test
results measured at a signal voltage of U = 0.1 Vrms is shown in Figure 4b. An Impedance
diagram with K-K transform test results measured at a signal voltage of U = 2.0 Vrms is
shown in Figure 5b. One can see in Figures 4a and 5a that the data recorded at RT exhibit a
small deviation from K-K behaviour (residuals are less than 0.4%). Upon inspection of the
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results given in Figures 4b and 5b, it can be determined that there is very good agreement
between the measurements (blue circles) and K-K calculations (red crosses).
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Figure 4. Results of the Kramers–Kronig validation test for admittance measurements of 67BFTO
ceramics at RT and measuring signal voltage U = 0.1 Vrms. Panel (a) shows the residuals plot; panel
(b) shows the comparison of measured (blue circles) and calculated values (red crosses) for complex
impedance plot (−Z′′ vs. Z′; free scale).
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ceramics at RT and measuring signal voltage U = 2 Vrms. Panel (a) shows the residuals plot; panel
(b) shows the comparison of measured and calculated values for complex impedance plot (−Z′′ vs.
Z′; free scale).

The quality parameter “chi-squared” reached a value of χ2 = 3.3 × 10−7–5.5 × 10−7 for
room temperature measurements taken at U = 0.1 Vrms (E = 166 V/m) and U = 2.0 Vrms
(E = 3333 V/m), respectively. The above-mentioned results proved the high quality of the
measurements and fully justified further analysis of the impedance data.

An alternative representation of the impedance data showing the influence increasing
electric field intensity on the spectroscopic dependence of the reactance (reactance times
pulsation: −Z′′ω) of the piezoelectric ceramic sample 67BFTO at room temperature is
shown in Figure 6a. It can be seen that the spectroscopic plots shift towards higher frequen-
cies as the electric field strength increases. Additionally, the dependence of the real part
of complex impedance (Z′) on the imaginary part of complex impedance times pulsation
(−Z′′ω) (Figure 6b) shows the substantial dependence on the electric field strength.
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As shown in the next paragraph of this paper (Section 3.4), an increase in the electric
field strength causes an increase in the circumferential magnetic field strength. In turn,
the dependence of electric (and dielectric) parameters on magnetic field strength (and vice
versa) is a key feature of multiferroic materials, especially lead-free piezoelectric ceramics
such as 67BFTO.

3.4. Piezoelectric Ceramics Characterisation with the Resonant Method

It is commonly known (e.g., see [21,24]) that values of the piezoelectric properties
of a material can be derived from the resonance behaviour of suitably shaped speci-
mens subjected to a sinusoidally varying electric field. Therefore, the impedance mea-
surements were performed for 67BFBT ceramics within the following frequency range:
ν = 100 kHz–10 MHz, which corresponded to the frequency ranges of resonant spectra of
the radial mode and the thickness extension mode for thin disk sample [21,22].

To reveal the influence of a weak circumferential magnetic field on the resonance
behaviour of multiferroic lead-free material, the measuring voltage U = 0.1 Vrms and
U = 2.0 Vrms was taken. Taking into account all the impedances in the circuit, the measuring
sinusoidal signal leads to electric currents (iac) through the sample of 67BFBT ceramics
in the range following range: iac = 1.2 mA (at Uac = 0.1 Vrms, ν = 10 MHz)–11.7 mA (at
U = 2.0 Vrms, ν = 10 MHz). The ac field amplitude (rms) generated by these currents in a
radial point r on the sample can be calculated as:

Hac = iacr/2πa2 (1)

where r is the radial point considered on the sample cross-section, and a is its total radius.
The rms range of ac-measuring fields leads to circumferential magnetic fields (i.e., on
the sample edges—the lateral surface of the disk-shaped sample—is where it is highest)
between 0.05 and 0.49 A/m (at U = 0.1 Vrms and U = 2.0 Vrms, ν = 10 MHz, respectively) [28].
The results of the calculated radial magnetic field intensity Hac are given in Figure 7. It is
worth noting that the resonance behaviour of the 67BFBT ceramic sample is also reflected
in Figure 7. Positions of the resonances are closely related to the piezoelectric properties of
the material.

Figure 8 shows the frequency response of a 0.67Bi1.02FeO3–0.33BaTiO3 ceramic thin
disk that was 7.52 mm in diameter and 0.6 mm thick. Electrodes were deposited onto both
faces of the disk, and then the disk was poled in the direction perpendicular to the faces
of the disk. The measurements were taken within a temperature range from −20 ◦C to
50 ◦C. It should be noted that the frequency peaks visible at about 3–4 × 105 Hz (Figure 8)



Appl. Sci. 2023, 13, 7193 8 of 15

are radial resonances, whereas the frequency peaks visible at about 3–5 × 106 Hz (also in
Figure 8) are related to the thickness mode resonance.
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Spectroscopic plots of modulus of complex impedance |Z| exhibit the characteristic
frequencies, namely νmin when the impedance |Z| is at its minimum (|Z|min) and νmax
when the impedance is at its maximum (|Z|max) (Figure 8a,b). At the same time, the phase
angle (Θ) given in Figure 8c,d tends to have a value of “zero.”

3.5. Modelling of Impedance—Frequency Characteristics of the Piezoelectric Equivalent Circuit

Let us first explain the notation used. In the adopted notation, square or box brackets
[ ] denote that elements are in series-connected, whereas round brackets or parentheses
( ) denote the parallel connection of electric elements. According to the adopted notation,
(RC) is a parallel circuit, while [RC] is a series connection of the elements R and C.

To accurately approximate the behaviour of the piezoelectric specimen close to its
fundamental resonance, it can be represented by the electric equivalent circuit ([L1R1C1]C0)
consisting of a “mechanical arm” (L, C, and R connected in series) and C0 (which corre-
sponds to the electrical capacitance of the specimen) connected in parallel [24]. In this
connection, it is worth remembering that the impedance of the parallel circuit can be
represented by the equivalent series circuit consisting of equivalent in series-connected
resistance and reactance values.

In the case of our simulation and fitting, the modified electric equivalent circuit
[RsCPE1([L1R1C1]C0)] including resistance Rs and constant phase element CPE1 connected
in series with the “piezoelectric” equivalent circuit was used. Figure 9 shows the electric
equivalent circuit used for the simulation and fitting of the impedance response of the
ceramic specimen vibrating close to its fundamental resonance.
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Figure 9. Electric equivalent circuit of a piezoelectric specimen used for simulation and fitting of the
dielectric response.

It should be noted that the resonance frequency νr and antiresonance frequency νa
correspond to the “zero” value of reactance for the electric equivalent circuit (Figure 9). The
reactance of the “mechanical arm” is zero at the series resonant frequency νs when:

ω = 1/
√

L1C1 (2)

where ω is the angular frequency (ω = 2 πν).
The reactance of the parallel circuit is zero at the parallel resonant frequency (νp). The

parallel resonance νp occurs when the currents flowing in the two arms are in antiphase,
which is when:

ω = (C0 + C1/L1C0C1)
1/2 (3)

In this connection, it must be pointed out that the relation between the above-mentioned
characteristic frequencies of the equivalent circuit is as follows: νmin < νs < νr. However, the
difference between them is very small (νmin~νs~νr) [24]. Similar relation exists between an-
tiresonance, parallel resonance, and |Z|max frequencies: νa < νp < νmax (νa~νp~νmax). What
is important is that values of νmin an νmax can be readily measured using an impedance
analyser (Alpha-AN High Performance Frequency Analyzer).

An example of the fitting results obtained for impedance characteristics measured un-
der the influence of a weak circumferential magnetic field is shown in Figure 10. Figure 10a
shows the spectra measured at Hac = 0.05 A/m, (E = 166 V/m; U = 0.1 Vrms) at 20 ◦C,
whereas Figure 10b shows the results obtained for spectrum measured under the following
conditions: Hac = 0.49 A/m, (E = 1333 V/m; U = 2 Vrms) at 20 ◦C.
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Figure 10. Impedance/frequency characteristics of 67BFBT ceramics (empty symbols) studied un-
der the following conditions: temperature—20 ◦C and measuring voltages—(a) U = 0.1 Vrms.;
(b) U = 2.0 Vrms. Fit result (green solid line) was limited to the frequency range of the first resonance.

Experimental data were fitted to the electric equivalent circuit using the ZView pro-
gramme (Scribner Associates, Inc. Southern Pines, NC, USA). Complex non-linear least
squares method (CNLS) was employed for the analysis of the impedance/frequency data of
the electroceramics [17]. The fitting procedure was limited to the frequency range of the
radial resonances ∆ν = (2–6) × 105 Hz. The quality of the fitting procedure was estimated
according to the following parameters: “chi-squared” (χ2) and weighted sum of squares
(WSS) [29]. In the case of the fitting results shown in Figure 10, the parameters were as
follows: “chi-squared” was χ2 = 2.78 × 10−3 and χ2 = 3.23 × 10−3 for U = 0.1 Vrms and
U = 2.0 Vrms, respectively. The weighted sum of squares was WSS = 0.314 and WSS = 0.177
for U = 0.1 Vrms and U = 2.0 Vrms, respectively.

Figure 11 shows the dependence of the fitting quality parameters, namely “chi-
squared” (χ2) and weighted sum of squares (WSS), on the temperatures at which the
impedance/frequency characteristics of 67BFBT ceramics were recorded.
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Figure 11. Fitting quality parameters χ2 (“chi-squared”) (a) and weighted sum of squares (WSS)
(b) obtained as a result of fitting the experimental resonance spectra and response of the electric
equivalent circuit given in Figure 8; amplitude of the measuring signal: U = 0.1 Vrms (blue squares)
and U = 2.0 Vrms (red circles).

One can see in Figure 11 that both χ2 (“chi-squared”) fitting quality parameter (Figure 11a)
and WSS parameter (Figure 11b) change within one order of magnitude. Upon visual
inspection, it can be seen that the linear approximations used for the χ2 and WSS data
approximation show that a higher electric field strength of the measuring signal (and, at
the same time, a higher value of the circumferential magnetic field strength) improves the
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quality of the fitting procedure. This also means that the data is less susceptible to external
interference. A comparison of the statistical characteristics of the obtained “chi-squared”
fitting quality parameters showed that the standard deviation was SD = 0.00192 and
SD = 0.00212 for the low value of the electric field strength E = 166 V/m (U = 0.1 Vrms) and
high electric field strength E = 3333 V/m (U = 2.0 Vrms), respectively. The WSS parameter
showed that the standard deviation was SD = 0.21743 and SD = 0.11077 for E = 166 V/m
and E = 3333 V/m, respectively. An increase in the intensity of the measuring field led to a
substantial improvement in the quality of further data simulation.

3.6. Calculation of Piezoelectric Parameters of 67BFTO Ceramics

The entry parameters used to calculate the piezoelectric parameters of BFBT ceramics,
namely resonant frequencies νr, anti-resonant frequencies νa, impedance, and free capaci-
tance CT on 1 kHz were measured by using the aforementioned impedance analyser. As
shown in Figure 8, a thorough analysis of the experimental data (i.e., measured impedance
spectra) was also performed. The procedure for the calculation of single coefficients is de-
scribed in detail in classical textbooks (e.g., see [21,24,25]), scientific papers (e.g., see [22,23]),
or standards (e.g., see [30]). The results of the calculations are given in Figures 12 and 13.
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Figure 12. (a) Dependence of the planar coupling factor kp for the vibration along the radial direction
in a circle-shaped disk of 67BFTO ceramics on temperature; (b) dependence of mechanical quality
factor on temperature; calculations were performed based on experimental impedance data measured
under the influence of radial magnetic field Hac = 0.05 A/m (U = 0.1 Vrms) and Hac = 0.49 A/m
(U = 2.0 Vrms).
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Figure 12a shows dependence of the planar coupling factor kp for the vibration along
the radial direction in a circle-shaped disk of 67BFTO ceramics on temperature. The results
of the calculations of the mechanical quality factor Qm are given in Figure 12b.

One can see from Figure 12a that the coupling factor for both magnetic circumferential
fields has a value of about kp = 31%. Local extremes visible on the plots at −10 ◦C and
−30 ◦C differ from the average value by about 1%. Therefore, it is reasonable to use
linear regression fit for data analysis. The difference between the linear fit plots is rather
small but can easily be discerned. Moreover, the linear regression fit for a higher mag-
netic field (Hac = 0.49 A/m) shows better stability with temperature within the measured
temperature range.

One can see from Figure 12b that the mechanical quality factor Qm exhibits non-
monotonic behaviour with increasing temperature for both of the used values of magnetic
circumferential field intensity. The local extremes are clearly visible. Within the temperature
range ∆T = (−30–+20) ◦C, the courses of the Qm curves are almost identical. The influence
of magnetic field intensity on Qm becomes noticeable at about room temperature (20 ◦C).
The difference between the linear fit plots can easily be discerned in Figure 12b. One
can see that the linear regression fit for higher magnetic field intensity (Hac = 0.49 A/m;
red line in Figure 12b) shows a negative slope with temperature within the measured
temperature range, whereas the linear regression fit for Qm behaviour at a smaller magnetic
circumferential field exhibits a positive one (Hac = 0.05 A/m; blue squares; blue line in
Figure 12b).

Figure 13a shows the dependence of piezoelectric charge coefficient d31 on the radial
vibration mode of a thin disk (excited through the piezoelectric effect across the thick-
ness of the disk). One can see from Figure 13a that the piezoelectric charge coefficient
d31 increases from d31 ≈ 30 pC/N to d31 ≈ 45 pC/N at the following temperature range:
∆T = (−20–+40) ◦C. The courses of the d31 curves calculated for data measured at radial
magnetic field Hac = 0.05 A/m (blue squares; solid line; U = 0.1 Vrms) and Hac = 0.49 A/m
(U = 2.0 Vrms; red stars; dashed line) are almost identical. Additionally, the linear regression
fits for the experimental data cannot easily be discerned in Figure 13a. Linear regression
(Y = A + B × X) for the data measured at Hac = 0.05 A/m (U = 0.1 Vrms) exhibited the
following parameters: A = 3.44221 × 10−11; B = 2.57759 × 10−13; and R = 0.99097. Alterna-
tively, linear regression for the data measured at Hac = 0.49 A/m (U = 2.0 Vrms) showed
the following values: A = 3.4412 × 10−11; B = 2.57385 × 10−13; and R = 0.99102. Therefore,
to show the possible influence of the circumferential magnetic field on the piezoelectric
charge coefficient d31, the relative change in the d31 piezoelectric modulus was introduced,
and the results are plotted in Figure 13b.

One can see from Figure 13b that the plot of the relative change in the d31 piezoelectric
modulus exhibits non-monotonic behaviour with increasing temperature. Within the
measuring temperature range, one local maximum and one local minimum are clearly
visible in the plot. One can see from Figure 13b that, according to linear fit, the relative
change in the piezoelectric modulus has a positive sign within the whole measuring
temperature range. This means that an increase in the intensity of the circumferential
magnetic field generated by electric currents through the sample causes the suppression of
the piezoelectric response of the multiferroic ceramic sample under study.

The above-mentioned influence of circumferential magnetic field on the piezoelectric
charge coefficient d31 can explain the dielectric properties of multiferroic ceramics. The
point is that the magnetic field influences both real (ε′) and imaginary (ε′′) parts of the
complex dielectric permittivity. It was found that the higher the radial magnetic field, the
lower the dielectric permittivity (at a given temperature). As an example, the dependence
of the real and imaginary parts of the complex dielectric permittivity on frequency (below
resonance) for radial magnetic field Hac = 0.023 A/m (U = 2.0 Vrms; ν = 105 Hz) and
Hac = 0.012 A/m (U = 1.0 Vrms; ν = 105 Hz) at 20 ◦C are shown in Figure 14.
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Figure 14. (a) Dependence of the real part of complex dielectric permittivity (ε′) on frequency. (b) De-
pendence of the imaginary part of complex dielectric permittivity (ε′′) on frequency; measurements
were performed under electric field strength E = 1666 V/m (U = 1.0 Vrms) and E = 3333 V/m
(U = 2.0 Vrms) corresponding to radial magnetic field Hac = 0.012 A/m and Hac = 0.023 A/m (at
ν = 100 kHz, respectively).

The influence of the circumferential magnetic field on the dielectric properties of
67BFBT ceramics was also revealed when the difference of the modulus of dielectric
permittivity was plotted against the difference of circumferential magnetic field caused by
the electric currents (iac) flowing through the ceramic sample (Figure 15).
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One can see in Figure 15a that the difference in circumferential magnetic fields gen-
erated by the electric currents flowing through the sample linearly depends (in log-log
scale) on the frequency of the measuring sinusoidal signal. On the other hand, Figure 15b
shows that the change in magnetic field strength causes a change in the modulus of the
complex dielectric permittivity. Thus, the possibility of adjusting the dielectric permittivity
(and therefore capacitance value) via changes in magnetic field intensity was obtained for
67BFBT ceramics. It is worth noting that changing the capacitance of a capacitor in an
electric circuit has a predictable effect on the complex impedance and phase angle in the
circuit. These parameter changes can be exploited to yield tuneable impedance-matching
networks, tuneable filters, phase shifters, and other functional multiferroic devices.

4. Conclusions

Multiferroic 0.67Bi1.02FeO3–0.33BaTiO3 (67BFBT) ceramics were fabricated via a solid-
state reaction process and subsequent sintering in a box furnace. They were studied in terms
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of structure and dielectric and piezoelectric properties. The fabricated 67BFBT ceramics
adopted the tetragonal crystal structure described by the P4mm space group. The average
crystallite size was <D> ≈ 80 nm, and the average strain was <ε> = 0.01%. Broad-band
dielectric spectroscopy (BBDS) was used for measurements whereas the electric equivalent
circuit method was used to fit the impedance-frequency spectra within the frequency range
of the radial resonances. Complex non-linear least squares method (CNLS) was employed
to fit the parameters of the electric equivalent circuit [RsCPE1([L1R1C1]C0)]. The high
quality of the fitting procedure was confirmed by “chi-squared” (χ2) and weighted sum of
squares (WSS) parameters. Measurements and subsequent fitting and simulations have
shown that the planar coupling factor was kp ≈ 31%, and the mechanical quality was within
the range Qmech ≈ 21. The piezoelectric charge coefficient for the radial vibration mode of a
thin disk (excited through the piezoelectric effect across the thickness of the disk) exhibited
a value of d31 ≈ 35pC/N at room temperature.

The idea of using a measuring signal of different amplitudes (BBDS measurements)
was to check the possible influence of the radial magnetic field caused by electric currents
flowing through the sample on the piezoelectric properties of multiferroic 67BFBT ceram-
ics. The rms range of ac measuring fields led to circumferential magnetic fields ranging
from 0.05 A/m to 0.49 A/m. It was established that an increase in the intensity of the
circumferential magnetic field caused the suppression of the real (ε′) and imaginary (ε′′)
parts of the complex dielectric permittivity and piezoelectric charge coefficient (d31) of
the multiferroic 67BFTO ceramics within the range of the measurement parameters used
(i.e., frequency, temperature, and radial magnetic field). The “magnetic” tunability of the
dielectric properties of 67BFBT ceramics was also found, as evidenced by the possibility
of adjusting the modulus of the complex dielectric permittivity (and thus the capacitance
value) by means of the magnetic field strength. Changes in dielectric parameters can be
used to obtain “magnetically” tuneable functional multiferroic devices, e.g., tuneable filters
or phase shifters. Taking into account that the strength of the magnetic field used in the
current study was about 6 mOe (in CGS units), one can conclude that multiferroic 67BFBT
ceramics are very sensitive to magnetic field influence, which makes 67BFBT sensing
material with vast potential.
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spectroscopy of multiferroic Bi6Fe2Ti3O18 ceramics. Arch. Metall. Mater. 2016, 61, 1101–1106. [CrossRef]
21. Okazaki, K. Ceramic Engineering for Dielectrics; Gakken Shya: Tokyo, Japan, 1969.
22. Fialka, J.; Benes, P. Comparison of methods for the measurement of piezoelectric coefficients. IEEE Trans. Instrum. Meas. 2013, 62,

1047–1057. [CrossRef]
23. Li, J.-F. Fundamentals of Piezoelectricity. In Lead-Free Piezoelectric Materials, 1st ed.; WILEY-VCH GmbH: Weinheim, Germany,

2021; pp. 1–18.
24. Moulson, A.J.; Herbert, J.M. Electroceramics: Materials, Properties, Applications, 2nd ed.; John Wiley & Sons Ltd.: New York, NY,

USA, 2003.
25. Pajewski, W. Własności piezoelektryczne tworzyw ceramicznych i ich pomiar. In Elektroceramika. Własności i Nowoczesne Metody
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