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Abstract: The complexity of chaotic systems, if used in information encryption, can determine the
status of security. The paper proposes a novel image encryption scheme that uses chaotic maps and
fuzzy numbers for the secure transmission of information. The encryption method combines logistic
and sine maps to form the logistic sine map, as well as the fuzzy concept and the Hénon map to
form the fuzzy Hénon map, in which these maps are used to generate secure secret keys, respectively.
Additionally, a fuzzy triangular membership function is used to modify the initial conditions of the
maps during the diffusion process. The encryption process involves scrambling the image pixels,
summing adjacent row values, and XORing the result with randomly generated numbers from the
chaotic maps. The proposed method is tested against various attacks, including statistical attack
analysis, local entropy analysis, differential attack analysis, signal-to-noise ratio, signal-to-noise
distortion ratio, mean error square, brute force attack analysis, and information entropy analysis,
while the randomness number has been evaluated using the NIST test. This scheme also has a high
key sensitivity, which means that a small change in the secret keys can result in a significant change
in the encrypted image The results demonstrate the effectiveness of the proposed scheme in ensuring
the secure transmission of information.

Keywords: image encryption; fuzzy logic; chaotic system; logistic map; sine map; Hénon map

1. Introduction

The requirement to transmit data and information over networks has led to a growing
concern among stakeholders regarding the need to maintain security. Various information
centers, such as those dealing with health, military operations, education, e-commerce, and
finance, share valuable information through networks. In order to secure this information,
different approaches and methods have been developed by Böhme et al. [1]. Recently,
using images as a means of transmitting data has become increasingly popular, as observed
by Fu et al. [2]. The encryption of images has been found to be a secure and convenient
method for transferring information over networks, and these observations align with
the study conducted by Erkan et al. [3]. The encryption of images and text can differ due
to several factors such as the size of the information, the correlation among pixels, and
the information entropy. When it comes to encrypting text, traditional methods such as
DES, Triple DES, and AES, as described by Barker and Mouha [4], and NIST [5] are widely
used, while in case of image encryption, both chaos and non-chaos methods are utilized.
According to Rivest [6] and Pathak et al. [7], the popular techniques in image encryption
are cryptographic hash functions and visual cryptography. When these techniques are
combined, they can result in a highly secure encryption method for protecting information
transferred by image. The complexity of chaotic systems results in a higher level of security
for information during encryption, as observed by Teng et al. [8]. Key attributes that must
be considered while employing chaos for encryption include initial condition sensitivity,
ergodicity, simplicity, and randomness. Different chaotic maps are used to archive this. The
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sine map, Hénon map, and logistic map have been utilized to generate a random sequence
of numbers in a chaotic system. These observations align with the studies conducted
by Pathak et al. [7], Wang et al. [9], and Pareek [10], respectively. The logistic map is
a one-dimensional discrete-time chaotic system, which can be adapted to two- or three-
dimensional systems to deliver complex confusion. As Hua et al. [11] explain, the sine map
is the most widely used and useful map in chaotic image encryption, similar to other maps
such as logistics and tent maps.

Phatak and Rao [12] provide a comprehensive overview of the logistic map and offer
detailed explanations on the impact of small variations in the parameter value. On the
other hand, the Hénon map is a two-dimensional array exhibiting chaotic behavior similar
to the logistic map. In 1976, it was discovered by Hénon [13] that the 2D Hénon equation is
capable of producing deterministic chaos via the stretching and folding dynamics of chaotic
systems. As described by Xiao et al. [14], an image encryption technique was developed
by combining compressive sensing with a hyper chaotic system. Wang et al. designed a
hybrid system utilizing logistic and sine maps, resulting in a broader range of chaos and
improved ergodicity. This approach demonstrates promising results in image encryption
and highlights the potential of hybrid chaotic systems in enhancing encryption techniques.
In recent research, Zhang et al. [15] have explored the complexity of dynamic systems in
generating chaos and have leveraged this understanding to develop an innovative and
effective encryption method. Specifically, they investigated the spatiotemporal chaos of
two-dimensional nonlinear coupled map lattices and combined this with genetic operations
to create a secure encryption algorithm. This study demonstrates the practical applica-
tion of a 2D chaotic system in the field of cryptography and highlights the potential for
leveraging complex dynamic systems in the development of new encryption methods. A
study conducted by Mfungo et al. [16] introduces a novel image encryption technique
that integrates the Kronecker XOR product, Hill cipher, and sigmoid logistic map. This
innovation serves as a means of securing the flow of information by safeguarding data
and information from potential hacking during transmission or storage. The proposed
algorithm has proven to be both secure and efficient in terms of performance and has
demonstrated resistance to a variety of attacks.

Valandar et al. [17] support the idea that the use of fuzzy sets concepts in combination
with dynamical systems can be explored in the realm of image encryption. The research
conducted by Moysis et al. [18] confirms that the logistic map was successfully modified
through the integration of triangular fuzzy numbers. This modification led to the emergence
of complex chaos characterized by a higher Lyapunov exponent value compared to the
conventional map. The proposed modification involves adding fuzzy numbers produced by
a membership function to the logistic sine map parameters for the purpose of modification.
This approach highlights the potential of integrating fuzzy sets in the development of
encryption techniques and demonstrates the value of modifying established dynamical
systems to enhance their security.

The integration of logistic, Hénon, and sine maps with fuzzy numbers is a relatively
new area of research. Despite some prior research on this topic, the proposed study aims to
explore this area further by combining all of these concepts. In this proposed study, the
technique of shuffling and scrambling pixel values has been employed in order to achieve
a more effective alteration of image pixels. The intermediary image is generated by the
process of summing up pixel values from different rows and columns from a scrambled
image to create a new value at a particular position. The triangular membership values
obtained from the intermediary image after the diffusion process is used to modify the
initial values of the logistic sine maps, as well as the initial parameter values of fuzzy
Hénon map. The resulting sequence key from these maps is then XORed to create a new,
secure, and random sequence of secret keys, which is used in an exclusive operation with
the intermediary image. By using the triangular membership values to modify the initial
values and parameters of the maps, the resulting encrypted image has a higher level of
unpredictability and complexity, which enhances the security of the encryption process.
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Contribution of the Study

• The use of the triangular membership values in this study enhances the unpredictabil-
ity and complexity of the resulting encrypted image, which increases the security
of the encryption process. This method enhances the randomness of the generated
keys and makes it difficult for hackers to predict or crack the encryption code. This
approach is an improvement over traditional encryption methods that rely on fixed
values and can be easily cracked using brute force attacks.

• The system for image encryption employs the Hénon map and a triangular member-
ship function to generate a sequence of random numbers that can be used as a key.
The Hénon map provides a source of randomness, while the membership function
adds variability to the sequence, making it harder to predict. The resulting key is
therefore more secure and suitable for encryption purposes. By incorporating fuzzy
logic, the system introduces an extra layer of complexity, making it even more difficult
for attackers to decode.

• To further enhance the security of the encryption system, the scheme combines the
logistic sine map with the fuzzy Hénon map to generate secret keys. The use of
multiple mathematical concepts increases the space of possible secret keys, making the
system more robust against sensitivity attacks. This innovative approach to encryption
has the potential to revolutionize the field of data security and can be applied in
various contexts where secure communication is essential. With its ability to generate
complex and unpredictable keys, the system provides an effective solution to the
challenge of secure image encryption.

In summary, this study’s structure consists of several sections. The second section
offers an overview of the essential concepts and background information required to un-
derstand the proposed image encryption method. The third section provides a detailed
description and illustration of the encryption process and its implementation. The fourth
section showcases the simulation results, analysis, and evaluation of the proposed encryp-
tion method, as well as a comparison with other studies. Finally, the study concludes with
a summary of the findings in the last section.

2. Preliminaries
2.1. Chaotic Maps

The logistic map is a mathematical function classified as a quadratic map, renowned
for its capacity to generate intricate chaotic behavior. By manipulating a single control pa-
rameter, the logistic map showcases a diverse range of dynamic phenomena, encompassing
periodicity, bifurcations, and chaotic regimes. Phatak and Rao [12] extensively elaborate on
these behaviors, providing a comprehensive explanation. In particular, the bifurcations of
the logistic map become increasingly pronounced when the control parameter surpasses
a critical value of 3.5. The logistic map is formally defined by Equation (1), which is a
recursive equation that describes the evolution of a population over time.

xn+1 = rxn(1− xn) (1)

The control parameter r > 0 is called the “biotic potential”, while x is the initial
condition parameter. The dynamics of the logistic map are intricately tied to the value of
the parameter r, giving rise to three distinct phenomena: when r > 1, the system gradually
converges to the stable fixed point at 0; for values of 1 ≤ r ≤ 3, the system undergoes a
loss of stability at the previous fixed point and a new fixed point emerges at x = 1

r ; as
r exceeds 3.5, an intriguing phenomenon called bifurcation unfolds, revealing a complex
and fascinating diagram.

The Hénon map is a two-dimensional nonlinear map that exhibits chaotic behavior.
It was introduced by Michel Hénon [19] in 1976 as a simplified model of the Poincare
section of a dynamical system inspired by the Lorenz map. The Hénon map comprises
two equations that are interrelated and describe the changes in the state variables. The
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second equation represents a linear relationship with respect to the first state variable,
whereas the first equation represents a quadratic relationship involving both state variables.
It is demonstrated in Equation (2), which provides a clear depiction of the Hénon map’s
characteristics. The Hénon map is known for its sensitivity to initial conditions, which is a
hallmark of chaotic systems. Despite its simplicity, the Hénon map has been applied to a
wide range of fields, including physics, biology, and cryptography, modeling dynamical
systems that exhibit chaotic behavior, such as fluid dynamics and celestial mechanics.

xn+1 = 1− axn
2 + byn

yn+1 = xn
(2)

The equation can also be written as defined by Equation (3):

xn+1 = 1− axn
2 + bxn−1 (3)

The parameters a and b are crucial to the behavior of the map, and by default, the
value of parameter a is set to 1.4, while parameter b is set to 0.3. These two parameters
play a vital role in determining the behavior of the map and can be adjusted to achieve
different outcomes. According to the findings of Benedicks and Carleson [20], one of the
defining characteristics of the Hénon map is the existence of a strange attractor, which is
a fractal set that governs the long-term behavior of the system. The shape of the strange
attractor is highly dependent on the parameters of the Hénon map, with different parameter
values leading to distinct attractors [20]. It has also been used in cryptography as a basis
for chaos-based encryption schemes. One of the objectives of this proposed study is to
integrate the Hénon map and the fuzzy mathematics concept to create a highly chaotic
system for image encryption called the fuzzy Hénon map. The map exhibits complex
behavior that can be utilized for secure image encryption. By utilizing the properties of
both concepts, the proposed encryption scheme aims to provide a high level of security for
image data.

According to Sato et al. [21], the sine map is a one-dimensional, discrete-time dynami-
cal system that belongs to the class of chaotic maps. The sine map function described in
Equation (4) is a fundamental yet powerful tool that maps real numbers onto themselves.
This simple, nonlinear function is defined using a trigonometric formulation, specifically
involving the sine of the preceding state variable. By employing Equation (4), the system
effectively incorporates the influence of the previous state variable in its dynamic evolution.
The sine map is known for its sensitivity to initial conditions and its ability to generate
complex, irregular behavior. It is often used as a testbed for studying the properties of
chaotic systems, such as Lyapunov exponents and fractal dimensions.

xn+1 = k sin(π × x) x ∈ [0, 1], k > 0 (4)

When the value of parameter k approaches 1, the sine map exhibits chaotic behavior,
with the values of xn appearing randomly as non-convergent and aperiodic when x ∈ [0, 1]
and k ∈ (0, 1]. The sensitivity of the system to the parameter k makes it a useful tool for
generating chaotic behavior and has been applied to various fields, such as cryptography
and secure communication. By adjusting the value of parameter k, the sine map can be
used to generate random sequences that can be utilized for encryption purposes. Another
objective of the proposed study is to integrate the logistic map and the sine map to form
a hybrid map called the logistic sine map that generates a sequence of random numbers
used as secret keys. The logistic sine map is intended to be utilized as a key during the
image encryption process to enhance the security and confidentiality of the image data.
The resulting hybrid map exhibits more complex and unpredictable behavior than either
map alone, making it a more secure option for encryption.
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2.2. Fuzzy Number

Fuzzy numbers are a type of mathematical concept used to represent uncertainty
and imprecision in data. Sato et al. [22] suggest that unlike traditional numbers, fuzzy
numbers are not precise values but rather a range of possible values. They are represented
by a membership function that assigns a degree of membership to each element of the
universe of discourse. The degree of membership ranges from 0 to 1, with 0 representing no
membership and 1 representing full membership. According to Ross [23], fuzzy numbers
have found application in numerous domains, including engineering, economics, and deci-
sion making. They serve as a valuable tool for modeling uncertainty, pattern recognition,
weather control systems, computer vision, and addressing vagueness in real-world sce-
narios. In the field of image processing, fuzzy numbers have been utilized for encryption,
segmentation, clustering, and image classification. They offer a means to express the level
of confidence in a statement or describe the quality of a product or service.

In triangular fuzzy membership function, which is depicted in Equation (5), there are
three parameters that used to control inputs: a as minimum value; c as maximum value;
and b as a middle value which is located the peak of triangle, while a and c are located at
the bottom side of a triangle, thus a ≤ b ≤ c.

f (x, a, b, c) = max
(

min
(

x− a
b− a

,
c− x
c− b

)
, 0
)

(5)

In this proposed technique, we have utilized the triangular membership function to
create a hybrid of the Hénon map and triangular membership values called fuzzy Hénon
map. This results in a complex and random sequence number which is utilized as a secret
key during the encryption process. Furthermore, we have designed a hybrid of the sine
map and logistic map (the logistic sine map) to generate additional random sequence
numbers that are also used as secret keys. In both hybrid maps, the triangular membership
function has been employed to generate parameters that are used to modify the initial keys
of the map equations. This approach enables us to generate keys that are highly suitable
for image encryption.

3. Proposed Scheme

A scanning and shuffling method is employed to encrypt a plain image. However,
using a 1D logistic and sine map for encryption has limitations such as low complexity,
small key space, and insecurity. To address this, Equations (1)–(3) are modified to produce
Equations (13) and (14), which are used during the encryption process. The fuzzy mathe-
matics concept is applied to generate values that manipulate initial keys in each iteration
and produce new cipher images. By doing so, image security is improved and better at
handling differential attacks.

3.1. Scrambling and Shuffling of Image Pixels

The rearranging, shuffling, and shifting operations in steps 1–3 of the proposed image
encryption scheme are used to increase the complexity and randomness of the encryption
process. The motivation behind these operations is to make it difficult for an attacker to
decipher the encrypted image without knowledge of the secret keys. The scrambling of the
image pixels in step 1 ensures that the image data are not in their original form, making it
difficult for an attacker to recognize the image. The shuffling of the rows in step 2 and the
shifting of the columns in step 3 further increase the complexity of the encryption process
by introducing additional randomness. Without these operations, the algorithm may be
less effective in ensuring secure transmission of information.

Step 1: Take a grayscale plain image β of size 256× 256 and divide it into four different
equal blocks of β1, β2, β3, β4 such that (β1, β2, β3, β4) ∈ β and rearrange those blocks as
in Figure 1.

Step 2: Each block is scrambled by sorting odd columns only and shift them to left side,
odd rows and shift them to the top of the image; for example, as illustrated in Figure 2a,
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the value 88 at position (3, 2) is shifted two positions right to (3, 5), as seen in Figure 2b,
and in the final stage Figure 2c, it is shifted one position upwards to (2, 5). The process is
shown in Algorithm 1.

Step 3: During this step, the transformation of image pixels occurs by taking each
block and interchanging their position diagonally, as illustrated in Figure 3.
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Algorithm 1. The pseudo code of scrambling and shuffling image P

1. Start
2. Obtain plane image β of size M× N
3. Convert β to decimal array of size M× N

3.1 Divide β into 4 equal blocks β1, β2, β3, β4
3.2 In each block, shift the even column right and the odd rows upward.
3.3 Reposition Blocks β3, β4, β2, β1

4. Combine Image Blocks and output new scrambled image β

5. Stop
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3.2. Diffusion of Image Pixels

The process involved summing up the pixel values from different columns and rows
to determine a new value at a specific position. Additionally, a triangular membership
function derived from fuzzy mathematics was employed to obtain a manipulation key
number. To achieve image diffusion, a hybrid random chaos system was created using
three different chaotic maps, namely, the logistic map, the sine map, and the Hénon map.

Step 4: In this step, the manipulation is performed separately on each block, β1, β2, β3, and β4.
If ei represents any column to be selected from a square matrix β, where i ∈ [1− 128], then β(ei)
denotes the selection of a specific column in the matrix β. The summation of two-pixel values from
different columns β(ei) and two adjacent pairwise rows is performed to derive a new value, as
shown in Figure 4a–d, when Equation (6) is applied. For blocks β1 and β2, the value of β(ei) is 1,
whereas for blocks β3 and β4, the value of β(ei) is 123. The process of summation is dependent
on the number of iteration processes in each block, which can range from 1 to 4. However, for
this study, only three iterations were conducted to increase performance. The top row remains
unchanged, which simplifies the decryption process. The pseudo code algorithm of this process is
shown in Algorithm 2. {

β
(
xi,j
)
= mod

( (
β
(

xi,j−1
)
+ β

(
xi−1,j

) )
, 256

)
xi,j ≤ 256 ≤ 256n, n = 1, 2, 3, 4, . . . . . . n− 1

(6)

Step 5: Generation of fuzzy triangular membership for the km value. The functions
described in Equation (7) refer to the membership values obtained from the image βxx,
which takes values in the interval [0, 1]. To obtain values close to 0.5, the value β xx(xi) is
adjusted piecewise, as shown in Equation (8). This facilitates the determination numbers
between 0 and 1 of the sums of all membership values of the plain image and its mean,
as illustrated in Equation (9). Here, n represents the total number of pixels in the image
βxx. Additionally, the km value is added to the initial keys of the fuzzy Hénon map and the
logistic sine map as illustrated in next step.

βxx(xi) =


0 ; xi ≤ a or xi ≥ c(

xi−a
b−a

)
× 255−1 ; a ≤ xi ≤ b(

c−xi
c−b

)
× 255−1 ; b ≤ xi ≤ c

(7)

MK =

{
2× (βxx(xi))

2; βxx(xi) ≤ 0.5
1− (1− βxx(xi))

2 ; βxx(xi) > 0.5
(8)

km =

(
n

∑
i=1

MKi +
n

∑
i=1

MKi
n

)
− f loor

(
n

∑
i=1

MKi +
n

∑
i=1

MKi
n

)
(9)

Step 6: Generate Cipher K1. The initial parameter is adjusted through the utilization of
Equation (10). and subsequently integrated into the hybrid chaotic equation of the logistic
sine map, as depicted in Equation (11). This incorporation facilitates the generation of a se-
cret cipher key, K1, as illustrated in Equation (12). The values of xinitial , yinitial ,α, a, b, c, d, e
are −1.2, 1.5, 2.1, 0.5, −0.65, and −0.7, respectively.

xinitial = (x0 + km)− f loor(x0 + km) (10)

wnew = α sin(πb(yinitial + a)xinitial(1− xinitial)) + d
vnew = α sin(πwnew(wnew + c)yinitial(1− yinitial)) + e

(11)

wvalues(n + 1) = wnew

K1 = wvalues − f loor(wvalues/y)× y (12)

Given that y = 1 to ensures that the result of the operation is always between 0 and y
and wvalues is the array of w values, n is the index of the last element in the array and wnew
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is the new w value to be added to the end of the array. Algorithm 3 shows the algorithm
for generating secret keys k1.

Step 7: Generate Cipher K2. The initial value of the parameter t = 0.0018901 is
adjusted using Equation (13) and incorporated into a hybrid of the Hénon map and the
triangular membership function to be used as the initial parameter, x, in Equation (14).
The values from βxx are converted to membership values, as in Equation (16) with the
left edge al , peak cp and right edge br of the triangle as parameters, and used to find the
centroid value C as in Equation (15). Then, the minimum and maximum possible values
of C with respect to βxx are found and normalize the value of C to the range [0, 0.5] using
Equation (16). The resulting value of C represents the normalized crisp value that best
represents the input values according to the triangular membership function, and it falls
within the desired range. Based on Equation (17), the value of C is then applied to the fuzzy
Hénon map. The secret key k2 is obtained by finding the range of numbers between 0 and y,
as shown in Equation (18). The initial value for c = 0.0124, a1 = 10, cp = 100, br = 200,
a = 1.4, and b = 0.2, respectively.

x(1) = (t0 + km)− f loor(t0 + km) (13)

mem = trim f
(

βxx,
[
al , cp, br

])
; (14)

C =
∑m

i=1 ∑n
j=1 memi,j × βxx

i,j

∑m
i=1 ∑n

j=1 memi,j
(15)

Cmin = min(min(double(βxx)));
Cmax = max(max(double(βxx)));

c = 0.5× ((C− Cmin)/(Cmax − Cmin));
(16)

{
xi = 1− (a× x2

i−1) + yi−1
yi = (b× xi) + c

(17)

K2 = y− f loor(y) (18)

Algorithm 4 shows the algorithm for generating the randomly sequenced set of secret
keys from fuzzy numbers and the Hénon map.

Step 8: Cipher image C Based on Equation (19), the final step involves conducting an
exclusive operation between β” , K1 and K2 to obtain the encrypted image, C. Exclusive
operation is used in this step because it transforms intermediary ciphertext into final
ciphertext by combining it with a secret key, which makes it difficult for unauthorized
users to decrypt the data. The resulting final Ciphertext (C) is the exclusive operation of
the intermediary ciphertext and the secret keys from the logistic sine map and the fuzzy
Hénon map.

C = βxx ⊕ K1 ⊕ K2 (19)

The flowchart of how the encryption process is shown Figure 5. The decryption
process of this scheme is the inverse of the encryption process from step 8 to step 1 above.
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Algorithm 2. The image pixel manipulation

1. Start
2. Input scrambled image β of size M× N
3. Select any Column β(e) from each block of size N

2 ; N ∈ (1− 256)
4. Adding two diagonal pixel values in pairwise rows

4.1 f or i = 1 : M× N
4.2 f or j = 1 : M× N
4.3 βx ← mod(βx(i, j− 1) + βx(i− 1, j), 256)
4.4 end
4.5 end

5. n← length(βx)
6. Repeat Step 4, four times
7. Combine all the blocks

7.1 βxx ← [β4, β3, β2, β1]

8. Display β”

9. Stop

Algorithm 3. Generate cipher key K1

1. Input: x0, km, α, a, b, c, d, e
2. Output: K1

3. x_initial =
(

x(0) + km

)
− f loor

(
x(0) + km

)
4. w_new = α× sin(π × b× (y_initial + a)× x_initial × (1− x_initial)) + d
5. v_new = α× sin(π × w_new× (w_new + c)× y_initial × (1− y_initial)) + e
6. w_values[n + 1] = w_new
7. K1 = w_values− f loor(w_values)

Algorithm 4. Generate cipher key K2

1. Input: t0, km, β, al , cp, br, a, b, c
2. Output: K2
3. x[1] = (t0 + km)− f loor(t0 + km)
4. mem = trim f

(
βxx,

[
al , cp, br

])
5. C = sum(sum(mem× βxx))/sum(sum(mem))
6. C_min = min(min(double(βxx)))
7. C_max = max(max(double(βxx)))
8. C = 0.5× ((C− C_min)/(C_max− C_min))
9. f or i = 2 to n

9.1 x[i] = 1− a× x[i− 1]2 + y[i− 1]
9.2 y[i] = b× x[i] + C

10. end
11. K2 = y− f loor(y)
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3.3. Decryption Process

The decryption process is an essential component of the overall encryption scheme
as it enables the recovery of the original data by reversing the operations performed
during encryption. It is acknowledged that certain operations, such as modulo operations,
may inherently possess irreversibility. However, within our proposed encryption scheme,
these operations are strategically employed in a manner that ensures the feasibility of the
decryption process. For instance, the modulo operation utilized in step 4 serves the purpose
of constraining the result of the summation operation within a specific range. Although
it introduces a level of non-invertibility, it does not impede the decryption process from
being successfully executed. The carefully designed application of irreversible operations
within our encryption scheme strikes a balance between security and practicality, allowing
for a robust decryption process while maintaining the necessary security measures. The
following are the steps for the decryption process.

Step 1: perform an exclusive operation between the final image C and K1 to obtain an
intermediary image of logistic sine map βx to obtain C′;

Step 2: perform an exclusive operation between secret keys from the fuzzy Hénon
map K2 and C′ to obtain intermediary image βxx;

Step 3: divide the intermediary image βxx into four equal blocks β1, β2, β3 and β4;
Step 4: reshuffle the position of each block diagonally between β1 and β3, as well as

β2 and β4;
Step 4: subtract two diagonal pixel values in paired wise rows, means select two

adjacent rows in an image, and subtract the pixel values diagonally across from each other,
performing three iterations in each block;

Step 5: shift even columns to the left-side and even rows downwards in each block;
Step 6: reshuffle the position of each block diagonally between β1 and β3, as well as

β2 and β4;
Step 7: combine the blocks to obtain the original image β.

4. Simulation Results and Security Evaluation
4.1. Experimental Setup

The reliability and validation of this proposed scheme was conducted on MATLAB
R2016a with Processor Intel(R) Pentium(R) and with CPU N4200 @1.10GHz of system type
64-bit OS, ×64 based processor, 4.0 GB Random Access Memory, and 300 hard disks with
the Windows 10 professional operating system. The standard gray-level images with sizes
of 256× 256 were used in this study, as shown in Figure 6.

The encryption and decryption process shown in Figure 7 managed to achieve the
objectives of the study by developing the cryptography mechanism to protect the images.

4.2. Variation Characteristics of Nonlinear Terms of the New System

When Equation (17) is used with different values of C from the triangular membership
function, it forms different bifurcation diagrams, as seen Figure 8. The Lyapunov diagram
is shown in Figure 9. Figure 10 shows both the bifurcation diagram and its Lyapunov
exponent of the hybrid of logistic sine map as used in Equation (11).

In Equation (11), we have set the unknown parameter alpha (α) to a value of −1.2 and
selected (−1.9, 0.49995) as the initial value. Figure 11a presents the chaotic attractor diagram
of the system. To examine the system’s sensitivity to the initial value, we have compared
the sequence diagrams with two different initial values: (−1.85, 0.55) and (−1.9, 0.49995).
Figure 11b illustrates how minor changes in initial values affect the dynamic behavior of
the system defined in (11). The chaotic properties of the system have significantly altered,
which implies that the system is highly dependent on the initial value.
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4.3. NIST Test

According to The National Institute of Standards and Technology (NIST) test [24],
their chart sheet can be used to precisely assess how random a given test is. In our analysis
of chaotic sequences produced by the chaotic hybrid map, we rely on 15 different random
test methodologies from the NIST test, which is widely regarded as the gold standard for
evaluating the quality of cryptographic algorithms. Achieving a p-value greater than 0.0001
is the basis of our success criteria because it is strong evidence that the sequence being
generated by the 2D hybrid map is genuinely chaotic. The precision and comprehensiveness
of the NIST test make it an essential tool for assessing the reliability and randomness of data,
making it a key component of our proposed study. Table 1 shows the NIST randomness
of 15 elements as used to indicate the p-value of the Cameraman encrypted image and
comparisons with another study.
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Table 1. NIST Test.

No Test Name p-Value Results Nardo et al. [25] Results

1 Universal 0.2429 Pass 0.304126 Pass
2 Frequency 0.7985 Pass 0.883171 Pass
3 Block Frequency 0.2375 Pass 0.236810 Pass
4 Cumulative sums forward 0.9876 Pass 0.437274 Pass
5 Cumulative sums reverse 0.7654 Pass 0.437274 Pass
6 Runs 0.8529 Pass 0.759756 Pass
7 Longest run 0.2147 Pass 0.759756 Pass
8 Rank 0.1756 Pass 0.145326 Pass
9 FFT 0.6563 Pass 0.719747 Pass

10 Overlapping template 0.5644 Pass 0.595549 Pass
11 Approximate entropy 0.9343 Pass 0.867692 Pass
12 Serial 0.2231 Pass 0.554420 Pass
13 Linear Complexity 0.5281 Pass 0.534146 Pass
14 Random excursions 0.3541 Pass 0.494392 Pass
15 Random excursions variant 0.2781 Pass 0.236810 Pass

4.4. Statistical Attack

Security of the data depends on the states they are in, i.e., they can be data in motion,
data at rest, or data in use. Most organizations prefer to transfer information in these states
but mostly do so through insecure channels. Therefore, to maintain data security, a good
and measurable mechanism must be established. The two mechanisms used to measure
statistical attacks are the histogram and correlation coefficient analyses.

4.4.1. Analysis of Correlation Coefficients

The statistical method used to assess the magnitude and direction of the relationship
between two variables is referred to as the correlation through bivariate analysis. The
correlation coefficient value ranges between −1 and +1 and indicates the strength of the
association between the two variables. When the correlation coefficient approaches 0, it
signifies a weaker relationship between the variables. A positive (+) sign indicates a positive
relationship, while a negative (−) sign indicates a negative relationship. An effective image
encryption scheme should produce a randomly distributed output with minimal correlation
between adjacent pixels. Typically, the correlation of pixels in both plain and cipher images
is evaluated in the horizontal, vertical, and diagonal directions. The correlation coefficient
rxy between the adjacent pixels is defined and measured in Equation (20):

rxy =
cov(x, y)√
(x)
√
(y)

(20)

where

var(x) =
1
N

N

∑
i=1

(
xi − E(x)2

)
, cov(x, y) = E([x− E(X)][y− E(Y)]), E(x) =

1
N

N

∑
i=1

xi, E(y) =
1
N

N

∑
i=1

yi.

Here,xi and yi represent the gray level value of two adjacent pixels, where by E(X)
represents the mean of xi and E(Y) is the mean of yi. After implementing Equation (20)
in the proposed scheme, we noted a significant difference between the original and en-
crypted images. Table 2 displays the correlation coefficient between the two sets of images,
while Table 3 compares the proposed scheme’s results to other similar studies. These
findings demonstrate that the proposed scheme exhibits superior resistance to statistical
attacks. Figure 12 illustrates the random distribution of both the original and encrypted
Baboon images.
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Table 2. Relationships among variables before and after encryption.

Name Original Image Encrypted Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.9410 0.9143 0.9647 0.00553 −0.00768 −0.00578
Cameraman 0.9335 0.9084 0.9591 0.0070 −0.0050 −0.0146

Peppers 0.9696 0.9434 0.9733 0.0004 −0.0018 −0.0063
Rice 0.9262 0.8979 0.9434 0.0021 0.0020 −0.0054

Table 3. Comparison of correlation coefficients.

Algorithm Image Horizontal Vertical Diagonal

Plain Lena 0.9410 0.9143 0.9647
Proposed

Encrypted

0.0055 −0.0078 −0.0058
Zhu et al. [26] 0.0150 0.0044 −0.0036

Wang et al. [27] 0.0019 0.0038 −0.0019
Ramasamy et al. [28] −0.0237 −0.0237 −0.0283

Plain Pepper 0.9696 0.9434 0.9733
Proposed

Encrypted Pepper
0.0004 −0.0063 −0.0018

Ramasamy et al. [28] −0.0727 −0.0225 −0.0242
Wu et al. [29] 0.0016 0.0059 0.0034

Cameraman 0.9335 0.9084 0.9591
Proposed 0.0070 −0.0146 −0.0050

Wu et al. [29] Encrypted 0.0024 0.0013 0.0098
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4.4.2. Histogram Analysis

An image histogram is a useful tool with which to visualize the statistical properties
of an image based on the distribution of pixel values. Histogram shapes include the normal
distribution, skewed distribution, double-peaked distribution, plateau distribution, flat
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distribution, and edge peak distribution. A flat histogram is indicative of a secure and
well-encrypted image technique. Figure 13 illustrates the histograms for the Lena, Baboon,
and Pepper images for both the plain and encrypted versions. The flatness of the encrypted
image histogram can be evaluated by determining its variance; this is conducted based on
Equation (21) for an image of size m× n:

Variance(h) =
1

2× n2 ×
n

∑
i=1

m

∑
j=1

(
xi − xj

)2 (21)

where h is the histogram vector value and x denotes the number of gray pixel values at
(i, j) Table 4 displays the variance values for both the plain and encrypted images utilized
in the experiments. A variance range averaging at 5000 indicates a more even distribution
of pixel values, thus indicating a superior encryption mechanism.
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Table 4. Variance of images.

Cameraman Lena Pepper Rice House

Original 3886.6300 2785.4833 3238.600 1805.6977 2118.0286
Encrypted 5671.4695 5698.5852 5672.7690 5600.6353 5764.8519

4.5. Differential Attack

In accordance with the findings reported by Wang et al. [27], even a minor modification
in the pixel values of a plain image can lead to a substantial transformation in the resulting
cipher image, thereby highlighting the efficacy of the encryption method. To quantitatively
assess this effect, the normalized pixel change rate (NPCR) and the unified average change
intensity (UACI) metrics are employed. NPCR, calculated using Equation (22), and UACI,
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determined through Equation (23), mathematically capture the extent of change in pixel
values between the plain and encrypted images:

NPCR =

M
∑

i=1

N
∑

j=1
β(i, j)

M× N
× 100% (22)

UACI =

M
∑

i=1

N
∑

j=1
e1(i, j) + e2(i, j)

255×M× N
× 100% (23)

where

β(i, j) =
{

0i f e1(i, j) = e2(i, j)
1i f e1(i, j) 6= e2(i, j)

M× N represent the size of image β, and the cipher images e1 and e2 have one-pixel
difference on their plaintext when encrypted with the same key. It is essential to ensure that
any image encryption technique is secure and reliable, regardless of the size of the image
being encrypted. To achieve this, the UACI (unified average changing intensity) and NPCR
(number of pixel changing rate) values must meet certain critical values. Based on industry
standards and best practices as stated by Wu and Agaian [30], the ideal value for UACI in
an encrypted image is greater than 33%, while the ideal value for NPCR is greater than 99%.
These critical values have been determined through rigorous analysis and testing and are
considered to be the minimum requirement for ensuring the security and confidentiality
of the encrypted image. Therefore, it is of utmost importance that the UACI and NPCR
values meet these critical values in order to consider an image encryption technique secure.
When these values are achieved, we can be confident that the encryption process has met
its critical value and can be deemed secure. Hence, it is crucial to prioritize these values
when evaluating and selecting image encryption techniques to ensure the confidentiality
and security of sensitive images. Table 5 provides the NPCR and UACI value for images
of size 256× 256 which has been used in this study. Table 6 provides a comparison of the
UACI and NPCR values obtained from this study with those of other similar studies. The
findings demonstrate that the proposed method is suitable for the encryption process, even
when there is a minor alteration of the pixel values in the images.

Table 5. Information global entropy, NPCR, and UACI.

Information Entropy NPCR % UACI %

Lena 7.9968 99.6399 33.4308
Cameraman 7.9974 99.5773 33.3542

Pepper 7.9969 99.6094 33.5607
House 7.9972 99.6017 33.3707

Table 6. Information global entropy, UACI, and NPCR comparison.

Image Proposed
Entropy

Proposed
NPCR

Proposed
UACI

Enayatifar et al.
[31] Info. Entropy

Enayatifar et al. [31]
NPCR

Enayatifar et al. [31]
UACI

Lena 7.9968 99.6399 33.4308 7.9975 99.5193 33.581
Cameraman 7.9974 99.5773 33.3542 7.9939 99.0039 33.102

Pepper 7.9969 99.6094 33.5607 7.9958 98.4972 32.940
House 7.9972 99.6017 33.3707 - - -

4.6. Peak Signal-to-Noise Ratio (PSNR), Signal-to-Noise Distortion Ratio (SNR), and Mean
Square Error Analysis

In the study conducted by Srivastava and Singh [32], the authors mention that the
mean square error (MSE) and peak signal-to-noise ratio (PSNR) are commonly utilized to
assess and evaluate the quality of images. The MSE is employed to measure the similarity
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between encrypted images and plain images; a high-quality image is characterized by a
low value of mean squared error (MSE), while a poor-quality image is indicated by a high
MSE value. Equation (24) illustrates the computation of MSE by subtracting the cipher
image from the original image. Conversely, a low value peak signal-to-noise ratio (PSNR)
signifies the effectiveness of an image encryption technique. Equation (25) provides the
calculation for PSNR in this context.

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

(P(i, j)− E(i, j))2 (24)

PSNR = 10× log10
M× N√

MSE
(25)

Here, P(i, j) and E(i, j) represent the pixels of the original and encrypted images,
respectively. When P(i, j) = E(i, j), the MSE value is always zero. Table 7 presents the
results of the experiments conducted on encrypted images in terms of both the PSNR and
MSE values, and demonstrates a high value of the MSE and a low value of the PSNR,
which indicates good encryption technique. Moreover, the lower value of SNR indicates
that the encrypted image has more noise, thus hindering the attacker’s attempt to obtain
information to a greater degree compared to less noise.

Table 7. MSE, PSNR, and SNR.

Cameraman Lena Pepper Rice House

MSE 107.136 88.5046 93.44519 100.1538 131. 523
PSNR 8.3611 8.5085 8.4240 9.3281 9.2477
SNR 2.7773 1.2926 1.7061 2.7145 4.3285

4.7. Brute Force Attack
4.7.1. Key Sensitivity Analysis

Yavuz et al. [33] and Hua et al. [11] have demonstrated that the key sensitivity of a
system becomes evident when even a minor alteration in parameters leads to a significant
and distinct outcome. This can be conducted during encryption and decryption processes.
Table 8 shows the correction coefficient when there is a slight change in parameter values
during the encryption process: Round 1, x0 = 0.189 + 10−10, a = 1.4, b = 0.3; Round 2,
x0 = 0.189− 10−10, a = 1.4,b = 0.3; Round 3, x0 = 0.189, a = 1.4 + 10−10, b = 0.3; and
Round 4, x0 = 0.189, a = 1.4, b = 0.3+ 10−10. While the correlations between the encrypted
and original images are close to zero, the significant difference between their averages
in all rounds indicates that the cipher images are indeed different. Figure 14 visually
demonstrates the magnitude of difference in the resulting outcome when even slight
changes occur in the parameters.

4.7.2. Secret Key Space Analysis

The control parameters of the sine, logistic, and Hénon maps are crucial in determining
the level of security provided by the encryption mechanism. As the number of keys utilized
in the encryption process increases, it becomes increasingly difficult for potential attackers
to break the security measures. In this study, a total of three different keys were utilized;
these secret keys are km obtained from the fuzzy number, k1 obtained from the hybrid map
of the logistic and sine maps, and k2 obtained from the hybrid of the triangular membership
function and the Hénon map. Ideally, key space used in encryption should be larger than
2100 [34] to handle brute force attack. According to the IEEE [34] standard, the precision
number of floating points is 1015. As part of this experiment, where three floating-point
keys are utilized, the total number of key spaces can be approximated using Equation (26).
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This equation serves as a crucial tool in estimating the size of the key space. This increased
key space is better for resistance against brute-force attacks.

Keys =
(

1015×3
)
≈ 2149 (26)

Table 8. Key sensitivity analysis for cipher Lena.

Round Small Change in Parameter Value Average Correlation Coefficients

1 x0 = 0.189 + 10−10, a = 1.4, b = 0.3 −0.003030
2 x0 = 0.189− 10−10, a = 1.4, b = 0.3 −0.005816
3 x0 = 0.189, a = 1.4 + 10−10, b = 0.3 −0.0000415
4 x0 = 0.189,a = 1.4, b = 0.3 + 10−10 −0.002644
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4.8. Entropy Analysis (Randomness Test)
4.8.1. Global Entropy Analysis

Ramasamy et al. [28] have provided evidence supporting the use of information
entropy as a measure to evaluate the uncertainty or randomness of a variable in an image.
The calculation of information entropy is performed using Equation (27), which is an
essential component in quantifying the uncertainty of a given system. In this equation,
parameter B represents the probability of pixel X within the image under consideration. By
incorporating Equation (27) into our analysis, we gain valuable insights into the information
content and distribution of the image’s pixels. A high value of entropy indicates a good and
strong encryption mechanism when E ≈ 8. Table 5 shows the entropy values of both plain
and encrypted images, while Table 6 provides a comparison with other studies. The results
show that our proposed algorithm is suitable and less prone to revealing information,
making it safe from brute force attacks.

E =
256

∑
i=1

p(i)× log
(

1
p(i)

)
(27)
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4.8.2. Local Entropy Analysis

Local entropy is an important aspect of image encryption as it measures the amount
of uncertainty or randomness within a small region of an image. By analyzing the local
entropy of an image, as suggest by Wu et al. [35], it is possible to determine the degree of
complexity and randomness present in the image, which can be indicative of its security
against various attacks. To improve the security of image encryption schemes, it is necessary
to consider the local entropy of the image and find ways to increase it. This can be achieved
through various techniques, such as the use of more complex and diverse chaotic maps,
the incorporation of additional randomness in the encryption process, and the application
of various transformations to the image. Table 9 shows the local entropy of both plain and
encrypted images used in this study.

Table 9. Local entropy of plain and encrypted images.

Lena Rice Cameraman Pepper House

Local entropy of plain image 7.4710 6.9472 6.8835 7.4924 6.3964
Local entropy of encrypted image 7.8982 7.8988 7.8990 7.8973 7.8981

4.9. Speed Performance Test

In our study, we conducted a speed test on encrypted images with a size of 256 × 256,
similar to the approach taken by Yavuz [36]. We compared our results with those obtained
in other relevant studies. Our proposed encryption method not only demonstrated its
robustness but also proved to be lightweight and highly efficient in terms of performance.
Based on our findings, as shown in Table 10, we believe that the proposed encryption
method offers an excellent solution for secure and quick encryption.

Table 10. Speed performance test.

Algorithm Encryption Time

Proposed 0.030
Yavuz et al. [33] 0.032

Wang and Yang [37] 0.19102
Gao et al. [38] 0.606

4.10. Noise and Data Loss Analysis

Our proposed encryption system has demonstrated superior performance when it
comes to dealing with cipher data contamination that includes both data loss and noise. To
test this, we applied 50%, 25%, 10%, 1.25%, and 0.5% noise to an encrypted Lena image and
attempted to recover the original image. Our encryption system performed exceptionally
well in the recovery process, highlighting its effectiveness in preserving the integrity and
quality of encrypted data even in the presence of noise and data loss of less than 50%. We
also tested our proposed encryption approach on encrypted images that experienced data
loss, with the aim of recovering the original images. The test was conducted to measure
data loss at different rates: 50%, 30%, 20%, and 10%.. Through our testing, we found that
our encryption system was effective in reconstructing the original images from the cipher
data, even when the encrypted images had experienced data loss of less than 30%. This
underscores the robustness and reliability of our proposed encryption approach, which can
be valuable in situations where the encrypted data are vulnerable to loss or corruption. See
Figure 15 for noise effects and Figure 16 for data loss.

The reason for conducting noise tests in our proposed encryption process lies in the
inherent stability provided by the utilization of chaotic maps and fuzzy numbers. These
elements contribute to a high level of randomness and complexity within the encryption
process. Chaotic maps, being dynamic systems, exhibit a sensitive dependence on initial
conditions, resulting in significant output variations from even minor changes in the initial
conditions. Fuzzy numbers, on the other hand, introduce the capability to accommodate
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uncertainty and imprecision. By incorporating both chaotic maps and fuzzy numbers, our
encryption scheme generates a highly intricate and random sequence of numbers, thereby
impeding attackers seeing to decipher the encrypted data. Additionally, the chaotic nature
of the encryption process enhances its resistance to noise and other forms of interference.
Even small alterations in the input data will lead to substantial changes in the encrypted
output, reinforcing the scheme’s resilience against noise. In conclusion, the integration
of chaotic maps and fuzzy numbers in our proposed encryption scheme introduces an
additional layer of randomness and complexity, making it more challenging for attackers
to decrypt the data while bolstering resistance against noise and interference during the
decryption process.
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4.11. Floating Frequency

According to Murillo-Escobar et al. [39] and Hosseinzadeh et al. [40], the floating
frequency analysis serves as a crucial tool to assess the uniformity of the encryption process
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employed on both the rows and columns of an image. It also evaluates the encryption’s abil-
ity to generate uniformly distributed random data for all segments of the original image. By
applying this robust analysis, any vulnerabilities or weak encryption areas within the cryp-
togram can be identified. The analysis is conducted by examining windows of 256 elements,
arranged based on the image’s rows and columns. The primary objective of the analysis
is to quantify the number of differing elements within each window. In this study, we
propose the concept of “rows’ and columns’ floating frequency” for a 256× 256 gray-scale
image. The methodology for calculating this floating frequency is as follows:

1. Select windows comprising 256 elements for each row and column of the image;
2. Count the number of distinct elements within each window, determining how many

different elements are present;
3. Define the “row floating frequency” (RFF) and “column floating frequency” (CFF) as

the frequencies of distinct elements within the corresponding windows;
4. Calculate the mean of both the RFF and CFF values; additionally, generate plots to

visually represent the distributions of RFF and CFF across the image.

Figures 17 and 18 showcase the column and row floating frequency analysis results for
both the Lena 256 × 256 plain image (P) and its corresponding encrypted image. The CFF
values depict the frequencies of distinct elements within the columns of the images. This
analysis offers valuable insights into the encryption process’s impact on the distribution
of elements in the image columns, highlighting any potential deviations from uniformity.
A higher percentage of column floating frequency (CFF) in the encrypted image indicates
the greater efficiency of the image encryption algorithm in generating a randomized
cryptogram at the column scale. Similarly, a higher percentage of row floating frequency
(RFF) in the encrypted image signifies the improved efficiency of the image encryption
algorithm in producing a randomized cryptogram at the row scale.

4.12. Chosen/Known Plain Image Attack

According to Murillo-Escobar et al. [41], several image encryption algorithms, highly
regarded for their remarkable statistical performance, have succumbed to vulnerabilities
arising from the exploitation of chosen/known plain image attacks. In these attacks,
different encryption keys can be employed to decrypt the cipher image of another encrypted
image. The failure of the secret key used for the Pepper image to successfully decrypt the
encrypted Lena image is illustrated in Figure 19.
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To enhance the proposed encryption scheme’s resilience against cryptanalysis attacks,
several measures have been implemented. In order to create a greater challenge for attackers
who attempt brute-force attacks, the key size has been increased. K1 and K2 together have
a total length of approximately 265,536 key spaces, which makes them extremely robust
against cryptanalysis attacks. Additionally, the scheme incorporates multiple rounds and
utilizes various techniques, such as permutation, substitution, and diffusion, to enhance its
robustness. Multiple chaotic maps have been incorporated into the key generation process,
iteration numbers have been increased, and initial map conditions have been modified
to make it even more complicated. Furthermore, the pixel scrambling process has been
enhanced through the utilization of diverse techniques such as row–column scrambling and
block-level scrambling. These collective measures contribute to fortifying the encryption
scheme and bolstering its resistance against cryptanalysis attacks, ensuring heightened
security for the encrypted data.
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5. Conclusions

This paper presents a novel image encryption scheme that utilizes a hybrid chaotic
map and fuzzy mathematics concept. The proposed approach employs a fuzzy triangular
membership method to provide values that induce slight changes in all the initial condition
parameters of the logistic sine map as well as the fuzzy Hénon map.

The utilization of the triangular membership function in generating the secret key
allowed for the generation of additional secret keys by combining the triangular member-
ship function with the Hénon map and the logistic sine map. The incorporation of the
hybrid chaotic map design with triangular membership methods expands the potential
secret key space, demonstrating a robust capability against sensitivity attacks after its use
in image encryption.

While the proposed scheme in the paper does not directly fulfill the security require-
ments of non-repudiation and authentication, it effectively addresses the vital aspects of
confidentiality, integrity, and availability. The system is intelligently designed to ensure
continuous availability, even in the presence of faults such as noise data or data loss. Our
techniques guarantee the encrypted image remains consistently accessible to legitimate
entities. To uphold integrity, any modifications made to the encrypted text through this
proposed scheme may produce different outcomes, primarily due to the sensitivity of the
encryption keys. Maintaining confidentiality is a paramount concern as the information is
meticulously safeguarded and accessible only to authorized parties.

The proposed scheme underwent various experiments, and the results were exten-
sively analyzed and evaluated to verify its security capability. The testing and verification
processes included statistical attack analysis, NIST tests, differential attack analysis, mean
signal-to-noise ratio, signal-to-noise distortion ratio and mean error square, brute force
attack analysis, and information entropy analysis. The mechanism demonstrated a high
level of efficiency and met all the requirements necessary for the secure transmission of
information by means of images.

Although the proposed scheme offers several advantages, there is still room for
potential improvements in the future. The current design is limited to gray-scale images
of size 256× 256 and the use of triangular membership functions. It may be beneficial to
explore other membership functions such as trapezoidal, Gaussian, quadratic, exponential,
or even combinations of multiple methods to enhance the scheme’s robustness. Another
limitation of this study is that it may not be suitable for real-time applications due to its
computational complexity. In upcoming research, we aim to address these limitations and
further improve the encryption scheme.
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