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Abstract: Rolling bearings are the core component of rotating machinery. In order to solve the
problem that the distribution of collected rolling bearing data is inconsistent during the operation
of bearings under complex working conditions, which results in poor fault identification effects, a
fault diagnosis method based on multi-source deep sub-domain adaptation (MSDSA) is proposed in
this paper. The proposed method uses CMOR wavelet transform to transform the collected vibration
signal into time–frequency maps and construct multiple sets of source–target domain data pairs,
and a rolling bearing fault diagnosis network based on a multi-source deep sub-domain adaptive
network is established. The network uses shared and domain-specific feature extraction networks
to extract data features together. At the same time, the local maximum mean discrepancy (LMMD)
was introduced to effectively capture the fine-grained information of the category. Each set of data
was used to train the corresponding classifier. Finally, multiple sets of classifiers were combined to
reduce the classification loss of the target domain samples at the classification boundary to achieve
fault identification. In order to make the training process more stable, the network used the Ranger
optimizer for parameter tuning. This paper verifies the effectiveness of the proposed method through
two sets of comparative experiments. The proposed method achieves 97.78%, 99.65%, and 99.34% in
three migration tasks. The experimental results show that the proposed method has a high recognition
rate and generalization performance.

Keywords: rolling bearing; multi-source subdomain adaptive; Ranger optimization algorithm; deep
residual network

1. Introduction

Rolling bearings have the function of reducing friction between components, and they
play an important role in modern industrial production [1]. Once a fault occurs, it may have
a huge impact on personnel safety and economic benefits. Therefore, it is very important to
carry out equipment detection and fault diagnosis on rolling bearings to ensure their safety
and reliability [2].

The fault diagnosis method is based on analysis of signals from the structure and fault
mechanism of a rolling bearing, and the state of the rolling bearing is judged, artificially,
by the monitored information. Of these signals, the vibration signal has been studied the
most widely, using methods such as time domain analysis, frequency domain analysis,
and resonance demodulation. Such algorithms rely on a great deal of prior experience and
require technicians to reserve a great deal of prior knowledge. In the face of increasingly
complex mechanical equipment, the diagnosis effect is poor. Data-driven diagnosis meth-
ods can classify the condition monitoring data without prior experience. Regarding the
traditional rolling bearing fault diagnosis method, two main aspects have been studied: the
feature extraction method and pattern recognition selection. With the rapid development
of deep learning, more and more new methods are being used to solve various problems in
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the field of fault diagnosis. The advantages of deep learning are that it avoids the process
of artificial feature extraction and that it completes the end-to-end fault classification via
automatically mining the hidden nonlinear features of the input signal [3].

In practical engineering applications, the data acquisition conditions for rolling bearing
status are complex and diverse due to the influence of speed, noise, load, and other factors.
It is inevitable that the data label information is not comprehensive and is different from
the information distribution of the training data sample [4]. Although deep learning
technology performs well in fault diagnosis, it is difficult to achieve ideal results for
mechanical fault diagnosis problems with inconsistent data distribution under different
working conditions [5]. To solve the above problems, Tan et al. [6] built a neural network
by stacking multiple sets of sparse auto-encoders and used a supervised fault diagnosis
method to fine-tune the network. Shao et al. [7] achieved good diagnostic results on three
fault datasets by fine-tuning the VGG-16 network’s high-level architecture. However, the
fine-tuning method does not completely solve the problem of insufficient target domain
labels. When facing the problem of label-free target domain data, it is difficult to achieve
effective diagnosis by fine-tuning the model alone.

Methods to more effectively introduce transfer learning into fault diagnosis have
attracted increasing research interest [8]. Researchers use metrics as criteria to increase the
similarity between source domain data and target domain data. Metrics determine the
outcome. Commonly used measuring methods are Euclidean distance, Markov distance, KL
(Kullback–Leibler) divergence, JS (Jensen–Shannon) distance, maximum mean difference,
the Pearson coefficient, etc. In order to solve the problem of a mismatched data distribution
under different working conditions, adaptive methods of data distribution, such as TCA
(transfer component analysis) [9], JDA (joint distribution adaptation) [10], BDA (balanced
distribution adaptation) [11], etc., are introduced into the fault field. When the data
probability distributions of the source domain and target domain are different, certain
methods are used to close the distribution distance between them. The literature [12] takes
the MMD (maximum mean difference) as the domain adaptive method and achieves good
results in bearing fault diagnosis under different conditions. Qian et al. [13] realized fault
diagnosis by improving joint distribution adaptation and using a more comprehensive
edge and condition distribution of the source and target domain data. Cheng et al. [14]
proposed a new deep migration learning method based on Wasserstein distance that
minimizes the distribution distance between the source domain and target domain through
confrontation training. Yang et al. [15] introduced the multi-layer MMD method to transfer
laboratory bearing-fault diagnosis knowledge to the actual bearing environment and to
transfer knowledge learning using different equipment. Wang et al. [16] determined fault
diagnosis in the thermal system of a power plant under variable operating conditions
by introducing CORAL (COR relation alignment) loss to reduce the difference in the
characteristic distribution of the thermal system under different operating conditions.

Most of the above research is based on the problem of variable-condition fault diag-
nosis using only single-source domain data. In practical applications, the source domain
data may come from a variety of different working conditions [17,18]. Reference [19]
indicates that some combinations of single-source domains can provide more information.
Y Zhu et al. [20] proposed a cross-domain classification algorithm, and selected the MMD
method to model domain adapters from multiple sources. B Rezaeianjouybari [21] pro-
posed the FTD-MSDA (feature-level and task-specific distribution alignment multi-source
domain adaptation) framework, which uses MMD loss to realize fault diagnosis of rotating
machinery.

The measurement method of the above research only considers the differences between
different classes in two domains, and loses the fine-grained information of each class. In
order to make up for the above shortcomings and more effectively transfer diagnostic
knowledge from multiple source domains to the target domain, this paper proposes a new
multi-source deep subdomain adaptive transfer learning method. The research in this
paper makes two contributions in methodology. (1) This paper proposes a deep multi-
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source variable condition bearing fault diagnosis method based on sub-domain adaptation.
The local maximum mean difference is used to fully learn the multi-source domain fault
feature information to solve the problem of fine-grained information loss. (2) The Ranger
optimization algorithm is introduced to optimize the network parameters, which makes
the network training more stable while maintaining the accuracy.

2. Fundamental Theory
2.1. Convolutional Neural Network

A CNN (convolutional neural network) is a feedforward neural network with convo-
lution operation as the core [22]. This method is widely used in image tasks because of its
good feature extraction ability. In recent years, it has also achieved excellent results in the
field of fault diagnosis.

A CNN includes convolutional layers, pooling layers, and fully connected layers. The
expression of the convolution operation is as follows.

xl
j = f (

v

∑
i=1

W l
j × xl−1

i + bl
j) (1)

In Formula (1), xl
j is the jth feature map output for the lth layer, v is the number of

input feature maps, W l
j is the convolution kernel weight matrix of the lth layer, xl−1

i is the

ith feature map of the output of the l − 1 layer, bl
j is the convolution kernel bias matrix of

the lth layer, and f (x) is the activation function.
Figure 1 shows the convolution kernel calculation process. Usually, the pooling layer

is added to the convolution layer after reducing the data size to prevent overfitting. The
common pooling operations are max pooling and average pooling.
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2.2. Deep Residual Network

With the development of convolutional neural networks, numerous variants of neural
networks have been studied by scholars. A deep residual network (ResNet) [23] was
proposed by four scholars from Microsoft Research to solve the problem of gradient dis-
appearance and degradation in deep networks. There are many types of ResNet, such as
ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, etc. However, their basic structures
are the same—they are made up of multiple layers of identical ResNet blocks stacked re-
peatedly. The deep residual network achieves jump mapping by adding ResNet blocks, and
the inputs and outputs are binary summed to compensate for the lost feature information.
In Figure 2, x represents the input to the network, and the layers represent several layers of
the network.
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2.3. Domain Distribution Difference Measure

There are two very important concepts in transfer learning: domain and task. The
domain can be interpreted as a specific domain, and the task is a specific problem that we
need to solve. For example, sentiment analysis and entity recognition are two different
tasks. In the field of fault diagnosis, transfer tasks are mainly used to solve the problem
of unlabeled or less labeled data in the target domain. Fault diagnosis of unlabeled target
domain data is performed by network parameters learned using labeled source domain
data.

Suppose that the source space Xs =
{

xs
i , ys

i
}m

i=1,
{

xs
i , ys

i
}

represents the ith source
domain data and label, and m is the total number of samples in the source domain; the

target domain space is Xt =
{

xt
j

}n

j=1
, where xt

j represents the jth target domain data; and

n is the total number of samples of the target domain. The edge distribution of the two
domains is allowed to be different, namely Ps(Xs) 6= Pt(Xt). Domain adaptation ensures
that the data of different distributions are as close as possible, via certain methods, when
the data distribution of the source domain and target domain are different. There are four
commonly used methods: (1) methods based on statistical criteria, (2) methods based on
structural criteria, (3) methods based on popular criteria, and (4) methods based on graph
criteria.

The methods based on statistical criteria use mean or higher-order moments to measure
the differences between different domains. Common methods include maximum mean
difference (MMD) [24], association alignment distance (CORAL) [25], and joint maximum
mean difference (JMMD) [26]. These kinds of methods map the source domain data and
the target domain data to the feature space for calculation so that the data distribution
difference between the two mapped domains is minimized.

The MMD metric is widely used in domain adaptation. MMD is a kernel learning
method that measures the distance between two distributions in a regenerated Hilbert
space. The basic idea behind MMD is that if the generating distributions are identical, all
the statistics are the same [27]. The distance between the source domain and the target
domain is expressed as follows. Xs and Xt are two datasets from the source domain and
the target domain, s and t are the abbreviations for the source domain and target domain,
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respectively, xs
i and xt

j are examples of Xs and Xt, and m and n are the number of samples
from the source domain and target domain.

D(Xs, Xt) = ‖ 1
m

m
∑

i=1
φ(xs

i )−
1
n

n
∑

j=1
φ(xt

j)‖2
H

= 1
m(m−1)

m
∑

i=1

m
∑
j 6=i

k(xs
i , xs

j ) +
1

n(n−1)

n
∑
j

n
∑
j 6=i

k(xt
i , xt

j)

− 2
mn

m
∑

i=1

n
∑

j=1
k(xs

i , xt
j)

(2)

In Formula (2), φ(·) represents feature mapping and is used to solve the inner product
mapped to two high-dimensional vectors. H represents the Hilbert space. k( , ) represents
the inner product of the vector.

2.4. Optimal Algorithm

Machine learning algorithms eventually involve parameter optimization problems.
Parameter optimization often uses methods based on maximizing posterior probability,
minimizing intra-class distance, or constructing a loss function based on network prediction
values and actual real values.

In the neural network architecture, the network is often optimized based on the
loss function. The appropriate optimization algorithm is used for back propagation to
update the network learnable parameters and reduce the loss function value so that the
constructed model can output the real label more accurately. Depending on the gradient
type, the algorithm can be divided into a gradient optimization algorithm or a gradient-free
optimization algorithm. A gradient optimization algorithm is the most commonly used
optimization algorithm in deep learning neural networks. Most deep neural networks use
stochastic gradient descent (SGD) or its variants for parameter optimization.

3. Multi-Source Subdomain Adaptation Model
3.1. The Structure of the Model

The overall structure of the multi-source subdomain adaptive fault diagnosis model
designed in this paper is shown in Figure 3.
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It can be seen from Figure 3 that the network mainly includes signal preprocessing, a
feature extraction network, network optimization, and state recognition. The specific steps
of each stage are as follows.

(1) Signal preprocessing: The bearing vibration signal of Jiangnan University is sampled
by an overlapping sampling method to increase the number of samples. Contin-
uous wavelet transform is performed on each type of signal sample using CMOR
wavelet to obtain a time–frequency diagram. Meanwhile, source–target data pairs are
constructed.

(2) Feature extraction network: The network consists of shared and domain-specific
feature extraction networks. First, the data are extracted using a shared feature
extraction network. Then, the specific feature extraction network is used to extract the
specific features for each group of data.

(3) Network optimization: The total training loss function of the network consists of
three parts. In this paper, the local maximum mean difference metric loss function is
selected to reduce the distribution difference in each group of data pairs, so that the
network can better learn the domain invariant representation. Each group of specific
feature extraction networks can extract the domain invariant representation of each
pair of source domain and target domain by minimizing losslmmd. N classifiers are
trained using labeled source domain data, and the cross-entropy loss between the
actual label and the predicted label in the source domain is calculated. Each group
of classifiers corresponds to the corresponding lossclass. The loss function lossdisc is
used to minimize the error between all classifiers and reduce the classification error
near the target domain class boundary. The network training process uses the Ranger
optimizer to reduce the total training loss function value.

(4) State recognition: Target domain data are input into the trained network and the
diagnostic results are output.

In order to simplify the parameter adjustment process of the network, the model
parameters in this paper are basically consistent with those in reference [20]. The literature
presents a multi-source domain migration learning method, where the literature not only
aligns the distribution of each pair of source and target domains in multiple specific feature
spaces, but also aligns the output of the classifier using domain-specific decision boundaries.
The literature uses ResNet50 for the shared feature network and employs mmd loss as the
domain alignment method. On this basis, the network structure and parameters can be
optimized to improve the recognition effect. The model parameters are shown in Table 1.

Table 1. The overall structure and parameters of the network.

Network Structure Network Parameter

Feature extraction network
ResNet50(share)-

Conv (2048,256)-Bn()-
Conv (256,256)-Bn()-Conv(256,256)-Bn()-ReLU()

Classifier Linear(256,4)

In Table 1, Conv (x,y) is the convolution operation, Linear (x,y) is the fully connected
layer, Bn (·) is the batch normalization layer, and ReLU (·) is the activation function layer. x
represents the number of input neurons, and y represents the number of output neurons.

3.2. Continuous Wavelet Transform

The CMOR wavelet is often used in the analysis of seismic data. Owing to the similarity
between bearing vibration signals and seismic waves [28], the CMOR wavelet basis can
often achieve better results when using bearing fault diagnosis methods.
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In continuous wavelet transform, it is assumed that the original signal, x(t) ∈ L2(R),
exists. Through the convolution operation between x(t) and the wavelet cluster, ψa,b(·),
the continuous wavelet transform formula is obtained as follows.

ψe, f (t) =
1√

e
ψ(

t− f
e

) (3)

cwt(e, f ) =
∫

x(t)ψe, f (t)dt (4)

In Formulas (3) and (4), e and f are the expansion factor and displacement factor,
respectively, t denotes time, and ψe, f (·) is the wavelet basis function after stretching and
displacement.

3.3. Shared Feature Extraction Network

Considering the shallow depth of the neural network and the weak ability to extract
features, this paper uses ResNet50 as a shared feature extraction network. ResNet50
contains 50 layers and is divided into 5 stages. The specific parameters of the network are
shown in Table 2.

Table 2. ResNet50 network structure.

Network Structure Type Receptive Field Size

Input 224 × 224 × 3
Con1 Convolution layer 7× 7, 64

Max pool Maximum pooling layer 3× 3, 64

Conv2_x Residual block 1 × 3
1× 1, 64
3× 3, 64

1× 1, 256

× 3

Conv3_x Residual block 1 × 4
1× 1, 128
3× 3, 128
1× 1, 512

× 4

Conv4_x Residual block 1 × 6
1× 1, 256
3× 3, 256
1× 1, 1024

× 6

Conv5_x Residual block 1 × 3
1× 1, 512
3× 3, 512
1× 1, 2048

× 3

Average Average pooling layer

3.4. Local Maximum Mean Discrepancy

Since MMD mainly learns the global alignment of the source domain and the target
domain, it ignores the subdomain relationship between the two domains. After the global
domain adaptation alignment, the distribution of the two domains is basically the same,
but the data distance of the different subdomains is too close, making the network difficult
to classify accurately. Therefore, this paper introduces the local maximum mean difference
(LMMD) [27].

In Figure 4, the left side is global domain adaptation and the right side is a subdomain
adaptation.



Appl. Sci. 2023, 13, 6800 8 of 18

Appl. Sci. 2023, 13, 6800 8 of 18 
 

In Figure 4, the left side is global domain adaptation and the right side is a subdo-

main adaptation. 

 

Figure 4. Domain adaptation. 

Suppose there are m  samples in source domain sX  and n  samples in target 

domain tX , where samples s

ix  and t

jx  belong to each category, with weights sc

i  

and tc

j , and 
icy  is the c th element of the label vector 

iy  ( c  is the number of cate-

gories). The formulas for LMMD are shown in (5) and (6). 

( , )j j

c ic
i

jc

x y D

y

y




=


 
(5) 

2
^

1 1 1

1
( ) ( ) ( )

C m n
s t sc s tc t

i i j j

c i j H

d X X x x
C

   
= = =

= −  ，  (6) 

Since ()  cannot be calculated directly, the above equation is transformed. As 

shown in Formula (7), ( ,  )k  represents the inner product of the vector. 

1 1

^

1 11

1 1

[ ( , )

1
( , )( )

2 ( , )]

m m
sc sc s s

i j i j

i j

n nC
tc tc t ts t
i j i jlmmd

i jc

m n
sc tc s t

i j i j

i j

k x x

k x xloss d X X
C

k x x

 

 

 

= =

= ==

= =

+= =

−







，  (7) 

3.5. Ranger Optimization Algorithm 

In order to make the network training more stable and robust, this paper used the 

Ranger optimization algorithm to optimize the network parameters. The Ranger opti-

mization algorithm uses RAdam [29] and Lookahead [30] as internal and external opti-

mizers, respectively. 

The internal optimizer, A, updates the fast weight,  , and the update rules of the 

fast weight are as follows: 

, 1 , , 1( , , )t i t i t iA L d  + −= +  (8) 

where L  represents the objective function, A  represents an optimization algorithm, 

d  represents sample small batch data, 1,2...i k=  represents the exploration of the i th 

batch, and t  is the number of iterations. 

The update of the slow weight is affected by the fast weight. When the internal op-

timizer A completes k  batch explorations, the slow weight   update formula is as 

follows. 

Figure 4. Domain adaptation.

Suppose there are m samples in source domain Xs and n samples in target domain Xt,
where samples xs

i and xt
j belong to each category, with weights ωsc

i and ωtc
j , and yic is the

cth element of the label vector yi (c is the number of categories). The formulas for LMMD
are shown in (5) and (6).

ωc
i =

yic

∑
(xj ,yj)∈D

yjc
(5)

d̂(Xs, Xt) =
1
C

C

∑
c=1

∥∥∥∥∥ m

∑
i=1

ωsc
i φ(xs

i )−
n

∑
j=1

ωtc
j φ(xt

j)

∥∥∥∥∥
2

H

(6)

Since φ() cannot be calculated directly, the above equation is transformed. As shown
in Formula (7), k( , ) represents the inner product of the vector.

losslmmd = d̂(Xs, Xt) =
1
C

C

∑
c=1

[
m
∑

i=1

m
∑

j=1
ωsc

i ωsc
j k(xs

i , xs
j )

+
n
∑

i=1

n
∑

j=1
ωtc

i ωtc
j k(xt

i , xt
j)

−2
m
∑

i=1

n
∑

j=1
ωsc

i ωtc
j k(xs

i , xt
j)]

(7)

3.5. Ranger Optimization Algorithm

In order to make the network training more stable and robust, this paper used the
Ranger optimization algorithm to optimize the network parameters. The Ranger optimiza-
tion algorithm uses RAdam [29] and Lookahead [30] as internal and external optimizers,
respectively.

The internal optimizer, A, updates the fast weight, θ, and the update rules of the fast
weight are as follows:

θt,i+1 = θt,i + A(L, θt,i−1, d) (8)

where L represents the objective function, A represents an optimization algorithm, d
represents sample small batch data, i = 1, 2...k represents the exploration of the ith batch,
and t is the number of iterations.

The update of the slow weight is affected by the fast weight. When the internal
optimizer A completes k batch explorations, the slow weight ξ update formula is as follows.

ζt+1 = ζt + α(θt,k − ζt)

= α
[
θt,k + (1− α)θt−1,k + ... + (1− α)t−1θ0,k

]
+ (1− α)tζ0

(9)

3.6. Network Optimization

The calculation formula for classification lossclass is as follows.

lossclass =
N

∑
j=1

Ex∼Xs J(Cj(Hj(F(x
sj
i ))), y

sj
i ) (10)
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In Formula (10), lossclass represents the classification loss of N source domains, Cj is
the classifier trained in the source domain of the jth group, J is a cross-entropy function,
Hj is a specific domain feature extraction network, and F is a shared feature extraction
network.

In the multi-source classifier, the classifier learned by each set of data may have
differences in the prediction of target domain samples. Therefore, a loss function that
minimizes the differences between different classifiers has been proposed [31], as shown in
Formula (11).

lossdisc =
2

N × (N − 1)

N−1

∑
i=1

N

∑
j=i+1

Ex∼Xt
∣∣Cj(Hj(F(xt)))− Ci(Hi(F(xt)))

∣∣ (11)

There are three optimization objectives in the process of network training:

1. Minimize the classification loss function, lossclass, of the source domain dataset;
2. Minimize the difference loss, lossdisc, between different classifiers;
3. Minimize the domain invariant, losslmmd, of the source and target domain datasets.

Then, the expression of loss is as follows:

loss = lossclass + λ(lossdisc + losslmmd) (12)

where λ is the equilibrium hyperparameter.

4. Experiments and Analysis
4.1. Experimental Data

The open dataset of the China Jiangnan University (JNU) bearing fault dataset [32]
was selected to verify the validity of the model. The experimental platform is shown in
Figure 5. The platform consists of an inductor motor (Mitsubishi SB-JR), accelerometer
(PCB MA352A60), and signal conditioner (PCB ICP Model 480C02).
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Figure 5. JNU bearing test bench.

There are four states in the collected bearing data: normal, inner ring fault, outer ring
fault, and rolling element fault. The experiment was conducted at 600 r/min, 800 r/min,
and 1000 r/min, and different speeds were taken to represent different tasks: dataset A
represents the data collected at 600 r/min, B represents the data collected at 800 r/min, and
C represents the data collected at 1000 r/min. Datasets A, B, and C are composed of four
health states [33]. The health status and corresponding labels are shown in Table 3.
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Table 3. JNU bearing dataset settings.

Dataset State of Health Rotating
Speed(R/Min) Label Sample Size

A Normal 600 0 800
A Inner ring fault 600 1 800
A Outer ring fault 600 2 800
A Rolling element fault 600 3 800
B Normal 800 0 800
B Inner ring fault 800 1 800
B Outer ring fault 800 2 800
B Rolling element fault 800 3 800
C Normal 1000 0 800
C Inner ring fault 1000 1 800
C Outer ring fault 1000 2 800
C Rolling element fault 1000 3 800

The number of points in each state is 410,112, and 1024 points are intercepted as a
group of samples by overlapping sampling, and 800 groups of samples for each state are
obtained. The final A, B, and C data sets have 3200 samples. Before the experiment, CMOR
wavelet was used to perform wavelet transform on all samples to obtain time–frequency
image samples.

The code uses Pytorch as the deep learning framework [34] and a Windows 10 oper-
ating system. The experiments were set to a number of 32 samples per batch, the initial
learning rate was set to 0.0001, and the total number of training rounds was set to 1500. All
compared methods, except the method proposed in this paper, use SGD [35] to optimize
the network model.

4.2. Comparative Analysis of the Results of Different Domain Adaptation Methods

In order to verify the effectiveness of the distribution difference measurement method
in this paper, it was first compared with several common adaptive methods. In the per-
formance of migration experiments for the different adaptive methods, when the B and C
datasets are selected as the source domains and A is selected as the target domain, the task
is represented by B-C→A; when datasets A and C are selected as the source domains and B
is selected as the target domain, the task is represented by A-C→B. A-B→C represents the
task when the A and B datasets are selected as the source domains and C is selected as the
target domain.

4.2.1. Visual Comparative Analysis of Output Features

In order to intuitively demonstrate the effectiveness of the proposed method, t-
distribution stochastic neighbor embedding (t-SNE [36]) was introduced for the multi-
source migration task A-C→B. T-SNE is a nonlinear dimensionality reduction algorithm.
Because it can clearly show the relationship between different categories and clusters, it is
often used for visualization in the field of fault diagnosis.

The target domain samples are input into the trained network, and the fault features
extracted from the last layer of the network are reduced to a two-dimensional plane. The
results are shown in Figure 6, where different colors represent different class labels. It can
be seen that there is still more cross-over after extracting features using the four comparison
methods (a–d). After feature extraction using the proposed method, the four classes of
faulty samples have basically been separated, and the target samples can be better classified.
The specific recognition accuracy is shown in Table 4. It can be observed that the recognition
accuracy of method (a) is 97.81%, the recognition accuracy of method (b) is 98.53%, the
recognition accuracy of method (c) is 98.75%, the recognition accuracy of method (d) is
98.81%, and the recognition accuracy of method (e) is 99.65%, which is higher than the
other four methods.
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Table 4. Multi-source domain fault classification accuracy of different adaptive methods.

Test
Adaptive Method JMMD CORAL MK-MMD LMMD MSDSA

Increase
Percentage (%)

B-C→A 93.87% 94.00% 89.34% 95.37% 97.40% 2.03–8.06%

A-C→B 97.81% 98.53% 98.75% 98.81% 99.65% 0.84–1.84%

A-B→C 97.03% 97.47% 97.50% 97.37% 99.34% 1.84–2.31%

Average 96.24% 96.67% 95.20% 97.18% 98.80% 1.62–3.6%

4.2.2. Comparative Analysis of Diagnostic Results

Figure 7 illustrates the confusion matrix of the output categories after performing fault
diagnosis for tasks A-C→B. The horizontal coordinates represent the predicted categories
of the target domain samples and the vertical coordinates represent the true labels of the
target domain samples. From the confusion matrix, it can be seen that if the four methods
(a–d) are utilized for fault diagnosis, there are 110, 59, 71, and 51 target domain samples
that have been misclassified, respectively. However, after using the proposed method,
there are only 17 sample classification errors in 3200 target domain samples. Nine rolling
element fault samples were identified as normal state, three rolling element fault samples
were identified as outer ring faults, one inner ring fault sample was identified as normal,
two normal state samples were identified as outer ring faults, two normal state samples
were identified as rolling element faults, and the remaining target domain samples were all
correctly classified. The overall diagnostic accuracy was 99.47%.
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4.2.3. Comparative Analysis of Diagnostic Accuracy and Change Curve

The diagnostic accuracies of the different adaptive methods for three sets of migration
tasks are shown in Table 4. Figure 8 shows the variation curve for target domain sample
accuracy with the number of iterations in the three sets of tasks. In order to show the
contrast effect more clearly, the change curve of the number of iterations greater than
1100 times is locally amplified.
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(c) A-B→C.

In Figure 8, the change curves, presented in different colors, represent different adap-
tive methods. It can be seen that, compared with the other four methods, the proposed
method has smaller random fluctuations in the three groups of tasks and that the training
effect is more stable. More specific information can be seen in Table 4. The proposed method
achieves the highest diagnostic accuracy in all three tasks. The diagnostic accuracies of
the proposed method in task A-C→B, task A-B→C, and task B-C→A were 99.65%, 99.34%,
and 97.40%, respectively. Compared with the other four methods, the diagnostic accuracy
is improved by 2.03–8.06%, 0.84–1.84%, and 1.84–2.31%, respectively. This shows that,
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compared with global domain adaptation, the improvement in the sub-domain adaptation
can learn the fine-grained information of each category and can align the distribution of the
sub-domains of the same category more effectively. Compared with the LMMD method,
the diagnostic accuracy of the proposed method is improved by 2.03%, 0.84%, and 1.97%,
respectively. It can be shown that the Ranger optimizer can train the network parameters
more effectively and achieve better training results.

4.3. Comparative Analysis of Single-Source Domain and Multi-Source Domain Transfer Learning
Task Results

In order to verify the performance of the proposed method more objectively [37],
single-source domain and multi-source domain learning were performed on three groups
of transfer learning tasks. The model structure and parameters remained unchanged. The
experimental results are shown in Table 5.

Table 5. Comparison of fault diagnosis results between single-source domain and multi-source
domain migration.

Task Accuracy Task Accuracy Increase Percentage (%)

B-C→A 97.78% B→A
C→A

95.09%
96.13%

2.69%
1.65%

A-C→B 99.65% A→B
C→B

98.72%
99.28%

0.93%
0.37%

A-B→C 99.34% A→C
B→C

97.85%
98.84%

1.49%
0.50%

4.3.1. Visual Comparative Analysis of Output Features

Figure 9 shows the fault feature visualizations of the output from the target domain
samples by the last layer of the fault diagnosis network. Like the previous comparison
method, the fault feature is reduced to a two-dimensional plane. In the three images in
each row, the target domain of the transfer learning task is the same.

From Figure 9, we can see that the single-source domain transfer learning tasks (a), (b),
(d), (e), (g), and (h) all have more overlap problems, and the fault diagnosis network has
difficulty in classifying them accurately. In contrast, there is less overlap between categories
in the multi-source domain migration learning tasks (c), (f), and (i).

4.3.2. Comparative Analysis of Diagnostic Results

Figure 10 shows the confusion matrix of the diagnostic results of the single-source
domain and multi-source domain migration learning tasks. The images are arranged in the
same order as in Figure 9. It can be seen from Figure 10 that the multi-source domain tasks
(c), (f), and (i) can reduce the classification errors for the target domain samples compared
to the single-source domain tasks (a), (b), (d), (e), (g), and (h).
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4.3.3. Comparative Analysis of Diagnostic Accuracy and Change Curve

Figure 11 shows the change curves of three different target domains on single-source
domain and multi-source domain transfer learning tasks. The gray and red curves in the
figure represent the single-source domain tasks. The blue curve represents the multi-source
domain task. The final fault diagnosis accuracy results are shown in Table 5.
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It can be seen from Figure 11 and Table 5 that the accuracy of the multi-source do-
main fault diagnosis method is significantly higher than the corresponding single-source
domain fault diagnosis method, which can better classify the target domain samples. For
example, the accuracy of the multi-source domain method, B-C→A, can reach 97.78%,
whereas the diagnostic accuracy of the single-source domain methods, B→A and C→A,
can only reach 95.09% and 96.13%, and the classification accuracy is improved by 1.97% and
1.56%, respectively. To a certain extent, this can be explained that under complex working
conditions, a multi-source domain can learn richer domain-invariant feature information
more effectively than a single-source domain.

5. Discussion

In traditional research on transfer learning methods, only single-source unsupervised
adaptation is often considered. Whereas, in practical scenarios, multiple sets of source
domain data can be obtained, and the distribution of different source domain data may
be different. Therefore, on the above basis, multi-source unsupervised adaptation has
been widely concerned. A key assumption of multi-source transfer work is that multiple
source domains contain complementary diagnostic knowledge [38] so that the combined
knowledge can be used for diagnostic tasks in the target domain.

The optimization function of MSDSD proposed in this paper consists of three parts:
the cross entropy loss of the source domain, the local maximum mean error function
for measuring the distribution difference between domains, and the loss function for
minimizing the difference between all classifiers. Through network iteration, a more stable
fault diagnosis network of variable condition bearings is finally trained. On the other hand,
considering that the variable condition fault diagnosis network may have unstable training,
this paper combines the Ranger optimizer to improve the stability of network training.

The model structure and parameters in this paper were mostly set based on the
research results of related papers. The model parameters could have influenced either
the diagnosis process or results to a varying extent. Therefore, the model structure and
parameters ought to be investigated further. Different adaptive methods can determine the
transferable features learned on the source domain, so follow-up work can be carried out
from this aspect.

6. Conclusions

With the aim of solving the problem of insufficient feature information extracted using
a single-source transfer learning method, this paper proposed a multi-source sub-domain
adaptive deep transfer learning fault diagnosis method that uses the LMMD as the adaptive
method and a Ranger optimizer to optimize the network parameters. Finally, the method
was evaluated using the JNU bearing dataset of Jiangnan University. The conclusions
obtained are as follows:

(1) The subdomain adaptive method can better align the distribution difference between
the source domain and the target domain;

(2) Using multi-source domain learning can extract richer information;
(3) Using the Ranger optimizer instead of a mainstream optimizer can further improve

the accuracy of network training.

Compared to the different domain adaptation methods and a single-source domain
experiment task, the effectiveness of the proposed method was proven.
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